BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Journal articles

Document subtype
Full paper

Title
Optical time series for the separation of land cover types with similar spectral signatures: cocoa agroforest and forest

Participants in the publication
João E. Batista (Author)
Nuno M. Rodrigues (Author)
Ana I. R. Cabral (Author)
Maria J. P. Vasconcelos (Author)
Adriano Venturieri (Author)
Luiz G. T. Silva (Author)
Sara Silva (Author)
Dep. Informática
LASIGE

Date of Publication
2022-05-03

Where published
International Journal of Remote Sensing

Publication Identifiers
ISSN - 0143-1161

Publisher
Informa UK Limited

Volume
43
Number
9

Number of pages
22
Starting page
3298
Last page
3319

Document Identifiers
DOI - https://doi.org/10.1080/01431161.2022.2089540
URL - http://dx.doi.org/10.1080/01431161.2022.2089540

Rankings
SCIMAGO Q1 (2021) - 0.873 - earth and planetary sciences (miscellaneous)


Export

APA
João E. Batista, Nuno M. Rodrigues, Ana I. R. Cabral, Maria J. P. Vasconcelos, Adriano Venturieri, Luiz G. T. Silva, Sara Silva, (2022). Optical time series for the separation of land cover types with similar spectral signatures: cocoa agroforest and forest. International Journal of Remote Sensing, 43, 3298-3319. ISSN 0143-1161. eISSN . http://dx.doi.org/10.1080/01431161.2022.2089540

IEEE
João E. Batista, Nuno M. Rodrigues, Ana I. R. Cabral, Maria J. P. Vasconcelos, Adriano Venturieri, Luiz G. T. Silva, Sara Silva, "Optical time series for the separation of land cover types with similar spectral signatures: cocoa agroforest and forest" in International Journal of Remote Sensing, vol. 43, pp. 3298-3319, 2022. 10.1080/01431161.2022.2089540

BIBTEX
@article{56757, author = {João E. Batista and Nuno M. Rodrigues and Ana I. R. Cabral and Maria J. P. Vasconcelos and Adriano Venturieri and Luiz G. T. Silva and Sara Silva}, title = {Optical time series for the separation of land cover types with similar spectral signatures: cocoa agroforest and forest}, journal = {International Journal of Remote Sensing}, year = 2022, pages = {3298-3319}, volume = 43 }