BIBLIOS

  Sistema de Gestão de Referências Bibliográficas de Ciências

Modo Visitante (Login)
Need help?


Voltar

Detalhes Referência

Tipo
Artigos em Revista

Tipo de Documento
Artigo Completo

Título
Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness

Participantes na publicação
Ana Rodrigues (Author)
Nuno Rodrigues (Author)
LASIGE
João Santinha (Author)
Maria V. Lisitskaya (Author)
Aycan Uysal (Author)
Celso Matos (Author)
Inês Domingues (Author)
Nickolas Papanikolaou (Author)

Data de Publicação
2023-04-17

Suporte
Scientific Reports

Identificadores da Publicação
ISSN - 2045-2322

Editora
Springer Science and Business Media LLC

Volume
13
Fascículo
1

Identificadores do Documento
DOI - https://doi.org/10.1038/s41598-023-33339-0
URL - https://doi.org/10.1038/s41598-023-33339-0

Identificadores de Qualidade
SCIMAGO Q1 (2022) - 0.973 - Multidisciplinary
Web Of Science Q2 (2022) - 4.6 - MULTIDISCIPLINARY SCIENCES - SCIE


Exportar referência

APA
Ana Rodrigues, Nuno Rodrigues, João Santinha, Maria V. Lisitskaya, Aycan Uysal, Celso Matos, Inês Domingues, Nickolas Papanikolaou, (2023). Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness. Scientific Reports, 13, ISSN 2045-2322. eISSN . https://doi.org/10.1038/s41598-023-33339-0

IEEE
Ana Rodrigues, Nuno Rodrigues, João Santinha, Maria V. Lisitskaya, Aycan Uysal, Celso Matos, Inês Domingues, Nickolas Papanikolaou, "Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness" in Scientific Reports, vol. 13, 2023. 10.1038/s41598-023-33339-0

BIBTEX
@article{63785, author = {Ana Rodrigues and Nuno Rodrigues and João Santinha and Maria V. Lisitskaya and Aycan Uysal and Celso Matos and Inês Domingues and Nickolas Papanikolaou}, title = {Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness}, journal = {Scientific Reports}, year = 2023, volume = 13 }