BIBLIOS

  Sistema de Gestão de Referências Bibliográficas de Ciências

Modo Visitante (Login)
Need help?


Voltar

Detalhes Referência

Tipo
Artigos em Revista

Tipo de Documento
Artigo Completo

Título
Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra

Participantes na publicação
R. Vilela Mendes (Author)
CMAFcIO

Resumo
A probability space is a pair (A, ?) where A is an algebra and ? is a state on the algebra. In classical probability, A is the algebra of linear combinations of indicator functions on the sample space, and in quantum probability, A is the Heisenberg or Clifford algebra. However, other algebras are of interest in noncommutative probability. After a short review of the framework of classical and quantum probability, other noncommutative probability spaces are discussed, in particular those associated with noncommutative space-time.

Data de Publicação
2019-09

Suporte
Journal of Mathematical Physics

Identificadores da Publicação
ISSN - 0022-2488,1089-7658

Editora
AIP Publishing

Volume
60
Fascículo
9

Página Inicial
093501

Identificadores do Documento
DOI - https://doi.org/10.1063/1.5089500
URL - http://dx.doi.org/10.1063/1.5089500


Exportar referência

APA
R. Vilela Mendes, (2019). Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra. Journal of Mathematical Physics, 60, ISSN 0022-2488,1089-7658. eISSN . http://dx.doi.org/10.1063/1.5089500

IEEE
R. Vilela Mendes, "Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra" in Journal of Mathematical Physics, vol. 60, 2019. 10.1063/1.5089500

BIBTEX
@article{46387, author = {R. Vilela Mendes}, title = {Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra}, journal = {Journal of Mathematical Physics}, year = 2019, volume = 60 }