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Abstract

Taking into account inertial and viscosity effects, we consider the dynamics of a two dimensional mem-
brane subjected to an unilateral constraint on its deformation gradient. Specifically, due to the constitutive 
law, we assume that higher deformations lock the material, leading to the inequality |∇u| ≤ g, where u
denotes the displacement of the membrane and g is a certain positive threshold. We then introduce the 
concepts of weak and generalised solutions to the associated wave equation, and prove the existence of 
them for rather general data and homogeneous Dirichlet boundary conditions. The presence of the gradient 
constraint provides the existence of a Lagrange multiplier λ related to the existence of a reaction term ϒ, 
which corresponds to a strongly nonlinear term in the wave equation. We then extend the existence result 
to a weak form of the Neumann type boundary condition αu + ∂u

∂ν
+ ∂u̇

∂ν
+ ϒ · ν = 0, for any α ≥ 0, and 

we show that these solutions tend, as α → ∞, in a certain sense to a solution of the homogeneous Dirichlet 
constrained problem.
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1. Introduction

A linear model describing the damped vibrations u = u(x, t) of a membrane subjected to 
external forces f in a bounded domain at instant t may be described by the equation

ü − �u − �u̇ = f, (1.1)

with suitable initial and boundary conditions. Here we denote u̇ = ∂u/∂t , ü = ∂2u/∂t2, and �
the usual Laplacian in the spacial variable x. It is well-known that the damping term �u̇, repre-
senting a viscoelastic effect, induces a dissipation in energy and a mathematical regularisation in 
the solution u.

In this work we are interested in studying this model subjected to the additional constraint

|∇u| ≤ g, (1.2)

for some given positive function g, bounded and with bounded time derivative, representing a 
strain threshold which locks the membrane deformation. This is a special case of the constitutive 
law for “ideal locking materials” introduced by W. Prager in 1957, and it was considered by Du-
vaut and Lions in 1972 [9, Chap.5.7], and by Demengel and Suquet [8] in the general stationary 
linearised elasticity framework. For recent works on locking materials type models see [4] and 
[22] and references therein. In fact, this problem, in the scalar case, corresponds to the equilib-
rium locked membrane, which displacement u = u(x), with homogeneous Dirichlet boundary 
condition, satisfies the equation

−�u − div(λ∇u) = f. (1.3)

Here λ = λ(x) is a Lagrange multiplier, associated with the locking constraint, satisfying the 
unilateral conditions

λ ≥ 0, |∇u| ≤ g, λ(|∇u| − g) = 0. (1.4)

Actually, this stationary problem is also the same mathematical model for the well-known elasto-
plastic torsion problem, when u is the strain potential in two dimensions (see, e.g., [9, Section 
5.6.6], or [13, Sections 1:6 and 8:4]). Although in this simple case of positive constants f and 
g, the regularity of the stationary solution allowed Brézis [6] to prove the existence of a unique 
bounded λ, the problem has also been considered in more general cases by several authors. In 
particular, recently in [3], a degenerate case of equation (1.3), corresponding to an equivalent 
weak formulation for the Monge-Kantorovich mass transfer problem was considered with f ∈
L2(�) and g ∈ L∞(�), where λ is regarded as an element of the dual of L∞(�) (i.e. as a finite 
additive measure or as a charge). In fact, gradient type constraints arise naturally in other models 
for critical state problems in Mechanics and in Physics and a recent survey on the corresponding 
elliptic and parabolic problems can be found in [15] (see also [12,14,16] and [10] for more 
general problems in mechanics with contraints).

In this work we give the first existence result of a weak solution and the corresponding 
generalised Lagrange multiplier, globally in time, for the dynamics of the locking viscoelastic 
membrane.
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Although we still obtain weak solutions u with finite energy, the unilateral gradient constraint 
must be interpreted globally, with a multiplier ϒ as an element of a subdifferential associated 
with the convex constraint. We also obtain a generalised Lagrangian multiplier λ, which cannot 
be interpreted in the point-wise sense but rather in the duality sense of L∞. In this generalised 
formulation, we obtain an energy inequality involving the data f , g, and the initial conditions.

Our main results (Theorem 2.2 and Theorem 2.8) are contained in Section 2.2 and state the 
existence of solutions (u, ϒ) and (u, λ) to system (1.1)-(1.2) in suitable weak and generalised 
forms for the homogeneous Dirichlet problem (see Definitions 2.1 and 2.6, respectively). In Sec-
tion 5 we give their corresponding similar weak and generalised formulations for the cases with 
Neumann and Fourier type boundary conditions, and show existence of solutions (Theorem 5.4).

By combining a variant of the classical penalisation method proposed in [11, pag. 376] with 
appropriate a-priori estimates, obtained in Section 3, we use the duality techniques in Sobolev-
Bochner spaces framework recently adopted in [5] for the damped wave equation with unilateral 
constraints (see also [18–20]).

More precisely, we make use of approximate functions uε , defined for all ε ∈ (0, 1), which 
are more regular and satisfy the damped wave equation with an additional reaction term coming 
from a penalised version of the constraint (1.2). Roughly speaking, the solutions uε to the wave 
equation with regularised penalisation should satisfy the equation

üε − �uε − �u̇ε − div(kε(|∇uε |2 − g2)∇uε) = f, (1.5)

complemented with homogeneous Dirichlet boundary condition

uε = 0 on ∂�. (1.6)

Here kε(·) is a suitable real valued function depending on the parameter ε (see (3.1) below).
Once we have stated and verified the existence of uε (Theorem 3.1), it is necessary to find 

suitable a-priori estimates for uε in order to pass to the limit as ε → 0. To prove that a limit u of 
uε is a solution as in Definitions 2.1 and 2.6, we have also to control the penalisation term

kε(|∇uε |2 − g2)∇uε.

This is shown to converge to a weak vector multiplier ϒ ∈ H′∇ , where H∇ is a suitable Hilbert 
space (see Section 2). Extending the techniques of [3] for the elliptic problems, we show also 
that in the weak formulation with a more restrictive class of test functions we may replace ϒ by 
λ∇u for a charge λ ∈ L∞(�)′, representing a generalised Lagrange multiplier.

These results and proofs are given in detail with a homogeneous Dirichlet boundary condition, 
but are, in Section 5, easily extended to Neumann and Fourier type boundary conditions (see 
Theorem 5.4 and Theorem 5.5). In the latter case, which depends on a positive parameter α, by 
using the techniques of [3] and [2], we are able to recover the solution of the Dirichlet problem 
as the limit α → ∞ (see Theorem 5.6), which corresponds to a kind of one parameter continuous 
dependence result for weak solutions.
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2. Preliminaries and main results

2.1. Notation

Let � ⊂ Rd , d ≥ 1, be an open bounded set with Lipschitz boundary having unit outer normal 
ν. The problem we will address is to find a real valued displacement u = u(t, x) : (0, T ) × � →
R, for a given time T > 0, which satisfies equation (1.1) and is subjected to the constraint (1.2). 
In order to specify our rigorous setting and introduce the concept of solution, we need some 
preliminaries. We will adopt the following notation

QT = (0, T ) × �, and Qt = (0, t) × �,

for any t ∈ (0, T ]. Moreover we set

V = H 1
0 (�)

for the Dirichlet problem and

V = H 1(�)

for the Neumann and Fourier problems. To shortcut the notation we denote by

L2(�) := L2(�;Rd), L2(∂�) := L2(∂�;Rd), L∞(�) := L∞(�;Rd),

L2(Qt ) := L2(Qt ;Rd), L∞(Qt ) := L∞(Qt ;Rd), (2.1)

for any t ∈ (0, T ]. We also introduce the symbol L2(�) to denote the subspace of L2(�) consist-
ing of function with null average, i.e. 

∫
�

u(x)dx = 0 if u ∈ L2(�). We denote by V the subspace 
of V consisting of functions with null mean value on �. We also need the following spaces

V := H 1(0, T ;L2(�)) ∩ L2(0, T ;V ),

V := H 1(0, T ;L2(�)) ∩ L2(0, T ;V ),

H := H 1(0, T ;H−1(�;Rd)) ∩ L2(0, T ;L2(�)), (2.2)

and we denote by

H∇ := {F ∈ H : F = ∇v for some v ∈ V}. (2.3)

Notice that H∇ is a subspace of H and is a Hilbert space when endowed with the norm of H. 
The counterparts of (2.2) and (2.3) in the case that the time T is replaced by t ∈ (0, T ), are Vt , 
Ht , and H∇,t, respectively. Namely

Vt := H 1(0, t;L2(�)) ∩ L2(0, t;V ),

V t := H 1(0, t;L2(�)) ∩ L2(0, t;V ),

Ht := H 1(0, t;H−1(�;Rd)) ∩ L2(0, t;L2(�)), (2.4)
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and

H∇,t := {F ∈ Ht : F = ∇v for some v ∈ Vt }. (2.5)

The scalar product in L2(�) or L2(�) is denoted by (·, ·). The scalar product in L2(∂�) or 
L2(∂�) is instead denoted by (·, ·)∂�. The duality between V ′ and V is noted by 〈·, ·〉. Moreover 
we will need to employ the duality between H′∇ and H∇ , denoted by 〈 〈·, ·〉 〉. When we deal with 
the spaces H′∇,t and H∇,t the duality pairing is denoted by 〈 〈·, ·〉 〉t .

Eventually, we denote by [·, ·] both the duality between L∞(QT )′ and L∞(QT ), and the 
duality between L∞(QT )′ and L∞(QT ). When we work on Qt instead of QT we employ the 
symbol [·, ·]t . We recall that an element σ ∈ L∞(QT )′, sometimes also called a charge, can be 
regarded as a finitely additive measure σ ∗, with bounded total variation, which is also absolutely 
continuous with respect to the Lebesgue measure in QT and may be defined by a Radon integral

[σ,φ] =
∫

QT

φdσ ∗, (2.6)

for all φ ∈ L∞(QT ) (see [24, Chapter IV, Section 9, Example 5]).
Whenever F ∈H∇ we can choose v ∈ V (with null mean value on �) such that F = ∇v. Thus 

we merely observe that the space H∇ coincides with

{F ∈ H : F = ∇v for some v ∈ V}. (2.7)

We invoke the following general fact which will be useful later (see [23, Proposition 1.2]). There 
is a constant C > 0 depending on the domain � such that, for any u ∈ L2(�) it holds

‖u‖L2 ≤ C‖∇u‖H−1 . (2.8)

This is applied to functions F ∈ H∇ . Indeed, combining this with classical Poincaré inequality 
we find that

‖v‖V ≤ C‖F‖H∇ , (2.9)

where v ∈ V is such that F = ∇v. We also need to introduce the space

X := H−k−1(�), (2.10)

where k > 1 depends on d and is such that L1(�; Rd) ⊂⊂ H−k(�; Rd) with continuous and 
compact embedding.

Let g ∈ L∞(QT ) be a positive function such that

g(x, t) ≥ g0 > 0 a.e. in QT , (2.11)

for some constant g0. We introduce the operator J , defined for all A ∈L2(QT ), as
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J (A) =
∫

QT

K(|A(x, t)|2 − g(x, t)2)dxdt =
{

0 if |A| ≤ g a.e. in QT ,

+∞ otherwise,
(2.12)

where K is the indicator function of the interval (−∞, 0], namely

K(y) :=
{

0 for y ≤ 0,

+∞ for y > 0.
(2.13)

We set

β := ∂J, (2.14)

the classical subdifferential of J . To our scope, we need to consider the relaxation of the operator 
∂J with respect to a weaker topology, namely we want to compute the subdifferential of J with 
respect to the duality between H′∇ and H∇ . To this aim we first restrict J to the space H∇ , 
and consider the restricted operator J�H∇ . We say that G ∈ H′∇ belongs to the subdifferential 
∂J�H∇ at A ∈H∇ , and we write G ∈ ∂J�H∇ (A), if and only if, for all B ∈ H∇ , it holds

J (B) − J (A) ≥ 〈〈G,B − A〉〉, (2.15)

where we recall that 〈 〈·, ·〉 〉 represents the duality pairing between H′∇ and H∇ . To simplify the 
notation we set

βw := ∂J�H∇ .

For all t ∈ (0, T ] we can repeat the procedure above by defining J as in (2.12) with Qt replacing 
QT . This will lead us to consider the subdifferential of J restricted to the space H∇,t , which we 
denote by

βw,t = ∂J�H∇,t
.

In Section 3.1 we will approximate βw (and βw,t as well) by more regular operators.

2.2. Concepts of weak and generalised solutions — Dirichlet problem

We introduce first the concept of solution in the case V = H 1
0 (�). Let T > 0, let u0, u1 ∈

H 1
0 (�), and let a non-negative g ∈ L∞(0, T ; L∞(�)) be given.

Definition 2.1. A pair (u, ϒ) with u ∈ H 1(0, T ; H 1
0 (�)) and ϒ ∈ H′∇ , is a weak solution to the 

constrained wave equation if the following properties hold:

(i) We have the following regularity

u ∈ W 1,∞(0, T ;L2(�)), (2.16)

u̇ ∈ BV (0, T ;X), (2.17)
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where X is the space introduced in (2.10). Moreover

∇u ∈ L∞(QT ), (2.18)

and the function u accounts for the initial values

u(0) = u0, u̇(0) = u1. (2.19)

(ii) The following weak expression of the constrained wave equation holds

(u̇(T ),ϕ(T )) − (u1, ϕ(0)) −
T∫

0

(u̇, ϕ̇)ds +
T∫

0

(∇u + ∇u̇,∇ϕ)ds + 〈〈ϒ,∇ϕ〉〉 =
T∫

0

(f,ϕ)ds,

(2.20)
for all ϕ ∈ V = H 1(0, T ; L2(�)) ∩ L2(0, T ; H 1

0 (�)), the function u satisfies the gradient 
constraint

|∇u| ≤ g a.e. in �, (2.21)

and the term ϒ satisfies

ϒ ∈ βw(∇u). (2.22)

In order to find a weak solution to the constrained wave equation we need to give suitable 
initial data. In the case of the homogeneous Dirichlet boundary condition, we shall require

u0, u1 ∈ V = H 1
0 (�) (2.23)

with |∇u0| ≤ g(0) a.e. in �. (2.24)

We can now state our first main result:

Theorem 2.2. Let T > 0, suppose g ∈ W 1,∞(0, T ; L∞(�)) is such that

g ≥ g0 > 0,

for some constant g0, assume f ∈ L2(0, T ; L2(�)) and u0, u1 are as in (2.23) and (2.24). Then 
there exist u ∈ H 1(0, T ; H 1

0 (�)) and ϒ ∈ H′∇ such that the pair (u, ϒ) is a solution to the 
constrained wave equation with Dirichlet boundary condition in the sense of Definition 2.1.

As it will follow from the proof of Theorem 2.2, we may anticipate some remarks, the first one 
being a kind of local in time version of the weak formulation for the dynamics of the viscoelastic 
locked membrane.
609



J.F. Rodrigues and R. Scala Journal of Differential Equations 317 (2022) 603–638
Remark 2.3. For all t ∈ (0, T ) there exists ϒt ∈ H′∇,t such that the following local version of the 
constrained wave equation holds

(u̇(t), ϕ(t)) − (u1, ϕ(0)) −
t∫

0

(u̇, ϕ̇)ds +
t∫

0

(∇u + ∇u̇,∇ϕ)ds + 〈〈ϒt,∇ϕ〉〉t =
t∫

0

(f,ϕ)ds,

(2.25)

for all ϕ ∈ Vt . Moreover

ϒt ∈ βw,t (∇u). (2.26)

Furthermore the reaction term ϒt is compatible with ϒ, in the sense that if ϕ ∈ Vt satisfies 
ϕ(t) = 0, then

〈〈ϒ, ϕ̃〉〉 = 〈〈ϒt,ϕ〉〉t , (2.27)

where ϕ̃ is the extension to zero on (t, T ] × � of ϕ.

Remark 2.4. During the proof of Theorem 2.2 we will see that the reaction term ϒ is the limit 
(as ε → 0) in H′∇ of a sequence

kε(|∇uε |2 − g2)∇uε ∈H′∇ , (2.28)

where kε(·) : R → [0, ∞) is a suitable function depending on the parameter ε > 0 (see (3.1)
below). At the same time we will show that such a sequence is uniformly bounded in L1(QT ), 
which can be regarded as a subespace of L∞(QT )′, and applying Alaoglu’s theorem in this 
space, we may also consider that, for some generalised subsequence or subnet, it also converges 
weakly* in the space of charges to some ϒ ∈ L∞(QT )′. Consequently, this ϒ may also be rep-
resented by a finitely additive measure ϒ∗, in the sense that

〈〈ϒ,∇ϕ〉〉 = [ϒ,∇ϕ] =
∫

QT

∇ϕ · dϒ∗, (2.29)

for all ϕ ∈ V ∩ L∞(0, T ; W 1,∞(�)).

Remark 2.5. We will also see that, likewise the sequence in (2.28), also the sequence

kε(|∇uε |2 − g2), (2.30)

will be uniformly bounded in L1(QT ). This entails that there is, up to generalised subsequences, 
λ ∈ L∞(QT )′ such that

kε(|∇uε |2 − g2) ⇀ λ weakly* in L∞(QT )′. (2.31)
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The term λ plays the role of a Lagrange multiplier. The corresponding charge λ∗ represents λ, in 
the sense that

[λ∇ψ,∇ϕ] = [λ,∇ψ · ∇ϕ] =
∫

QT

(∇ψ · ∇ϕ)dλ∗, (2.32)

for all ϕ, ψ ∈ V ∩ L∞(0, T ; W 1,∞(�)).

In view of the previous remarks, we have to specify which is the relation between ϒ and λ. 
This is clarified by our second main result, which is based on the new definition in terms of the 
displacement u and the Lagrange multiplier λ, and also provides an energy inequality for all 
t ∈ (0, T ).

Definition 2.6. A pair (u, λ) with u ∈ H 1(0, T ; H 1
0 (�)), λ ∈ L∞(QT )′, is said to be a gener-

alised solution to the constrained wave equation if the following properties hold:

(i’) Conditions (2.16), (2.17), and (2.18), hold, together with the initial condition (2.19).
(ii’) The following weak expression of the wave equation holds

(u̇(T ),ϕ(T ))−(u1, ϕ(0))−
T∫

0

(u̇, ϕ̇)ds+
T∫

0

(∇u+∇u̇,∇ϕ)ds+[λ,∇u·∇ϕ] =
T∫

0

(f,ϕ)ds,

(2.33)
for all ϕ ∈ V ∩ L∞(0, T ; W 1,∞(�)). Moreover

|∇u| ≤ g a.e. in QT , λ ≥ 0 and λ(|∇u|2 − g2) = 0 in L∞(QT )′. (2.34)

(iii’) For all t ∈ (0, T ) the following local generalised version of the wave equation holds

(u̇(t), ϕ(t))−(u1, ϕ(0))−
t∫

0

(u̇, ϕ̇)ds+
t∫

0

(∇u+∇u̇,∇ϕ)ds+[λ,∇u·∇ϕ]t =
t∫

0

(f,ϕ)ds,

(2.35)
for all ϕ ∈ Vt ∩ L∞(0, t; W 1,∞(�)).

Remark 2.7. Let us comment on Definition 2.6. Note that λ is not defined as a distribution, but 
as a charge, i.e., an element in L∞(QT )′. Specifically, in point (iii’) we have noted [·, ·]t the 
duality between L∞(Qt )

′ and L∞(Qt ). This is defined as

[λ,F ]t := [λ, F̃ ],
where F̃ is the extension of F ∈ L∞(Qt ) to an element of L∞(QT ) by setting F̃ = 0 on QT \Qt .

As a consequence, if ϕ ∈ Vt ∩ L∞(0, t; W 1,∞(�)) is such that ϕ(t) = 0, and if ϕ̃ denotes its 
extension to 0 on QT \ Qt , then comparing (2.35) and (2.25) it is expected that

[λ,∇u · ∇ϕ]t = 〈〈ϒt,ϕ〉〉t . (2.36)
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Nevertheless, note that the two definitions of solutions are not equivalent and in both cases 
the uniqueness of the solution is an open problem.

Indeed, this is the case, as it is established in our second main result, which implies that the 
energy of the system is not increasing if f = 0 and the threshold g is time independent.

Theorem 2.8. Under the same assumptions of Theorem 2.2, there exists a generalised solution 
(u, λ) to the constrained wave equation in the sense of Definition 2.6, which is related to a weak 
solution (u, ϒ) in the sense of Definition 2.1 by the relation between λ and ϒ given by

[λ,∇u · ∇ϕ] = 〈〈ϒ,∇ϕ〉〉, (2.37)

for any ϕ ∈ V ∩ L∞(0, T ; W 1,∞(�)). In addition the following energy inequality holds for a.e. 
t ∈ (0, T ],

1

2
‖u̇(t)‖2

L2 + 1

2
‖∇u(t)‖2

L2 +
t∫

0

‖∇u̇(s)‖2
L2ds ≤ 1

2
‖u1‖2

L2 + 1

2
‖∇u0‖2

L2

+
t∫

0

(f (s), u̇(s))ds − [λ,gġ]t .

We conclude this section by observing that weak solutions provided by Theorem 2.2 and 
Theorem 2.8 also solve the same variational inequality version of (2.20) and of (2.33).

Remark 2.9. Let (u, ϒ) (resp. (u, λ)) be a solution provided by Theorem 2.2 (resp. Theo-
rem 2.8); then u satisfies the constraint |∇u| ≤ g a.e. in QT , and for all ϕ ∈ V with |∇ϕ| ≤ g

a.e. in QT , by the definition of the subdifferential in (2.22), in the first case, and as a conse-
quence of (2.34) in the second case, the following holds

(u̇(T ), u(T ) − ϕ(T )) −
T∫

0

(u̇, u̇ − ϕ̇)ds +
T∫

0

(∇u + ∇u̇,∇u − ∇ϕ)ds ≤

(u1, u0 − ϕ(0)) +
T∫

0

(f,u − ϕ)ds. (2.38)

3. The approximate problem

3.1. The penalisation term

Following the theory developed for elliptic and parabolic equations with unilateral constraints
(see [11, Chapter 3, Section 5]) we introduce a penalisation operator in order to obtain, at the 
limit, a solution which satisfies the gradient constraint (see also [5], [18], [19], [20] for hyperbolic 
PDEs).
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For any ε ∈ (0, 1) we define

kε(y) := 1

ε

y+√
y2 + 1

, (3.1)

where y+ = y ∨0, y ∈ R. The function kε :R → [0, +∞) is continuous nondecreasing, assumes 
the value 0 on the set (−∞, 0], is strictly positive on (0, +∞), and bounded by 1

ε
. As ε ↘ 0 we 

have kε ↗ k, where

k(y) :=
{

0 for y ≤ 0,

+∞ for y > 0,
(3.2)

the indicator function of (−∞, 0]. Let us denote by Kε(y) := ∫ y

0 kε(r)dr , that is

Kε(y) = 1

ε

(√
(y+)2 + 1 − 1

)
.

The function Kε is nonnegative and convex of class C1(R). As ε ↘ 0 we have Kε ↗ K , the 
function in (2.13) (which actually coincides with k).

Let g be the function introduced in (2.11). We define, for all ε ∈ (0, 1), the operator

Jε(A) :=
T∫

0

∫
�

1

2
Kε(|A(x, t)|2 − g(x, t)2)dxdt, (3.3)

for any A ∈ L2(QT ). We say that G ∈ L2(QT ) belongs to the subdifferential ∂Jε (with respect 
to the L2-duality) at A ∈ L2(QT ), and we write G ∈ ∂Jε(A), if and only if for all B ∈ L2(QT )

we have

Jε(B) − Jε(A) ≥
∫

QT

G · (B − A)dxdt. (3.4)

By definition of Jε it turns out that

G ∈ ∂Jε(A) if and only if G(x, t) = kε(|A(x, t)|2 − g(x, t)2)A(x, t) for a.e. (x, t) ∈ QT .

(3.5)
Indeed, if we choose B = A + hϕ in (3.4), with ϕ ∈ L2(QT ), we infer that∫

QT

kε(|A|2 − g2)A · ϕ dxdt = lim
h→0+

Jε(A + hϕ) − Jε(A)

h
≥

∫
QT

G · ϕ dxdt,

whereas the opposite inequality is obtained letting h → 0−. Thus one has∫
kε(|A|2 − g2)A · ϕ dxdt =

∫
G · ϕ dxdt,
QT QT
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which implies (3.5) thanks to the arbitrariness of ϕ.
To shortcut the notation we write

βε := ∂Jε, (3.6)

for the subdifferential of Jε with respect to L2(QT )-duality. We now see, without entering into 
details (we refer to [5,18,20] for a more exhaustive discussion), that the operators Jε suitably 
approximate J , the operator defined in (2.12), as ε → 0 (and, consequently, βε approximate 
βw , in a suitable sense). Indeed, noticing that the operators Kε are increasing as ε ↘ 0, and 
hence converge pointwise to the limit function K defined in (2.13), it is possible to show that Jε

converge to J in the sense of Mosco (see [1, Theorem 3.20]). As a consequence the monotone 
operators βε are converging to βw in the sense of graphs (see [1]), and following the discussion in 
[5] (see also [20]), this allows to show the following Minty-type trick: If a sequence (Gε, Aε) ∈
H′∇ ×H∇ with Gε ∈ βε(Aε) satisfies

Aε ⇀ A weakly in H∇ , Gε ⇀ G weakly in H′∇ ,

and lim sup
ε→0

〈〈Gε,Aε〉〉 ≤ 〈〈G,A〉〉, (3.7)

then

G ∈ βw(A), (3.8)

(see [20, Lemma 2.4]).

3.2. The regularized problem

In this section we study the strongly damped wave equation with a regularized gradient con-
straint, i.e. we replace the full constraint (1.2) with a penalised version of it. More precisely, 
strong solutions uε to the wave equation with regularized penalisation should satisfy

üε − �uε − �u̇ε − div(kε(|∇uε |2 − g2)∇uε) = f. (3.9)

We complement (3.9) with Dirichlet boundary condition

uε = 0 on ∂�, (3.10)

and initial data

uε(0) = u0, u̇ε(0) = u1, (3.11)

and u0, u1 ∈ V. (3.12)

Actually, it is convenient to consider a slightly different equation than the strong formulation 
(3.9)-(3.10): we require that
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(u̇ε(t), ϕ(t)) − (u1, ϕ(0)) −
t∫

0

(u̇ε, ϕ̇)ds +
t∫

0

(∇uε + ∇u̇ε,∇ϕ)ds

+
t∫

0

(kε(|∇uε |2 − g2)∇uε,∇ϕ) =
t∫

0

(f,ϕ)ds, (3.13)

for all ϕ ∈ V and t ∈ (0, T ].
For ε ∈ (0, 1), the following existence theorem for the regularized solutions holds.

Theorem 3.1. Let T > 0 and let u0, u1 be as in (3.11) or (3.12). Assume also f ∈ L2(0, T ;
L2(�)) and g ∈ W 1,∞(0, T ; L∞(�)). Then for all ε ∈ (0, 1) there exists a solution uε to (3.13)
such that

uε ∈ W 1,∞(0, T ;L2(�)) ∩ H 1(0, T ;H 1
0 (�)), (3.14)

u̇ε ∈ H 1(0, T ;H−1(�)). (3.15)

Proof. We sketch the proof of Theorem 3.1, which is based on a standard time discretisation 
procedure: let n ∈ N be a positive integer, let τ := T/n, and tk := kτ , k = −1, 0, . . . , n. We 
define

un,0 := u0, un,−1 := u0 − τu1,

and for all k ≥ 1 we define recursively

un,k := argmin{Fn,k(u) : u ∈ V }, (3.16)

where

Fn,k(u) = 1

2
‖u − un,k−1

τ
− un,k−1 − un,k−2

τ
‖2
L2 + 1

2
‖∇u‖2

L2

+ τ

2
‖∇u − ∇un,k−1

τ
‖2
L2 + Jε(∇u) − (f (tk), u),

which results convex and coercive. Notice the dependence of un,k on ε. We have however 
dropped the label ε, for the reader convenience. As minimizer of Fn,k , un,k satisfies the Euler-
Lagrange equation

τ−1(
un,k − un,k−1

τ
− un,k−1 − un,k−2

τ
,ϕ) + (∇un,k,∇ϕ) + (

∇un,k − ∇un,k−1

τ
,∇ϕ)

(kε(|∇un,k|2 − g2)∇un,k,∇ϕ) − (f (tk), ϕ) = 0, (3.17)

for all ϕ ∈ V . Then one defines the piecewise affine interpolant un : [−τ, T ] → V by interpolat-
ing the values un,k on the points tk , k = −1, . . . , n. Also, one set vn,k := un,k−un,k−1

τ
, and define 

the piecewise affine function vn by interpolating the values of vn,k on tk . With the aid of the 
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additional piecewise constant maps ûn and ̂vn (which equal un,k and vn,k on [tk−1, tk), respec-
tively), one puts ϕ = vn,k := un,k−un,k−1

τ
in (3.17) and summing on k = 0, . . . , m, m ≤ n, standard 

arguments allow to show the a-priori estimates

un ∈ H 1(0, T ;V ) ∩ W 1,∞(0, T ;L2(�)), (3.18)

vn ∈ L∞(0, T ;L2(�)) ∩ L2(0, T ;V )∩H 1(0, T ;V ′), (3.19)∫
�

Kε(|∇un|2 − g2)dx ∈ L∞(0, T ). (3.20)

The norms of the functions above are uniformly bounded by a constant independent of τ . On the 
other hand, thanks to the boundedness of kε by 1

ε
, we infer

kε(|∇un|2 − g2)∇un ∈ L2(QT ), (3.21)

uniformly with respect to τ . By (3.21) it follows that the operator

V � ϕ �→
∫
�

kε(|∇un|2 − g2)∇un · ∇ϕ dx, (3.22)

belongs to V ′, and hence by comparison in (3.17) we easily infer

v̇n ∈ L2(0, T ;V ′).

The estimates above allow to pass to the limit as τ → 0, obtaining the limiting functions uε and 
vε . Again, standard arguments show that the limits of un and ̂un coincide (likewise the limits of 
vn and ̂vn) and also that u̇ε = vε . More precisely, we have

un ⇀ uε weakly in H 1(0, T ;V ) and weakly star in W 1,∞(0, T ;L2(�)),

vn ⇀ u̇ε weakly in L2(0, T ;V ) ∩ H 1(0, T ;V ′) and weakly star in L∞(0, T ;L2(�)),

kε(|∇un|2 − g2)∇un ⇀ ϒε weakly in L2(QT ). (3.23)

Moreover, since kε(|∇un|2 − g2) is uniformly bounded in L∞(QT ), we can assume that there is 
λε ∈ L∞(QT ) such that

kε(|∇un|2 − g2) ⇀ λε weakly star in L∞(QT ). (3.24)

We also observe that, using Aubin-Lions Lemma, we infer

vn(t) → u̇ε(t) strongly in L2(�) ∀t ∈ [0, T ],
vn → u̇ε strongly in L2(0, T ;L2(�)) (3.25)

Now, if f̂n represents the piecewise constant interpolant of the values f (tk) on [0, T ], (3.17)
might be written as
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(v̇n(t), ϕ) + (∇un(t),∇ϕ) + (∇u̇n(t),∇ϕ) + (kε(|∇un(t)|2 − g2(t))∇un(t),∇ϕ) = (f̂n(t), ϕ),

(3.26)

for a.e. t ∈ [0, T ] and all ϕ ∈ V .
We can also use test functions ϕ ∈ V , so that integrating (3.26) on [0, T ], we obtain

(vn(T ),ϕ) − (u1, ϕ) −
T∫

0

(vn, ϕ̇)dt +
T∫

0

(∇un + ∇u̇n,∇ϕ)dt

+
T∫

0

(kε(|∇un|2 − g2)∇un,∇ϕ)dt −
T∫

0

(f̂n, ϕ)dt = 0, (3.27)

and passing to the limit as τ → 0 we get

(u̇ε(T ),ϕ) − (u1, ϕ) −
T∫

0

(u̇ε, ϕ̇)dt +
T∫

0

(∇uε + ∇u̇ε,∇ϕ)dt

+
T∫

0

(ϒε,∇ϕ)dt −
T∫

0

(f,ϕ)dt = 0. (3.28)

We have to identify ϒε . Putting ϕ = un in (3.27) and letting τ → 0 we deduce

lim sup
ε→0

T∫
0

(kε(|∇un|2 − g2)∇un,∇un)dt ≤
T∫

0

(f,uε) − (u̇ε(T ), uε(T )) + (u1, u0)

+
T∫

0

|u̇ε |2dt −
T∫

0

∫
�

|∇uε |2dxdt − 1

2
‖∇uε(T )‖2

L2 + ‖∇u0‖2
L2, (3.29)

where we have used the convergences in (3.23) and (3.25). The right-hand side of the previous 
expression, by (3.28) with ϕ = uε , equals 

∫ T

0 (ϒε, ∇uε)dt , so that we infer

lim sup
n→∞

T∫
0

(kε(|∇un|2 − g2)∇un,∇un)dt ≤
T∫

0

(ϒε,∇uε)dt,

which implies

ϒε ∈ ∂Jε(∇uε).

But since Kε is convex and of class C1, from this we deduce
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ϒε = kε(|∇uε |2 − g2)∇uε a.e. in QT .

In turn, from (3.28), we deduce (3.13), and the proof of Theorem 3.1 is complete. �
Note that, from (3.26), if ϕ ∈ L2(0, T ; V ) we can pass to the limit and get, equivalently,

T∫
0

〈üε, ϕ〉dt +
T∫

0

(∇uε + ∇u̇ε,∇ϕ)dt +
T∫

0

(kε(|∇uε |2 − g2)∇uε,∇ϕ)dt =
T∫

0

(f,ϕ)dt.

In addition, if we take any ϕ smooth and compactly supported in QT , we can integrate by parts 
the last expression and infer

üε − �uε − �u̇ε − div(kε(|∇uε |2 − g2)∇uε) = f, (3.30)

as distributions in QT .

3.3. A priori estimates

Next, our strategy will be to consider solutions uε provided by the preceding theorem and to 
show that, as ε → 0, they converge to a weak solution of the constrained wave equation. To this 
aim we have first to establish some a-priori estimates independent of ε. We prove the following 
Lemma:

Lemma 3.2. There is a constant C > 0 independent of ε such that for any ε ∈ (0, 1) there holds

‖uε‖H 1(0,T ;V ) ≤ C, (3.31)

‖u̇ε(t)‖2
L2 +

∫
�

Kε(|∇uε(t)|2 − g(t)2) ≤ C for all t ∈ [0, T ], (3.32)

‖kε(|∇uε |2 − g2)‖L1(QT ) + ‖kε(|∇u|2 − g2)|∇uε |‖L1(QT )

+ ‖kε(|∇uε |2 − g2)|∇uε |2‖L1(QT ) ≤ C, (3.33)

‖kε(|∇uε |2 − g2)∇uε‖H′∇ ≤ C, (3.34)

‖üε‖L1(0,T ;X) ≤ C, (3.35)

where X := H−k−1(�) and k = k(d) ∈N is such that L1(�; Rd) ⊂⊂ H−k(�; Rd) continuously 
and compactly.

Proof. In the next computations C represents a positive constant which might change from line 
to line. In order to shortcut the notation we will denote

K̂ε(t) := 1

2
Kε(|∇uε(t)|2 − g(t)2), k̂ε(t) := kε(|∇uε(t)|2 − g(t)2).

Step 1. Testing equation (3.13) by ϕ = u̇ε we get
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1

2
‖u̇ε(t)‖2

L2 + 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds +

∫
�

K̂ε(t)dx

= 1

2
‖u1‖2

L2 + 1

2
‖∇u0‖2

L2 +
∫
�

K̂ε(0)dx +
t∫

0

(f (s), u̇ε(s))ds −
t∫

0

∫
�

k̂ε(s)g(s)ġ(s)dxds

≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds + C

t∫
0

∫
�

k̂ε(s)dxds. (3.36)

Moreover, using that g ≥ g0 > 0,

t∫
0

∫
�

k̂ε(s)dxds ≤ 1

g2
0

t∫
0

∫
�

k̂ε(s)g(s)2dxds

= 1

g2
0

t∫
0

∫
�

k̂ε(s)(g(s)2 − |∇uε(s)|2)dxds + 1

g2
0

t∫
0

∫
�

k̂ε(s)|∇uε(s)|2dxds, (3.37)

and setting Aε := {(x, s) ∈ QT : |∇uε(x, s)|2 − g(x, s)2 ≥ 0}, we also have

1

g2
0

t∫
0

∫
�

k̂ε(s)(g(s)2 −|∇uε(s)|2)dxds = 1

g2
0

∫
Aε∩Qt

k̂ε(s)(g(s)2 −|∇uε(s)|2)dxds ≤ 0. (3.38)

Therefore, from (3.36), we arrive at

1

2
‖u̇ε(t)‖2

L2 + 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds +

∫
�

K̂ε(t)dx

≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds + C

t∫
0

∫
�

k̂ε(s)|∇uε(s)|2dsdx. (3.39)

Testing the wave equation (3.13) with ϕ = uε instead we obtain

t∫
0

∫
�

k̂ε(s)|∇uε(s)|2dxds =
t∫

0

(f (s), uε(s))ds +
t∫

0

‖u̇ε(s)‖2
L2ds

−
t∫
‖∇uε(s)‖2

L2ds − 1

2
‖∇uε(t)‖2

L2 + 1

2
‖∇u0‖2

L2 + (u1, u0) − (u̇ε(t), uε(t))
0
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≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds + γ

2
‖u̇ε(t)‖2

L2 + 1

2γ
‖uε(t)‖2

L2 , (3.40)

where the constant γ > 0 is arbitrary, and by writing

‖uε(t)‖2
L2 =

∫
�

∣∣u0 +
t∫

0

u̇ε(s)ds
∣∣2

dx ≤ C + 2
∫
�

(

t∫
0

|u̇ε(s)|ds)2dx

≤ C + 2
∫
�

∣∣T t∫
0

|u̇ε(s)|2ds
∣∣dx ≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds, (3.41)

we have estimated the term

t∫
0

(f (s), uε(s))ds ≤ 1

2

t∫
0

‖f (s)‖2
L2ds + 1

2

t∫
0

‖uε(s)‖2
L2ds ≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds. (3.42)

The constant C appearing in the previous estimates is independent of ε and depends on the 
external force f and the initial conditions u0 and u1. So, plugging (3.40) into (3.39) we infer

1

2
‖u̇ε(t)‖2

L2 + 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds +

∫
�

K̂ε(t)dx

≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds + Cγ

2
‖u̇ε(t)‖2

L2 + C

2γ
‖uε(t)‖2

L2 . (3.43)

Thus, after choosing γ > 0 small enough in (3.43), and using (3.41) again, we finally find a 
constant C > 0 independent of ε such that

C′‖u̇ε(t)‖2
L2 + 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds +

∫
�

K̂ε(t)dx ≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds

where C′ > 0 is a fixed constant independent of ε. This allows us to employ Gronwall Lemma 
providing the following estimates

uε ∈ W 1,∞(0, T ;L2(�)) ∩ H 1(0, T ;V ), (3.44)∫
�

K̂ε(·)dx ∈ L∞(0, T ), (3.45)

uniformly with respect to ε ∈ (0, 1). Furthermore, going back to (3.36), (3.37), and (3.40), we 
also obtain
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k̂ε ∈ L1(QT ), (3.46)

k̂ε |∇uε |2 ∈ L1(QT ), (3.47)

uniformly with respect to ε ∈ (0, 1). From this and the inequality 2|∇uε| ≤ 1 + |∇uε |2 we also 
get

k̂ε |∇uε | ∈ L1(QT ), (3.48)

uniformly with respect to ε ∈ (0, 1). The first a-priori estimates are achieved.
Step 2. We will now prove that ̂kε∇uε ∈H′∇ uniformly with respect to ε. Indeed, let F ∈H∇ . 

We know there is v ∈ V such that F = ∇v, and by equation (3.13),

〈〈̂kε∇uε,F 〉〉 = 〈〈̂kε∇uε,∇v〉〉 = −(u̇ε(T ), v(T )) − (u1, v(0)) +
T∫

0

(u̇ε, v̇)ds

−
T∫

0

(∇uε + ∇u̇ε,∇v)ds +
t∫

0

(f, v)ds ≤

≤ ‖u̇ε(T )‖L2‖v(T )‖L2 + C‖v(0)‖L2 + ‖u̇ε‖L2(L2)‖v̇‖L2(L2) + ‖∇uε‖H 1(L2)‖∇v‖L2(L2)

+ C‖v‖L2(L2)

≤ C‖v‖V ≤ ‖F‖H∇ , (3.49)

where we have employed the uniform boundedness (3.44) and inequality (2.9). Hence

k̂ε∇uε ∈H′∇ , (3.50)

uniformly with respect to ε ∈ (0, 1).
Step 3. Depending on the dimension d , there exists k > 0 such that L1(�; Rd) ⊂⊂

H−k(�; Rd) continuously and compactly. We hence deduce that, if h ∈ L1(�; Rd), then 
divh ∈ X where X = H−k−1(�). In particular, we can now look at equation (3.30), and arguing 
by comparison, we infer

üε ∈ L1(0, T ;X),

uniformly with respect to ε ∈ (0, 1). �
4. Proof of the main results

We divide the proof of Theorem 2.2 in several steps.
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4.1. Passage to the limit as ε → 0

In this Section we consider the solutions uε of the approximate problem and aim to pass to 
the limit as ε → 0. Notice that the uniform a-priori estimates provided in the previous section 
imply the following inclusion

u̇ε ∈ L2(0, T ;V ) ∩ W 1,1(0, T ;X), (4.1)

uniformly with respect to ε ∈ (0, 1). Estimate (4.1) entails that the sequence u̇ε is precompact in 
L2(0, T ; L2(�)) (this is a standard generalisation of Aubin-Lions Lemma, see [17,21]). More-
over, since u̇ε ∈ W 1,1(0, T ; X) we conclude that, when we extract a suitable subsequence of 
ε → 0, u̇ε is converging weakly star in BV (0, T ; X) and, thanks to a generalized Helly selec-
tion principle [7, Theorem 7.2], the functions u̇ε are also converging pointwise for all t ∈ [0, T ]
weakly in X.

We now extract a subsequence of ε → 0 such that, besides the previous convergence, 
also the following holds: there is a function u ∈ H 1(0, T ; V ) ∩ W 1,∞(0, T ; L2(�)) with u̇ ∈
BV (0, T ; X), and there is ϒ ∈H′∇ , such that

uε ⇀ u weakly in H 1(0, T ;V ) and weakly star in W 1,∞(0, T ;L2(�)), (4.2)

u̇ε ⇀ u̇ weakly star in BV (0, T ;X), (4.3)

u̇ε → u̇ strongly in L2(0, T ;L2(�)), (4.4)

u̇ε(t) ⇀ u̇(t) weakly in X for all t ∈ [0, T ], (4.5)

k̂ε∇uε ⇀ ϒ weakly in H′∇ . (4.6)

Moreover, by Alaoglu theorem, for some generalised subsequence, we can also assume there is 
some λ ∈ L∞(QT )′ with

k̂ε ⇀ λ weakly star in L∞(QT )′. (4.7)

Notice that, having already selected a sequence to guarantee the convergences in (4.2)-(4.6), we 
might assume that (4.7) holds for a further subsequence of it.

We are ready to prove the following:

Lemma 4.1. The couple (u, ϒ) satisfies

(u̇(T ),ϕ(T ))−(u1, ϕ(0))−
T∫

0

(u̇, ϕ̇)ds+
T∫

0

(∇u+∇u̇,∇ϕ)ds+〈〈ϒ,∇ϕ〉〉 =
T∫

0

(f,ϕ)ds, (4.8)

for all ϕ ∈ V . Moreover the limit function u satisfies

|∇u| ≤ g a.e. on QT , (4.9)

and it holds
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ϒ ∈ βw(∇u). (4.10)

Proof. For all t ∈ [0, T ] we know that u̇ε(t) is uniformly bounded in L2(�). In particular, con-
vergence (4.5) implies that

u̇ε(t) ⇀ u̇(t) weakly in L2(�) for all t ∈ [0, T ]. (4.11)

Using the definition of Kε , estimate (3.45) implies that there exists a constant C > 0 independent 
of ε such that

T∫
0

∫
�

√(
(|∇uε |2 − g2)+

)2 + 1 − 1 dxdt ≤ εC. (4.12)

Therefore the integrand is tending to 0 in L1(QT ); up to subsequences,

(|∇uε |2 − g2)+ → 0 a.e. on QT . (4.13)

Using that Kε(y) has linear growth and is greater than 1
ε
(y − 1), the dominated convergence 

theorem implies

(|∇uε |2 − g2)+ → 0 strongly in L1(QT ). (4.14)

Standard lower-semicontinuity results give

T∫
0

∫
�

(|∇u|2 − g2)+
dxdt ≤ lim inf

ε→0

T∫
0

∫
�

(|∇uε |2 − g2)+
dxdt = 0, (4.15)

and therefore

|∇u| ≤ g a.e. on QT .

Now, the convergences (4.2)-(4.7), and (4.11) are sufficient to pass to the limit in the weak equa-
tion (3.13), entailing (4.8) for all ϕ ∈ V . For all ε ∈ (0, 1) we know that

〈〈̂kε∇uε,∇uε〉〉 = −(u̇ε(T ), uε(T )) + (u1, u0) +
T∫

0

‖u̇ε‖2
L2ds

−
T∫

0

‖∇uε(s)‖2
L2ds − 1

2
‖∇uε(T )‖2

L2 + 1

2
‖∇u0‖2

L2 +
T∫

0

(f,uε)ds, (4.16)

and taking the limsup as ε → 0 we get
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lim sup
ε→0

〈〈̂kε∇uε,∇uε〉〉 ≤ −(u̇(T ), u(T )) + (u1, u0) +
T∫

0

‖u̇‖2
L2ds −

T∫
0

‖∇u(s)‖2
L2ds

− 1

2
‖∇u(T )‖2

L2 + 1

2
‖∇u0‖2

L2 +
T∫

0

(f,u)ds = 〈〈ϒ,∇u〉〉. (4.17)

The equality follows from (4.8) whereas, to obtain the inequality, we have exploited convergences 
(4.2)-(4.7), (4.11), and the standard lower semicontinuity property of the L2-norms. This implies 
that

ϒ ∈ βw(∇u). �
Lemma 4.2. Let λ be as in (4.7), and let (u, ϒ) be as in Lemma 4.1. Then λ satisfies (2.34), and 
it is related with ϒ by the condition

[λ,∇u · ∇ϕ] = 〈〈ϒ,∇ϕ〉〉 for all ϕ ∈ V ∩ L∞(0, T ;W 1,∞(�)). (4.18)

Moreover

(u̇(T ),ϕ(T )) − (u1, ϕ(0)) −
T∫

0

(u̇, ϕ̇)ds +
T∫

0

(∇u + ∇u̇,∇ϕ)ds + [λ,∇u · ∇ϕ] =
T∫

0

(f,ϕ)ds,

(4.19)

for all ϕ ∈ V ∩ L∞(0, T ; W 1,∞(�)).

Proof. We begin by observing that λ ≥ 0 thanks to ̂kε ≥ 0. Let ϕ ∈ V ∩L∞(0, T ; W 1,∞(�)), let 
us show that

[λ,∇u · ∇ϕ] = 〈〈ϒ,∇ϕ〉〉. (4.20)

To prove (4.20) we observe that on the one hand

lim
ε→0

∫
QT

k̂ε∇u · ∇ϕ dxdt → [λ,∇u · ∇ϕ],

so it suffices to show that in fact

lim
ε→0

∫
QT

k̂ε∇u · ∇ϕ dxdt → 〈〈ϒ,∇ϕ〉〉.

We write
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∫
QT

k̂ε∇u · ∇ϕ dxdt =
∫

QT

k̂ε∇uε · ∇ϕ dxdt +
∫

QT

k̂ε(∇u − ∇uε) · ∇ϕ dxdt, (4.21)

and since the first term in the right-hand side tends to 〈 〈ϒ,∇ϕ〉 〉 we are left to prove that∫
QT

k̂ε(∇u − ∇uε) · ∇ϕ dxdt → 0, (4.22)

as ε → 0. We claim that ∫
QT

k̂ε |∇u − ∇uε |2dxdt → 0 as ε → 0. (4.23)

From this it follows that∫
QT

k̂ε(∇u − ∇uε) · ∇ϕ dxdt ≤ ‖̂kε‖1/2
L1(QT )

‖̂k1/2
ε |∇u − ∇uε |‖L2(QT )‖∇ϕ‖L∞(QT ) → 0,

and (4.22) is proved. To show (4.23) we write

0 ≤
∫

QT

k̂ε |∇u − ∇uε |2dxdt =
T∫

0

(̂kε(∇uε − ∇u),∇uε − ∇u)dt

= 〈〈̂kε∇uε,∇uε〉〉 − 2

T∫
0

(̂kε∇uε,∇u)dt +
T∫

0

(̂kε∇u,∇u)dt, (4.24)

so that passing to the superior limit as ε → 0, using (4.17), and the fact that the last term equals 
[̂kε, |∇u|2], we infer

[λ, |∇u|2] ≥ 〈〈ϒ,∇u〉〉. (4.25)

We are left with proving the opposite inequality. To this aim, since |∇u| ≤ g a.e. on � and λ ≥ 0, 
we have

[λ, |∇u|2] ≤ [λ,g2] = lim
ε→0

∫
QT

k̂εg
2dxdt ≤ lim inf

ε→0

∫
QT

k̂ε |∇uε |2dxdt

≤ lim sup
ε→0

∫
QT

k̂ε |∇uε |2dxdt ≤ 〈〈ϒ,∇u〉〉. (4.26)

In the second inequality we have used that 
∫
QT

k̂ε(|∇uε |2 − g2)dxdt ≥ 0, and (4.17) in the last 
inequality. In particular we infer

[λ, |∇u|2] = 〈〈ϒ,∇u〉〉, (4.27)
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and from (4.26) we also get

lim
ε→0

∫
QT

k̂ε(|∇uε |2 − g2)dxdt = 0. (4.28)

As a consequence, by writing

1

ε

y2√
y2 + 1

= 1

ε
(

√
y2 + 1 − 1√

y2 + 1
) ≥ 1

ε
(

√
y2 + 1 − 1),

we infer from (4.28) that

lim
ε→0

Jε(∇uε) = 0. (4.29)

This observation will be crucial in the proof of Theorem 2.8.
Going back to (4.24) we again pass to the limit and see that the right-hand side tends to zero, 

concluding (4.23). This also concludes the proof of (4.20).
It remains to show the last condition in (2.34). On the one hand we have that ̂kε ≥ 0, and since 

|∇u|2 ≤ g2 it follows that

[λ, |∇u|2 − g2] = lim
ε→0

∫
QT

k̂ε(|∇u|2 − g2)dxdt ≤ 0.

Let us prove the opposite inequality. We know that 
∫
QT

k̂ε(|∇uε |2 − g2)dxdt = 0 by (4.28), and 
so

[λ, |∇u|2 − g2] ≥ lim sup
ε→0

∫
QT

k̂ε(|∇uε |2 − g2)dxdt = 0,

where the first inequality follows from the fact that, thanks to (4.16), (4.17), and (4.27), we have

lim sup
ε→0

∫
QT

k̂ε |∇uε |2dxdt = lim sup
ε→0

〈〈̂kε∇uε,∇uε〉〉 ≤ 〈〈ϒ,∇u〉〉 = [λ, |∇u|2].

It then follows that

[λ, |∇u|2 − g2] = 0, (4.30)

which entails the last condition in (2.34), being |∇u| + g ≥ g0 > 0. To conclude (2.34) we have 
to prove that for all ζ ∈ L∞(QT ) it holds

[λ(|∇u|2 − g2), ζ ] = 0. (4.31)
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To do this we use a Hölder inequality for charges (which may be obtained using Young inequality 
similarly to the Hölder inequality in Lp spaces and using Radon integral representation (2.6)) to 
write

0 ≤ ∣∣[λ(g − |∇u|), ζ ]∣∣ ≤ [λ(g − |∇u|), |ζ |] ≤ [
λ(g2 − |∇u|2), |ζ |

g + |∇u|
]

≤ [λ(g2 − |∇u|2),1] 1
2
[
λ(g2 − |∇u|2), |ζ |2

(g + |∇u|)2

] 1
2

= [λ, (g2 − |∇u|2)] 1
2
[
λ(g2 − |∇u|2), |ζ |2

(g + |∇u|)2

] 1
2 = 0, (4.32)

where we have used that 0 < g0 ≤ g, g ≥ |∇u| a.e. in QT , and (4.30). Lemma 4.2 is 
achieved. �

We further comment on some consequence of the previous proof. Passing to the liminf in 
(4.24) we can also conclude

lim inf
ε→0

〈〈̂kε∇uε,∇uε〉〉 ≥ 〈〈ϒ,∇u〉〉, (4.33)

and this, together with (4.17) gives

lim
ε→0

〈〈̂kε∇uε,∇uε〉〉 = 〈〈ϒ,∇u〉〉. (4.34)

In particular the inequality in (4.17) is an equality and using (4.16) we infer the following strong 
convergences

T∫
0

‖∇uε(s)‖2
L2ds →

T∫
0

‖∇u(s)‖2
L2ds,

and

‖∇uε(t)‖2
L2 → ‖∇u(t)‖2

L2 for a.e. t ∈ [0, T ] and for t = T .

That is

uε → u strongly in L2(0, T ;V ), (4.35)

uε(T ) → u(T ) strongly in V. (4.36)

With this properties at disposal we are ready to conclude the proof of Theorem 2.2.
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4.2. Proofs of Theorem 2.2 and Theorem 2.8

Proof of Theorem 2.2. We have to show that the pair (u, ϒ) is a solution in the sense of Defini-
tion 2.1. Conditions (i) and (ii) are readily achieved by the results obtained in Lemma 4.1. Indeed 
(2.16) and (2.17) are obtained by (4.2) and (4.3), whereas, (2.18) follows from (4.9) and the ini-
tial data are satisfied by (4.2) and (4.11). To check point (ii) of Definition 2.1 we just invoke 
Lemma 4.1. Theorem 2.2 is proved. �

Let us comment on the local version of the weak equation (2.25). As a first observation, all the 
estimates above valid for the time interval [0, T ] are easily seen to be true on every subinterval 
[0, t], 0 < t < T . Recalling the notation in (2.4) for the spaces Vt , Ht , and H∇,t, we follow the 
lines of [5] from which it is easy to see that for all t ∈ (0, T ) there exists ϒt ∈H′∇,t such that, for 
the same subsequence of the convergences (4.2)-(4.11), it holds

k̂ε∇uε�Qt ⇀ ϒt weakly in H′∇,t, (4.37)

and

ϒt ∈ βw,t (∇u), (4.38)

where βw,t is the subdifferential of the functional Jt , obtained from J by integrating K over Qt

instead of QT . Namely,

Jt = lim
ε→0

J ε
t , Jε,t (A) :=

t∫
0

∫
�

1

2
Kε(|A(x, s)|2 − g(x, s)2)dxds.

More precisely, we employ the wave equation (3.13) which is valid for any t ∈ (0, T ]. Then we 
write

〈〈̂kε∇uε,∇ϕ〉〉t = −(u̇ε(t), ϕ(t)) + (u1, ϕ(0)) +
t∫

0

(u̇ε, ϕ̇)ds

−
t∫

0

(∇uε + ∇u̇ε,∇ϕ)ds +
t∫

0

(f,ϕ)ds,

and exploiting the convergences obtained so far we deduce that, for the same subsequence of 
ε → 0, the right-hand side tends to

− (u̇(t), ϕ(t)) + (u1, ϕ(0)) +
t∫

0

(u̇, ϕ̇)ds −
t∫

0

(∇u + ∇u̇,∇ϕ)ds +
t∫

0

(f,ϕ)ds =: 〈〈ϒt,ϕ〉〉t .

The argument in (4.16) and (4.17) can be repeated achieving (4.38). From the last expression 
also equation (2.27) becomes evident. As for the case t = T we pass to the limit in the weak 
equation (3.13) and (2.25) is inferred.
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We are ready to prove Theorem 2.8.

Proof of Theorem 2.8. We have already proved the existence of λ in (4.7). Relation (2.37) fol-
lows from (4.18). We have to show that the pair (u, λ) is a generalised solution in the sense 
of Definition 2.6. Condition (i’) and (2.33) follows from Theorem 2.2 and relation (2.37). The 
conditions in (2.34) follow from Lemma 4.2, while condition (iii’) follows from Lemma 4.2 and 
arguing as before for (2.25) (see Remark 2.3).

It remains to prove the energy inequality. From (4.29), we know that for a.e. t ∈ [0, T ] we 
have ∫

�

K̂ε(t)dx → 0, (4.39)

as ε → 0. Using (4.35)-(4.36) we pass to the inferior limit the energy equality

1

2
‖u̇ε(t)‖2

L2 + 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds +

∫
�

K̂ε(t)dx

= 1

2
‖u0‖2

L2 + 1

2
‖∇u0‖2

L2 +
t∫

0

(f (s), u̇ε(s))ds −
t∫

0

∫
�

k̂ε(s)g(s)ġ(s)dxds, (4.40)

arriving to

1

2
‖u̇(t)‖2

L2 + 1

2
‖∇u(t)‖2

L2 +
t∫

0

‖∇u̇(s)‖2
L2ds ≤ 1

2
‖u0‖2

L2 + 1

2
‖∇u0‖2

L2

+
t∫

0

(f (s), u̇(s))ds − lim
ε→0

t∫
0

∫
�

k̂ε(s)g(s)ġ(s)dxds, (4.41)

for a.e. t ∈ [0, T ]. The conclusion follows from the fact that, by (4.7), we have

lim
ε→0

t∫
0

∫
�

k̂ε(s)g(s)ġ(s)dxds = [λ,gġ]t . �

5. Extension to Neumann type boundary conditions

In this section we aim to extend the previous results to a more general boundary condition 
for u. Specifically, for given α ∈ [0, +∞) we would like to impose a Fourier boundary condition 
formally of the type

αu + ∂u

∂ν
+ ∂u̇

∂ν
+ ϒ · ν = 0 on ∂�, (5.1)
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if we had enough regularity on ϒ. The homogeneous Neumann condition is inferred when α = 0
whereas we can consider homogeneous Dirichlet condition setting formally α = +∞.

Moreover, in this section, we will redefine some notation; precisely we denote

V := H 1(�).

Accordingly, all the notation in (2.2)-(2.5) are now redefined with this convention. The new 
hypothesis on the initial data will be

u(0) = u0, u̇(0) = u1, u0, u1 ∈ H 1(�). (5.2)

We will look for solutions satisfying condition (5.1) in a weak sense. More precisely, we start 
from an approximate problem solution uε which satisfies (5.1) up to an error due to the presence 
of the penalisation term. The weak equation we are concerned with is the following

(u̇ε(t), ϕ(t)) − (u1, ϕ(0)) −
t∫

0

(u̇ε, ϕ̇)ds +
t∫

0

(∇uε + ∇u̇ε,∇ϕ)ds

+
t∫

0

α(uε,ϕ)∂�ds +
t∫

0

(kε(|∇uε |2 − g2)∇uε,∇ϕ)ds =
t∫

0

(f,ϕ)ds, (5.3)

for all ϕ ∈ V and t ∈ (0, T ]. We can state the analogous of Theorem 3.1:

Theorem 5.1. Let T > 0, let u0, u1 be as in (5.2), assume f ∈ L2(0, T ; L2(�)) and g ∈
W 1,∞(0, T ; L∞(�)). Then for all ε ∈ (0, 1) there exists a solution uε to (5.3) with

uε ∈ W 1,∞(0, T ;L2(�)) ∩ H 1(0, T ;H 1(�)), (5.4)

u̇ε ∈ H 1(0, T ;V ′). (5.5)

The proof of this result is identical to the one of Theorem 3.1, with the only difference that 
now we modify the definition of the functionals Fn,k. We set

un,0 := u0, un,−1 := u0 − τu1,

and for all k ≥ 1 we define recursively

un,k := argmin{Fα
n,k(u) : u ∈ V }, (5.6)

where

Fα
n,k(u) = Fn,k(u) + α

2
‖u‖2

L2(∂�)
. (5.7)

Notice that for α = 0 the functional F 0
n,k = Fn,k , and it is still coercive on V thanks to the 

presence of the inertial quadratic term. The Euler-Lagrange equation associated is
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τ−1(
un,k − un,k−1

τ
− un,k−1 − un,k−2

τ
,ϕ) + (∇un,k,∇ϕ) + (

∇un,k − ∇un,k−1

τ
,∇ϕ)

(kε(|∇un,k|2 − g2)∇un,k,∇ϕ) + α(un,k, ϕ)∂� − (f (tk), ϕ) = 0, (5.8)

for all ϕ ∈ V . Also in this case one puts ϕ = vn,k := un,k−un,k−1
τ

in (5.8) and sum on k = 0, . . . , m, 
m ≤ n. The interpolants un and vn satisfy

un ∈ H 1(0, T ;V ) ∩ W 1,∞(0, T ;L2(�)),

vn ∈ L∞(0, T ;L2(�)) ∩ L2(0, T ;V ),

vn ∈ H 1(0, T ;V ′).

Again, standard arguments allow to pass to the limit as τ → 0, providing us with a solution of 
(5.3) (we omit the details, the proof being very similar to the one of Theorem 3.1).

Next, we fix initial data as in (5.2) and such that

|∇u0| ≤ g(0) a.e. on �. (5.9)

We now discuss how to extend Theorem 2.2 to boundary conditions of the type of (5.1). First we 
introduce the concept of weak solution we look for.

Definition 5.2. A pair (u, ϒ) with u ∈ H 1(0, T ; H 1(�)) and ϒ ∈ H′∇ , is a weak solution to the 
constrained wave equation with Fourier type boundary condition if:

(i) Conditions (2.16), (2.17), and (2.18) hold, together with the initial condition (2.19).
(ii) The following weak expression of the wave equation holds

(u̇(T ),ϕ(T )) − (u1, ϕ(0)) −
T∫

0

(u̇, ϕ̇)ds +
T∫

0

(∇u + ∇u̇,∇ϕ)ds

+
T∫

0

α(u,ϕ)∂�ds + 〈〈ϒ,∇ϕ〉〉 =
T∫

0

(f,ϕ)ds, (5.10)

for all ϕ ∈ V , and moreover (2.22) holds.

Also for this kind of solution we will prove the existence of λ as in Theorem 2.8, such that 
(2.37) holds. Thanks to this relation it is possible to show that the couple (u, λ) is a solution in 
the sense explained by the following:

Definition 5.3. A pair (u, λ) with u ∈ H 1(0, T ; H 1(�)), λ ∈ L∞(QT )′, is a generalised solu-
tion to the constrained wave equation with Fourier type boundary conditions if the following 
properties hold:

(i’) The function u satisfies (2.16), (2.17), (2.18), and the initial data (2.19).
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(ii’) The following expression of the wave equation holds

(u̇(T ),ϕ(T )) − (u1, ϕ(0)) −
T∫

0

(u̇, ϕ̇)ds +
T∫

0

(∇u + ∇u̇,∇ϕ)ds

+
T∫

0

α(u,ϕ)∂�ds + [λ,∇u · ∇ϕ] =
T∫

0

(f,ϕ)ds, (5.11)

for all ϕ ∈ V ∩ L∞(0, T ; W 1,∞(�)), together with condition (2.34).
(iii’) For all t ∈ (0, T ) the following local version of the wave equation holds

(u̇(t), ϕ(t)) − (u1, ϕ(0)) −
t∫

0

(u̇, ϕ̇)ds +
t∫

0

(∇u + ∇u̇,∇ϕ)ds

+
t∫

0

α(u,ϕ)∂�ds + [λ,∇u · ∇ϕ]t =
t∫

0

(f,ϕ)ds, (5.12)

for all ϕ ∈ Vt ∩ L∞(0, t; W 1,∞(�)).

We summarize the existence result for solutions as in Definition 5.2 and Definition 5.3 in the 
following:

Theorem 5.4. Let T > 0, assume (5.2), suppose g ∈ W 1,∞(0, T ; L∞(�)) be such that 
g ≥ g0, for some constant g0 > 0, and assume f ∈ L2(0, T ; L2(�)). Then there exist u ∈
H 1(0, T ; H 1(�)), ϒ ∈ H′∇ , and λ ∈ L∞(QT )′, such that (u, ϒ) is a solution to the constrained 
wave equation with Neumann (α = 0) or Fourier (α > 0) boundary conditions in the sense of 
Definition (5.2), while (u, λ) is a solution in the sense of Definition 5.3. Also in this case λ and 
ϒ are related by (2.37).

Again, we have the following result on the energy of the system.

Theorem 5.5. Let (u, λ) be a solution provided by Theorem 5.4. Then for all t ∈ (0, T ],

1

2
‖u̇(t)‖2

L2 + 1

2
‖∇u(t)‖2

L2 + 1

2
α‖u(t)‖2

L2(∂�)
+

t∫
0

‖∇u̇(s)‖2
L2ds

≤ 1

2
‖u1‖2

L2 + 1

2
α‖u0‖2

L2(∂�)
+ 1

2
‖∇u0‖2

L2 +
t∫

0

(f (s), u̇(s))ds − [λ,gġ]t . (5.13)

The variational inequality formulation of the problem with Fourier type boundary conditions 
is the following. Let u be the solution of Theorem 5.4, then u satisfies |∇u| ≤ g a.e. in QT , and 
for all ϕ ∈ V with |∇ϕ| ≤ g a.e. in QT it holds
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(u̇(T ), u(T ) − ϕ(T )) −
T∫

0

(u̇, u̇ − ϕ̇)dt +
T∫

0

(∇u + ∇u̇,∇u − ∇ϕ)dt

+
T∫

0

α(u,u − ϕ)∂�dt ≤ (u1, u0 − ϕ(0)) +
T∫

0

(f,u − ϕ)dt. (5.14)

We now sketch the proofs of Theorems 5.4 and 5.5, which are completely similar to the proofs 
of Theorems 2.2 and 2.8.

We start with Lemma 3.2 that is achieved with identical estimates. Namely, testing (5.3) by 
u̇ε we infer

1

2
‖u̇ε(t)‖2

L2 + α

2
‖uε(t)‖2

L2(∂�)
+ 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds +

∫
�

K̂ε(t)dx

= 1

2
‖u1‖2

L2 + α

2
‖u0‖2

L2(∂�)
+ 1

2
‖∇u0‖2

L2 +
∫
�

K̂ε(0)dx +
t∫

0

(f (s), u̇ε(s))ds

−
t∫

0

∫
�

k̂ε(s)g(s)ġ(s)dxds ≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds + C

t∫
0

∫
�

k̂ε(s)dxds,

which leads to

1

2
‖u̇ε(t)‖2

L2 + α

2
‖uε(t)‖2

L2(∂�)
+ 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds +

∫
�

K̂ε(t)dx

≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds + C

t∫
0

∫
�

k̂ε(s)|∇uε(s)|2dxds. (5.15)

The last term is estimated by

t∫
0

∫
�

k̂ε(s)|∇uε(s)|2dxds =
t∫

0

(f (s), uε(s))ds +
t∫

0

‖u̇ε(s)‖2
L2ds −

t∫
0

‖∇uε(s)‖2
L2ds

−
t∫

0

α‖uε(s)‖2
L2(∂�)

ds − 1

2
‖∇uε(t)‖2

L2 + 1

2
‖∇u0‖2

L2 + (u1, u0) − (u̇ε(t), uε(t))

≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds + γ

2
‖u̇ε(t)‖2

L2 + 1

2γ
‖uε(t)‖2

L2 , (5.16)
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and we arrive to

C′‖u̇ε(t)‖2
L2 + α

2
‖uε(t)‖2

L2(∂�)
+ 1

2
‖∇uε(t)‖2

L2 +
t∫

0

‖∇u̇ε(s)‖2
L2ds + 2

∫
�

K̂ε(t)dx

≤ C + C

t∫
0

‖u̇ε(s)‖2
L2ds. (5.17)

Again Gronwall Lemma together with Poincaré inequality

‖uε‖2
L2 ≤ c

(‖∇uε‖2
L2 + ‖uε‖2

L2(∂�)

)
, (5.18)

yields the same estimates as in Lemma 3.2. Specifically, the third, forth, and last estimate in this 
lemma are achieved identically as there, taking also into account the boundary terms, namely, for 
instance,

〈〈̂kε∇uε,F 〉〉 = 〈〈̂kε∇uε,∇v〉〉 = −(u̇ε(T ), v(T )) − (u1, v(0)) +
T∫

0

(u̇ε, v̇)dt +
T∫

0

α(uε, v)∂�dt

−
T∫

0

(∇uε + ∇u̇ε,∇v)ds +
T∫

0

(f, v)ds ≤

≤ ‖u̇ε(T )‖L2‖v(T )‖L2 + C‖v(0)‖L2 + ‖u̇ε‖L2(L2)‖v̇‖L2(L2) + ‖∇uε‖H 1(L2)‖∇v‖L2(L2)

+ C‖v‖L2(L2)

≤ C‖v‖V ≤ ‖F‖H∇ , (5.19)

for all F ∈ H∇ , with F = ∇v.
Notice that convergence (4.2) entails also strong convergence of uε to u in L2(0, T ; V ), which 

in turn implies strong convergence of the boundary term uε�∂� to u�∂�. These convergences 
allows to replicate the arguments in (4.17) and (4.16). The rest of the proof of Theorem 5.4 is 
straightforward. Also Theorem 5.5 is easily achieved similarly to the proof of Theorem 2.8.

5.1. Limit as α → +∞

In this section we show that a solution (uα, ϒα) provided by Theorem 5.4 tends, as α → ∞, 
to a solution (u, ϒ) of Theorem 2.2. We have here introduced the label α to emphasize the 
dependence on the parameter α ∈ [0, ∞) appearing in Definition 5.2.

To prove this result, we have to make the assumption on the initial data that

u0, u1 ∈ H 1
0 (�).

Therefore we state the following:
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Theorem 5.6. Let T > 0, u0, u1 ∈ H 1
0 (�) with |∇u0| ≤ g(0) a.e. on �, assume g ∈ W 1,∞(0, T ;

L∞(�)) and f ∈ L2(0, T ; L2(�)). Let (uα, ϒα, λα) be a solution provided by Theorem 5.4. 
Then there exists a generalised (not relabelled) subsequence (uα, ϒα, λα) such that, as α → ∞,

uα ⇀ u weakly in H 1(0, T ;H 1(�))

ϒα ⇀ ϒ weakly in H′∇ ,

λα ⇀ λ weakly star in L∞(QT )′, (5.20)

where (u, ϒ) is a solution as in Definition 2.1 and (u, λ) is a solution as in Definition 2.6.

The need of taking a generalized subsequence is due to the last convergence in (5.20). Notice 
however that to ensure the first two convergences we extract a classical subsequence of α → ∞, 
and then the last convergence can be assumed to hold up to a further subsequence.

Proof. We have to establish some a-priori estimates for (uα, ϒα) which are independent of α. We 
use the approximating generalised sequence uα

ε employed in the proof of Theorem 5.4. Specifi-
cally, we go back to (5.17) and observe that the constant C is independent of α, thanks to the fact 
that u0, u1 are null on ∂�. From this and following again the lines of the proof of Lemma 3.2, 
we easily arrive to the following:

Lemma 5.7. There is a constant C > 0 independent of α and ε such that the estimates in 
Lemma 3.2 hold for uα

ε replacing uε , and moreover

α‖uα
ε (t)‖2

L2(∂�)
≤ C for all t ∈ [0, T ].

We hence take the limit as ε → 0 and obtain the following estimates for the pair (uα, ϒα) and 
λα . Namely

uα ∈ H 1(0, T ;H 1(�)) ∩ W 1,∞(0, T ;L2(�)), (5.21)

u̇α ∈ BV (0, T ;X), (5.22)

ϒα ∈H′∇ , (5.23)

λα ∈ L∞(QT )′, (5.24)

α1/2uα ∈ L2(0, T ;L2(∂�)), (5.25)

and their norms in these spaces are equibounded by a constant independent of α. Hence, passing 
to the limit as α → ∞, we get, up to a generalised subsequence, that there are u, ϒ, λ with

uα ⇀ u weakly in H 1(0, T ;H 1(�)) and weakly star in W 1,∞(0, T ;L2(�)), (5.26)

u̇α ⇀ u̇ weakly star in BV (0, T ;X), (5.27)

u̇α → u̇ strongly in L2(0, T ;L2(�)), (5.28)

u̇α(t) ⇀ u̇(t) weakly in L2(�) for all t ∈ [0, T ], (5.29)
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ϒα ⇀ ϒ weakly in H′∇ , (5.30)

λα ⇀ λ weakly star in L∞(QT )′. (5.31)

Moreover, by (5.25),

uα → 0 strongly in L2(0, T ;L2(∂�)),

and in particular uα = 0, a.e. on (0, T ) × ∂�. In particular we infer that (2.20) is satisfied.
Also, from condition (i) of Definition 5.2 and from (2.18) valid for uα we easily deduce that 

this condition is satisfied by u, and (i) of Definition 2.1 follows. In a similar way, following also 
the lines of the proof of Theorem 2.2 in [2], we see that the last condition in (ii) of Definition 2.1
is satisfied. It remains to show (2.22). We own to the argument in (4.16) and (4.17) using uα in 
place of uε . The only difference between the present case and (4.16) is the appearance, in the 
right-hand side, of the term − 

∫ T

0 α‖uα‖2
L2(∂�)

dt ≤ 0, which, being non-positive, leads to (4.17). 
As a consequence

lim sup
α→∞

〈〈ϒα,∇uα〉〉 ≤ 〈〈ϒ,∇u〉〉, (5.32)

which implies ϒ ∈ βw(∇u), and the proof that (u, ϒ) is a solution as in Definition 2.1 is com-
plete.

Let us now check that (u, λ) is a solution as in Definition 2.6. To this aim we follow the proof 
of Lemma 4.2. The fact that λ ≥ 0 is straightforward. Let ϕ ∈ V ∩ L∞(0, T ; W 1,∞(�)), and 
check that (4.18) holds. This is easy since we know that, for any α, it holds

[λα,∇uα · ∇ϕ] = 〈〈ϒα,∇ϕ〉〉. (5.33)

By (5.30) the right-hand side tends to 〈 〈ϒ,∇ϕ〉 〉. We claim that

[λα,∇uα · ∇ϕ] → [λ,∇u · ∇ϕ], (5.34)

which in turn will imply (2.37). To prove this, we first write

0 ≤ lim inf
α→∞ [λα, |∇uα − ∇u|2] ≤ lim sup

α→∞
[λα, |∇uα − ∇u|2]

= lim sup
α→∞

([λα, |∇uα|2] + [λα, |∇u|2] − 2[λα,∇uα · ∇u])
≤ [λ, |∇u|2] − 〈〈ϒ,∇u〉〉
≤ [λ,g2] − 〈〈ϒ,∇u〉〉 ≤ lim inf

α→∞ [λα,g2 − |∇uα|2] = 0, (5.35)

where we have used (5.32) twice, and that [λα, |∇uα|2] = 〈 〈ϒα,∇uα〉 〉 for all α. Hence we infer

lim
α→∞[λα, |∇uα − ∇u|2] = 0,

and from this, since λα ≥ 0,
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lim
α→0

∣∣[λα, (∇uα − ∇u) · ∇ϕ]∣∣ ≤ lim
α→0

[λα, |∇uα − ∇u||∇ϕ|]

≤ lim
α→0

(
[λα, |∇uα − ∇u|2] 1

2 [λα, |∇ϕ|2] 1
2

)
= 0, (5.36)

so we conclude the claim (5.34). Hence (2.33) is obtained. The check of (2.35) is similar. It 
remains to prove the last condition in (2.34). First we see that from (5.35) it also follows that 
(5.32) is in fact an equality. Now, we know that

[λα, |∇uα|2 − g2] = 0,

so it is sufficient to check that limα→0[λα, |∇uα|2] = [λ, |∇u|2]. But this follows from the fact 
that (5.32) is an equality and since 〈 〈ϒ,∇u〉 〉 = [λ, |∇u|2] = [λ∇u, ∇u], which also follows from 
(5.35). To conclude (2.34) we can now argue as in (4.32). �
Acknowledgments

The first author acknowledges CMAFcIO/ULisbon (Project PTDC/MATPUR/28686/2017) 
and second author acknowledges the financial support of GNAMPA-INdAM (research project 
2020).

References

[1] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.
[2] A. Azevedo, J.F. Rodrigues, L. Santos, Lagrange multipliers for evolution problems with constraints on the deriva-

tives, St. Petersburg Math. J. 32 (3) (2021) 435–448.
[3] A. Azevedo, L. Santos, Lagrange multipliers and transport densities, J. Math. Pures Appl. 108 (2017) 592–611.
[4] B. Benešová, M. Kruzik, A. Schlömerkemper, A note on locking materials and gradient polyconvexity, Math. Mod-

els Methods Appl. Sci. 28 (12) (2018) 2367–2401.
[5] E. Bonetti, E. Rocca, R. Scala, G. Schimperna, On the strongly damped wave equation with constraint, Commun. 

Partial Differ. Equ. 42 (7) (2017) 1042–1064.
[6] H. Brézis, Multiplicateur de Lagrange en torsion elasto-plastique, Arch. Ration. Mech. Anal. 49 (1972) 32–40.
[7] G. Dal Maso, A. De Simone, M.G. Mora, Quasistatic evolution problems for linearly elastic–perfectly plastic ma-

terials, Arch. Ration. Mech. Anal. 180 (2006) 237–291.
[8] F. Demengel, P. Suquet, On locking materials, Acta Appl. Math. 6 (1986) 185–211.
[9] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, Heidelberg, New York, 

1976.
[10] C. Eck, J. Jarusek, M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and 

Applied Mathematics Monograph, Taylor Francis Group, 2005.
[11] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, in: Etudes Mathématiques, 

Paris, Dunod, 1969.
[12] F. Miranda, J.F. Rodrigues, L. Santos, Evolutionary quasi-variational and variational inequalities with constraints 

on the derivatives, Adv. Nonlinear Anal. 9 (1) (2018) 250–277.
[13] J.F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, vol. 134, 1987.
[14] J.F. Rodrigues, L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model, Ann. Sc. 

Norm. Super. Pisa, Cl. Sci. 29 (1) (2000) 153–169.
[15] J.F. Rodrigues, L. Santos, Variational and quasi-variational inequalities with gradient type constraints, in: M. Hin-

termüller, J.F. Rodrigues (Eds.), Topics in Applied Analysis and Optimisation, in: CIM Series in Mathematical 
Sciences, Springer Nature Switzerland AG 2019, 2018, pp. 319–361.

[16] J.F. Rodrigues, L. Santos, Quasivariational solutions for first order quasilinear equations with gradient constraint, 
Arch. Ration. Mech. Anal. 205 (2012) 493–514.

[17] T. Roubicek, Nonlinear Partial Differential Equations with Applications, Birkhäuser Springer, Basel, 2005.
637

http://refhub.elsevier.com/S0022-0396(22)00101-2/bibD87881CF48BC2B29A6FEAFB9089391FFs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibA3C267F6AC5F65B719C6C65EB6D1C5A6s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibA3C267F6AC5F65B719C6C65EB6D1C5A6s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibBE149A991E196D998E536836E9409729s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibBE149A991E196D998E536836E9409729s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib91645550C4344424531860641263E000s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib91645550C4344424531860641263E000s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibB1F4041A54C233A80BFFA0F597E6C25Fs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib2E28AAA75B10AB39B15C00303A96CD3Ds1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib2E28AAA75B10AB39B15C00303A96CD3Ds1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib47B79BD259E22596FFC4BE2FFBBE5C5As1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibF5CE9F5CB682A1F863D5A8C51AC28683s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibF5CE9F5CB682A1F863D5A8C51AC28683s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib1796305B2AC998E3F2EFB87D7B017188s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib1796305B2AC998E3F2EFB87D7B017188s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibC1820FE7BA2586A76C19E56CD5E8D84Bs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibC1820FE7BA2586A76C19E56CD5E8D84Bs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib6D8D97C553805834A098ED46CD61323Fs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib6D8D97C553805834A098ED46CD61323Fs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bibBED2E978B4926BCFE28DBFF81A60988As1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib7345272C1DA3E43A50245F163EF73CEFs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib7345272C1DA3E43A50245F163EF73CEFs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib5719EBB1B1D58F4A71C5C4AF3A8B3CBEs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib5719EBB1B1D58F4A71C5C4AF3A8B3CBEs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib5719EBB1B1D58F4A71C5C4AF3A8B3CBEs1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib8E3074F42EB806FABE72CEA93BC425E5s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib8E3074F42EB806FABE72CEA93BC425E5s1
http://refhub.elsevier.com/S0022-0396(22)00101-2/bib9714331363BAA5200258BAAED691C7A6s1


J.F. Rodrigues and R. Scala Journal of Differential Equations 317 (2022) 603–638
[18] R. Scala, G. Schimperna, A contact problem for viscoelastic bodies with inertial effects and unilateral boundary 
constraints, Eur. J. Appl. Math. 28 (1) (2017) 91–122.

[19] R. Scala, G. Schimperna, On the viscous Cahn-Hilliard equation with singular potential and inertial term, AIMS 
Math. 1 (1) (2016) 64–76.

[20] R. Scala, A weak formulation for a rate-independent delamination evolution with inertial and viscosity effects 
subjected to unilateral constraint, Interfaces Free Bound. 19 (1) (2017) 79–107.

[21] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura Appl. 146 (1986) 65–96.
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