BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Journal articles

Document subtype
Full paper

Title
Sensitivity of Surface Fluxes in the ECMWF Land Surface Model to the Remotely Sensed Leaf Area Index and Root Distribution: Evaluation with Tower Flux Data

Participants in the publication
David Stevens (Author)
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749–016, Lisboa, Portugal
Pedro M. A. Miranda (Author)
Dep. Engenharia Geográfica, Geofísica e Energia
IDL
René Orth (Author)
Souhail Boussetta (Author)
Gianpaolo Balsamo (Author)
Emanuel Dutra (Author)
IDL

Date of Publication
2020-12-16

Where published
Atmosphere

Publication Identifiers
ISSN - ISSN 2073-4433

Publisher
MDPI AG

Volume
11
Number
12

Starting page
1362

Document Identifiers
URL - http://dx.doi.org/10.3390/atmos11121362
DOI - https://doi.org/ 10.3390/atmos11121362

Rankings
SCIMAGO Q2 (2019) - 0.698 - Environmental Science (MIscellaneous)


Export

APA
David Stevens, Pedro M. A. Miranda, René Orth, Souhail Boussetta, Gianpaolo Balsamo, Emanuel Dutra, (2020). Sensitivity of Surface Fluxes in the ECMWF Land Surface Model to the Remotely Sensed Leaf Area Index and Root Distribution: Evaluation with Tower Flux Data. Atmosphere, 11, ISSN ISSN 2073-4433. eISSN . http://dx.doi.org/10.3390/atmos11121362

IEEE
David Stevens, Pedro M. A. Miranda, René Orth, Souhail Boussetta, Gianpaolo Balsamo, Emanuel Dutra, "Sensitivity of Surface Fluxes in the ECMWF Land Surface Model to the Remotely Sensed Leaf Area Index and Root Distribution: Evaluation with Tower Flux Data" in Atmosphere, vol. 11, 2020. 10.3390/atmos11121362

BIBTEX
@article{48266, author = {David Stevens and Pedro M. A. Miranda and René Orth and Souhail Boussetta and Gianpaolo Balsamo and Emanuel Dutra}, title = {Sensitivity of Surface Fluxes in the ECMWF Land Surface Model to the Remotely Sensed Leaf Area Index and Root Distribution: Evaluation with Tower Flux Data}, journal = {Atmosphere}, year = 2020, volume = 11 }