BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Conference papers

Document subtype
Abstract

Title
Corrosion and Heat Transfer Fluids in Thermal Energy Storage for Concentrating Solar Power

Participants in the publication
Mafalda Gil (Author)
FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA
Fátima Pedrosa (Author)
LABORATÓRIO NACIONAL DE ENERGIA E GEOLOGIA
Teresa Paiva (Author)
LABORATÓRIO NACIONAL DE ENERGIA E GEOLOGIA
Isabel Figueira (Author)
LABORATÓRIO NACIONAL DE ENERGIA E GEOLOGIA
Teresa Diamantino (Author)
LABORATÓRIO NACIONAL DE ENERGIA E GEOLOGIA
Maria José Lourenço (Author)
Dep. Química e Bioquímica
CQE
Carlos Nieto de Castro (Author)
Dep. Química e Bioquímica
CQE

Summary
Recently, the utilisation of renewable energies has increased as they represent the most viable alternative to fossil fuels. Solar energy technologies become increasingly significant, particularly concentrating solar power (CSP), a highly promising technology for converting solar thermal energy into electricity, offering the potential for energy storage after-sun hours. These technologies include sensible and latent heat, using heat transfer fluids (HTF) to absorb and store the energy received.\n\nHTFs can be composed of a variety of materials, including thermal oils, water, air, and molten salts (MS). Currently, Solar Salt is the most utilized MS as HTF in CSP plants. Higher temperature MS are constantly searched to meet high energy density, efficiency requirements, and better thermal stability than solar salt. The use of high temperatures in CSP is however quite challenging, considering a series of criteria: (a) the allowed temperature working ranges, as wide as possible, which requires low melting points and high decomposition temperatures, ensuring thermal/chemical stability of the salts across the range; (b) high heat transfer rates are required; (c) the interaction of construction materials with the salts, the corrosion effect and mitigation surface treatments are needed to prevent corrosion in static and dynamic conditions.\n\nAn overview of different HTFs, their thermophysical properties, and the corrosivity for a wide range of metallic materials, including the experimental work developed in the Laboratory of Materials and Coatings of LNEG in static and dynamic conditions and at the Molecular Thermophysics and Fluid Engineering Group of CQE (FCUL) in the last years

Editor(s)
Sociedade Portuguesa de Materiais

Date of Publication
2024-07-22

Institution
FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA

Event
3rd Materials for Energy Transition Summer School, Aveiro, Portugal, July 22-24, 2024

Publication Identifiers

Address
Aveiro, Portugal

Organizers
Sociedade Portuguesa de Materiais

Publisher
Sociedade Portuguesa de Materiais

Collection
Book of Abstracts

Number of pages
1


Export

APA
Mafalda Gil, Fátima Pedrosa, Teresa Paiva, Isabel Figueira, Teresa Diamantino, Maria José Lourenço, Carlos Nieto de Castro, (2024). Corrosion and Heat Transfer Fluids in Thermal Energy Storage for Concentrating Solar Power. 3rd Materials for Energy Transition Summer School, Aveiro, Portugal, July 22-24, 2024, -

IEEE
Mafalda Gil, Fátima Pedrosa, Teresa Paiva, Isabel Figueira, Teresa Diamantino, Maria José Lourenço, Carlos Nieto de Castro, "Corrosion and Heat Transfer Fluids in Thermal Energy Storage for Concentrating Solar Power" in 3rd Materials for Energy Transition Summer School, Aveiro, Portugal, July 22-24, 2024, Aveiro, Portugal, 2024, pp. -, doi:

BIBTEX
@InProceedings{65123, author = {Mafalda Gil and Fátima Pedrosa and Teresa Paiva and Isabel Figueira and Teresa Diamantino and Maria José Lourenço and Carlos Nieto de Castro}, title = {Corrosion and Heat Transfer Fluids in Thermal Energy Storage for Concentrating Solar Power}, booktitle = {3rd Materials for Energy Transition Summer School, Aveiro, Portugal, July 22-24, 2024}, year = 2024, pages = {-}, address = {Aveiro, Portugal}, publisher = {Sociedade Portuguesa de Materiais} }