BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Journal articles

Document subtype
Full paper

Title
Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest

Participants in the publication
Pedro Mateus (Author)
IDL - Instituto Dom Luiz
Laura S. Borma (Author)
Ricardo D. da Silva (Author)
Giovanni Nico (Author)
João Catalão (Author)
Dep. Engenharia Geográfica, Geofísica e Energia
IDL - Instituto Dom Luiz

Date of Publication
2016-09-07

Institution
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749–016, Lisboa, Portugal

Where published
GIScience & Remote Sensing

Publication Identifiers
ISSN - 1548-1603

Publisher
Informa UK Limited

Volume
53
Number
6

Starting page
689
Last page
706

Document Identifiers
DOI - https://doi.org/10.1080/15481603.2016.1228161
URL - http://dx.doi.org/10.1080/15481603.2016.1228161

Rankings
SCIMAGO Q1 (2016) - 1.142 - Earth and Planetary Sciences (miscellaneous)
SCOPUS Q1 (2016) - 1.142 - General Earth and Planetary Sciences


Export

APA
Pedro Mateus, Laura S. Borma, Ricardo D. da Silva, Giovanni Nico, João Catalão, (2016). Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest. GIScience & Remote Sensing, 53, 689-706. ISSN 1548-1603. eISSN . http://dx.doi.org/10.1080/15481603.2016.1228161

IEEE
Pedro Mateus, Laura S. Borma, Ricardo D. da Silva, Giovanni Nico, João Catalão, "Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest" in GIScience & Remote Sensing, vol. 53, pp. 689-706, 2016. 10.1080/15481603.2016.1228161

BIBTEX
@article{38279, author = {Pedro Mateus and Laura S. Borma and Ricardo D. da Silva and Giovanni Nico and João Catalão}, title = {Assessment of two techniques to merge ground-based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest}, journal = {GIScience & Remote Sensing}, year = 2016, pages = {689-706}, volume = 53 }