Document type
Journal articles
Document subtype
Full paper
Title
Progress in the understanding of surface structure and surfactant influence on the electrocatalytic activity of gold nanoparticles
Participants in the publication
Virginia C Ferreira (Author)
FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA
Dep. Química e Bioquímica
Dep. Química e Bioquímica
CQB
J. Solla-Gullon (Author)
A. Aldaz (Author)
A.F. Silva (Author)
L.M. Abrantes (Author)
Summary
The preparation of gold nanoparticles (Au-NPs) displaying specific shape, size and surface crystallographic domains has been investigated aiming to clarify the effect of the surface crystallographic orientation, of the synthesised nanoparticles, and surfactant influence on the electrochemical response of the ITO/Au-NPs modified electrodes. Polymorphic and nanorod-shaped Au-NPs have been obtained using distinct synthetic procedures in the presence of cetyltrimethylammonium bromide (CTAB), through seed-mediated growth methods, displaying distinct surface crystallographic domains confirmed by transmission electron microscopy, X-ray diffraction analysis and under potential deposition (UPD) of lead.\nThe nanoparticles have been physically immobilised by casting on indium tin oxide (ITO) surfaces and the electrocatalytic activity of the Au-NPs evaluated using the ascorbic acid (AA) oxidation reaction, by cyclic voltammetry. The polymorphic and distinct surface crystallographic orientations of the Au-NPs were reflected in an irreproducible electrochemical response. Using gold nanorods comprising (1 1 1) and (1 1 0) facets and gold nanocubes consisting of faces displaying (1 0 0) surface domains, by contrasting the behaviour of CTAB-stabilised and clean particles, it has been possible to verify that the distinct voltammetric results are due to the exposure of specific crystallographic orientations owing to dissimilar interaction strength of CTAB with those facets.
Institution
FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA
Where published
ELECTROCHIMICA ACTA
Publication Identifiers
ISSN - 0013-4686
Starting page
9568
Last page
9574
Document Identifiers
DOI -
https://doi.org/10.1016/j.electacta.2011.01.105
Rankings
SCIMAGO Q1 (2016) - 1.355 - Electrochemistry
SCOPUS Q1 (2011) - 1.621 - Electrochemistry
Web Of Science Q1 (2017) - 5.116 - ELECTROCHEMISTRY - SCIE
Download