BIBLIOS

  Ciências References Management System

Visitor Mode (Login)
Need help?


Back

Publication details

Document type
Journal articles

Document subtype
Full paper

Title
Molecular details of INH-C10 binding to wt KatG and to its S315T mutant

Participants in the publication
V. H. Teixeira (Author)
C. Ventura (Author)
R. Leitão (Author)
C. Ràfols (Author)
E. Bosch (Author)
F. Martins (Author)
Dep. Química e Bioquímica
CQB
M. Machuqueiro (Author)
Dep. Química e Bioquímica
CQB

Summary
Isoniazid (INH) is still one of the two most effective antitubercular drugs and is included in all recommended multitherapeutic regimens. Because of the increasing resistance of Mycobacterium tuberculosis to INH, mainly associated with mutations in the katG gene, new INH-based compounds have been proposed to circumvent this problem. In this work, we present a detailed comparative study of the molecular determinants of the interactions between wt KatG or its S315T mutant form and either INH or INH-C10, a new acylated INH derivative. MD simulations were used to explore the conformational space of both proteins, and results indicate that the S315T mutation did not have a significant impact on the average size of the access tunnel in the vicinity of these residues. Our simulations also indicate that the steric hindrance role assigned to Asp137 is transient and that electrostatic changes can be important in understanding the enzyme activity data of mutations in KatG. Additionally, molecular docking studies were used to determine the preferred modes of binding of the two substrates. Upon mutation, the apparently less favored docking solution for reaction became the most abundant, suggesting that S315T mutation favors less optimal binding modes. Moreover, the aliphatic tail in INH-C10 seems to bring the hydrazine group closer to the heme, thus favoring the apparent most reactive binding mode, regardless of the enzyme form. The ITC data is in agreement with our interpretation of the C10 alkyl chain role and helped to rationalize the significantly lower experimental MIC value observed for INH-C10. This compound seems to be able to counterbalance most of the conformational restrictions introduced by the mutation, which are thought to be responsible for the decrease in INH activity in the mutated strain. Therefore, INH-C10 appears to be a very promising lead compound for drug development.

Date of Submisson/Request
2014-11-06
Date of Acceptance
2015-01-15
Date of Publication
2015-01-15

Where published
MOLECULAR PHARMACEUTICS

Publication Identifiers
ISSN - 1543-8384

Volume
12

Starting page
898
Last page
909

Document Identifiers
URL - http://dx.doi.org/10.1021/mp500736n
DOI - https://doi.org/10.1021/mp500736n

Rankings
SCOPUS Q1 (2015) - 1.611 - Drug Discovery
SCOPUS Q1 (2015) - 1.611 - Pharmaceutical Science


Export

APA
V. H. Teixeira, C. Ventura, R. Leitão, C. Ràfols, E. Bosch, F. Martins, M. Machuqueiro, (2015). Molecular details of INH-C10 binding to wt KatG and to its S315T mutant. MOLECULAR PHARMACEUTICS, 12, 898-909. ISSN 1543-8384. eISSN . http://dx.doi.org/10.1021/mp500736n

IEEE
V. H. Teixeira, C. Ventura, R. Leitão, C. Ràfols, E. Bosch, F. Martins, M. Machuqueiro, "Molecular details of INH-C10 binding to wt KatG and to its S315T mutant" in MOLECULAR PHARMACEUTICS, vol. 12, pp. 898-909, 2015. 10.1021/mp500736n

BIBTEX
@article{26529, author = {V. H. Teixeira and C. Ventura and R. Leitão and C. Ràfols and E. Bosch and F. Martins and M. Machuqueiro}, title = {Molecular details of INH-C10 binding to wt KatG and to its S315T mutant}, journal = {MOLECULAR PHARMACEUTICS}, year = 2015, pages = {898-909}, volume = 12 }