BIBLIOS

  Sistema de Gestão de Referências Bibliográficas de Ciências

Modo Visitante (Login)
Need help?


Voltar

Detalhes Referência

Tipo
Artigos em Conferência

Tipo de Documento
Artigo Completo

Título
Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease: stepwise learning using time windows

Participantes na publicação
T Pereira (Author)
LASIGE
F Ferreira (Author)
M Guerreiro (Author)
A Mendonca (Author)
Sara C. Madeira (Author)
Dep. Informática
LASIGE

Data de Publicação
2017-10-18

Evento
Proceedings of The First Workshop Medical Informatics and Healthcare held with the 23rd SIGKDD Conference on Knowledge Discovery and Data Mining

Identificadores da Publicação

Editora
Proceedings of Machine Learning Research (PMLR)

Edição
.
Fascículo
69

Página Inicial
19
Página Final
26

Identificadores do Documento
URL - http://proceedings.mlr.press/v69/pereira17a.html


Exportar referência

APA
T Pereira, F Ferreira, M Guerreiro, A Mendonca, Sara C. Madeira, (2017). Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease: stepwise learning using time windows. Proceedings of The First Workshop Medical Informatics and Healthcare held with the 23rd SIGKDD Conference on Knowledge Discovery and Data Mining, 19-26

IEEE
T Pereira, F Ferreira, M Guerreiro, A Mendonca, Sara C. Madeira, "Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease: stepwise learning using time windows" in Proceedings of The First Workshop Medical Informatics and Healthcare held with the 23rd SIGKDD Conference on Knowledge Discovery and Data Mining, , 2017, pp. 19-26, doi:

BIBTEX
@InProceedings{39859, author = {T Pereira and F Ferreira and M Guerreiro and A Mendonca and Sara C. Madeira}, title = {Towards a reliable prediction of conversion from Mild Cognitive Impairment to Alzheimer’s Disease: stepwise learning using time windows}, booktitle = {Proceedings of The First Workshop Medical Informatics and Healthcare held with the 23rd SIGKDD Conference on Knowledge Discovery and Data Mining}, year = 2017, pages = {19-26}, address = {}, publisher = {Proceedings of Machine Learning Research (PMLR)} }