Tipo
Artigos em Conferência
Tipo de Documento
Artigo Completo
Título
Facing the Unknown: A Stream Learning Intrusion Detection System for Reliable Model Updates
Participantes na publicação
Eduardo K. Viegas (Author)
Altair O. Santin (Author)
Vinicius V. Cogo (Author)
Dep. Informática
LASIGE
Vilmar Abreu (Author)
Resumo
Current machine learning approaches for network-based intrusion detection do not cope with new network traffic behavior, which requires periodic computationally and time-consuming model updates. In light of this limitation, this paper proposes a novel stream learning intrusion detection model that maintains system accuracy, even in the presence of unknown traffic behavior. It also eases the model update process by incrementally incorporating new knowledge into the machine learning model. Experiments performed using a recent realistic dataset of network behaviors have shown that the proposed technique detects potentially unreliable classifications. Moreover, the proposed model can incorporate the new network traffic behavior from model updates to improve the system accuracy while maintaining its reliability.
Data de Publicação
2020-04-15
Evento
Advanced Information Networking and Applications,Advances in Intelligent Systems and Computing
Identificadores da Publicação
ISSN - 2194-5357,2194-5365
ISBN - 9783030440404,9783030440411
Editora
Springer International Publishing
Número de Páginas
11
Página Inicial
898
Página Final
909
Identificadores do Documento
DOI -
https://doi.org/10.1007/978-3-030-44041-1_78
URL -
http://dx.doi.org/10.1007/978-3-030-44041-1_78
Identificadores de Qualidade
CORE B (2020) -