BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Journal articles

Document subtype
Full paper

Title
The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role

Participants in the publication
Nuno A. G. Bandeira (Author)
Somenath Garai (Author)
Achim Müller (Author)
Carles Bo (Author)

Summary
The mechanism for the hydration of CO2 within a Keplerate nanocapsule is presented. A network of hydrogen bonds across the water layers in the first metal coordination sphere facilitates the proton abstraction and nucleophilic addition of water. The highly acidic properties of the polyoxometalate cluster are crucial in explaining the catalysed hydration.

Date of Publication
2015

Where published
Chemical Communications

Publication Identifiers
ISSN - 1359-7345

Publisher
Royal Society of Chemistry (RSC)

Volume
51
Number
85

Number of pages
3
Starting page
15596
Last page
15599

Document Identifiers
DOI - https://doi.org/10.1039/c5cc06423f
URL - http://dx.doi.org/10.1039/c5cc06423f

Rankings
Web Of Science Q1 (2020) - 6.222 - CHEMISTRY, MULTIDISCIPLINARY - SCIE
SCIMAGO Q1 (2020) - 1.837 - Chemistry (miscellaneous)


Export

APA
Nuno A. G. Bandeira, Somenath Garai, Achim Müller, Carles Bo, (2015). The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role. Chemical Communications, 51, 15596-15599. ISSN 1359-7345. eISSN . http://dx.doi.org/10.1039/c5cc06423f

IEEE
Nuno A. G. Bandeira, Somenath Garai, Achim Müller, Carles Bo, "The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role" in Chemical Communications, vol. 51, pp. 15596-15599, 2015. 10.1039/c5cc06423f

BIBTEX
@article{48897, author = {Nuno A. G. Bandeira and Somenath Garai and Achim Müller and Carles Bo}, title = {The mechanism of CO2 hydration: a porous metal oxide nanocapsule catalyst can mimic the biological carbonic anhydrase role}, journal = {Chemical Communications}, year = 2015, pages = {15596-15599}, volume = 51 }