BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Journal articles

Document subtype
Full paper

Title
Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest

Participants in the publication
Pedro Mateus (Author)
IDL
Laura S. Borma (Author)
Ricardo D. da Silva (Author)
Giovanni Nico (Author)
João Catalão (Author)
Dep. Engenharia Geográfica, Geofísica e Energia
IDL

Date of Publication
2016-09-07

Institution
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749–016, Lisboa, Portugal

Where published
GIScience & Remote Sensing

Publication Identifiers
ISSN - 1548-1603

Publisher
Informa UK Limited

Volume
53
Number
6

Starting page
689
Last page
706

Document Identifiers
DOI - https://doi.org/10.1080/15481603.2016.1228161
URL - http://dx.doi.org/10.1080/15481603.2016.1228161

Rankings
SCIMAGO Q1 (2016) - 1.142 - Earth and Planetary Sciences (miscellaneous)
SCOPUS Q1 (2016) - 1.142 - General Earth and Planetary Sciences


Export

APA
Pedro Mateus, Laura S. Borma, Ricardo D. da Silva, Giovanni Nico, João Catalão, (2016). Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest. GIScience & Remote Sensing, 53, 689-706. ISSN 1548-1603. eISSN . http://dx.doi.org/10.1080/15481603.2016.1228161

IEEE
Pedro Mateus, Laura S. Borma, Ricardo D. da Silva, Giovanni Nico, João Catalão, "Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest" in GIScience & Remote Sensing, vol. 53, pp. 689-706, 2016. 10.1080/15481603.2016.1228161

BIBTEX
@article{38279, author = {Pedro Mateus and Laura S. Borma and Ricardo D. da Silva and Giovanni Nico and João Catalão}, title = {Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest}, journal = {GIScience & Remote Sensing}, year = 2016, pages = {689-706}, volume = 53 }