BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Journal articles

Document subtype
Full paper

Title
Uterine contractions clustering based on electrohysterography

Participants in the publication
Filipa Esgalhado (Author)
Arnaldo G. Batista (Author)
Helena Mouriño (Author)
FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA
Dep. Estatística e Investigação Operacional
CMAFcIO - Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
CEAUL - Centro de Estatística e Aplicações
Sara Russo (Author)
Catarina R. Palma dos Reis (Author)
Fátima Serrano (Author)
Valentina Vassilenko (Author)
Manuel Ortigueira (Author)

Scope
International

Refereeing
Yes

Date of Publication
2020-08

Where published
Computers in Biology and Medicine

Publication Identifiers
ISSN - 0010-4825

Publisher
Elsevier BV

Volume
123

Starting page
103897

Document Identifiers
DOI - https://doi.org/10.1016/j.compbiomed.2020.103897
URL - http://dx.doi.org/10.1016/j.compbiomed.2020.103897


Export

APA
Filipa Esgalhado, Arnaldo G. Batista, Helena Mouriño, Sara Russo, Catarina R. Palma dos Reis, Fátima Serrano, Valentina Vassilenko, Manuel Ortigueira, (2020). Uterine contractions clustering based on electrohysterography. Computers in Biology and Medicine, 123, ISSN 0010-4825. eISSN . http://dx.doi.org/10.1016/j.compbiomed.2020.103897

IEEE
Filipa Esgalhado, Arnaldo G. Batista, Helena Mouriño, Sara Russo, Catarina R. Palma dos Reis, Fátima Serrano, Valentina Vassilenko, Manuel Ortigueira, "Uterine contractions clustering based on electrohysterography" in Computers in Biology and Medicine, vol. 123, 2020. 10.1016/j.compbiomed.2020.103897

BIBTEX
@article{49963, author = {Filipa Esgalhado and Arnaldo G. Batista and Helena Mouriño and Sara Russo and Catarina R. Palma dos Reis and Fátima Serrano and Valentina Vassilenko and Manuel Ortigueira}, title = {Uterine contractions clustering based on electrohysterography}, journal = {Computers in Biology and Medicine}, year = 2020, volume = 123 }