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The viscosity of four in-house-made ionic liquids, 1-butyl-3-methyl-imidazolium bis(trifluoromethane
sulfonylimide), ([C4mim][(CF3SO2)2N]), CAS RN 174899–83-3, 1-butyl-3-methyl-imidazolium dicyana-
mide, ([C4mim][N(CN)2]), CAS RN 448245–52-1, 1-ethyl-3-methyl-imidazolium ethylsulphate,
([C2mim][C2H5SO4]), CAS RN 342573–75-5 and methyltrialkyl(C8,C8,C10)ammonium dicyanamide
[Aliquat][N(CN)2], CAS RN 63393–96-4, was measured in the temperature range 283.15 K � 373.15 K,
at P = 0.1 MPa. Data obtained with an absolute relative uncertainty of Ur (g) = 0.02 was compared with
available literature data for all ionic liquids, except for [Aliquat][N(CN)2], data herein presented for the
first time. Both the Vogel-Tammann-Fulcher and IUPAC/IAPWS equations were applied to correlate the
measured viscosity data as a function of temperature, the latter being more accurate. Values of g
(298.15 K) are recommended for each ionic liquid studied. The viscosities of the different ionic liquids
are discussed, considering their chemical structure differences.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Ionic liquids are accepted as alternative engineering fluids, cap-
able of replacing, with efficiency and safety, several environmen-
tally harmful solvents, and reagents in the chemical industry
[1,2], due to their capacity of being target-designed for a given
application. Thermophysical properties are needed for several
applications and for the design of chemical plants. Viscosity is
extremely important for all flow processes, being however difficult
to measure it accurately, for instrumental reasons [3,4] but also, in
ionic liquids, because small impurities quantities, namely water,
extremely affect its value [5-9]. Moreover, viscosity is also a funda-
mental property to understanding molecular behaviour, structure,
and usually fairly correlates (in an inverse manner) to ion conduc-
tivity and ion self-diffusion coefficients [10].

The dynamic viscosities of four in-house-made ionic liquids
(ILs), 1-butyl-3-methyl-imidazolium bis(trifluoromethanesulfonyli
mide), ([C4mim] [(CF3SO2)2N]), 1-butyl-3-methyl-imidazolium
dicyanamide, ([C4mim][N(CN)2]), 1-ethyl-3-methyl-imidazolium
ethylsulphate, ([C2mim][C2SO4]) and methyltrialkyl(C8,C8,C10)am-
monium dicyanamide [Aliquat][N(CN)2], were measured in the
temperature range 283.15 K � 373.15 K, at P = 0.1 MPa.

One of the compounds studied, [aliquat][N(CN)2] deserves a
comment, already explained in a previous publication [1]. The des-
ignation Aliquat refers not to a pure cation, methyltrioctylyammo-
nium dicianamide, but to a complex mixture of cations, where
three of the alkyl chains have different number of carbon atoms -
methyltrialkyl(C8,C8,C10)ammonium. Mass Spectrometry analysis
showed that our samples had a five-component mixture of methyl-
hexyldioctylammonium (0.8%), methyltrioctylammonium (29.8%),
methyldioctyldecylammonium (43.6%), methyloctyldidecylammo-
nium (21.9%), and methyltridecylammonium (3.8%). Although in
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Fig. 1. Viscosity, g of the studied ILs as a function of temperature: (s) [C4mim]
[(CF3SO2)2N], (s) [C4mim] [N(CN)2], (s) [Aliquat] [N(CN)2], (s) [C2mim][C2SO4]. The
solid lines represent the correlation of the experimental data using Eq. (1).
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the literature the designation aliquat appears for different cations,
we prefer to designate our compound as [Aliquat 336�-derived][N
(CN)2] or [Aliquat][N(CN)2] as a short name [1].

This work complements values of density, infinite dilution dif-
fusion coefficient, heat capacity, surface tension, thermal expan-
sion coefficient and isothermal compressibility previously
published by some of us [1], to include a paramount diversity of
fundamental properties to be used for heat and mass transfer in
sustainable processes.

2. Material and methods

The ionic liquids studied were synthesized at the organic chem-
istry laboratories of the Centro de Química-Física Molecular (IST,
UTL) following general reported procedures for 1-butyl-3-
methyl-imidazolium chloride, [C4mim][Cl], precursor [3],
[C4mim][(CF3SO2)2N] [5], [C4mim][N(CN)2] [10], [C2mim][C2SO4]
[11] and [Aliquat][N(CN)2] [12]. Further details about their synthe-
sis, purification and characterization are described in detail in
Table 1 of the previous publication [1]. The water content of the
samples after drying in high vacuum (typically 1 Pa) and at moder-
ate temperatures (typically 320 K) were determined by coulomet-
ric Karl-Fisher titration (Metrohm 831KF Coulometer), and are,
<120 ppm, <110 ppm, <100 ppm, and <120 ppm, respectively.

The measurements of viscosity were performed using an auto-
mated SVM 3000 Anton Paar rotational Stabinger viscometer-
densimeter, in the temperature range of (278.15–373.15) K at
atmospheric pressure. The temperature uncertainty is u
(T) = 0.02 K, the pressure uncertainty is u (P) = 1 kPa, the relative
uncertainty of the dynamic viscosity is ur (g) = 0.01 and the abso-
lute uncertainty of the density is u (q) = 0.5 kg�m�3. Further details
about the equipment, methodology and associated uncertainties
can be found elsewhere [13].

3. Results and discussion

The viscosity data obtained for the four ionic liquids are
reported in Table 1 and illustrated in Fig. 1 for the four studied
ILs. The Vogel-Fulcher-Tammann equation (VFT) [14,15] (Eq. (1)),
suitable for glass-forming liquids, was applied to correlate the vis-
cosity experimental data with temperature,
Table 1
Experimental viscosities, g, for [C4mim][(CF3SO2)2N], [C4mim][N(CN)2], [Aliquat][N(CN)2] a

T/Kb [C4mim][(CF3SO2)2N]
gc/mPa�s

[C4mim][N(CN
gc/mPa�s

283.15 103.58 60.46
288.15 79.76 47.40
293.15 62.67 37.91
298.15 50.17 30.90
303.15 40.80 25.56
308.15 33.67 21.45
313.15 28.15 18.23
318.15 23.82 15.66
323.15 20.36 13.59
328.15 17.58 11.90
333.15 15.31 10.51
338.15 13.44 9.35
343.15 11.89 8.37
348.15 10.58 7.54
353.15 9.47 6.83
358.15 8.53 6.22
363.15 7.72 5.69
368.15 7.02 5.23
373.15 6.40 4.83

a u (P) = 1 kPa.
b u (T) = 0.02 K.
c Ur(g) = 0.02.

2

g ¼ AeB= T�Cð Þ ð1Þ

where g is the viscosity in mPa�s, T is the temperature in K and A, B
and C are adjustable parameters. The performance of the obtained
correlation is illustrated in Fig. 1 and the values of the A, B and C
parameters and AAD are displayed in Table 2. The maximum devi-
ation between experimental values and those calculated by Eq. (1)
is �0.47% for [Aliquat][N(CN)2] at the lowest temperature. In gen-
eral, for the other three ILs studied the largest deviations are found
for the highest temperatures. The parameter Cwas related by Angell
and Sage [14] to the glass temperature transition, Tg, present in the
ionic liquids, corresponding to a temperature for which viscosity
becomes infinite. Since this work, many authors have measured
Tg, especially for [C4mim][(CF3SO2)2N], for which 9 data sets were
found, while for [C4mim][N(CN)2] and [C2mim][C2SO4] 3 and 5 data
sets were found, respectively, and for comparison, an average value
was calculated. Table SM1 in Supplementary Material, displays the
values encountered, including all references. The values found were
nd [C2mim][C2SO4], as a function of temperature, at P = 0.1 MPa.a

)2] [Aliquat][N(CN)2]
gc/mPa�s

[C2mim][C2OSO3]
gc/mPa�s

1216.47 217.76
848.79 161.03
605.77 121.95
441.46 94.42
327.95 74.55
248.00 59.89
190.58 48.87
148.70 40.43
117.66 33.88
94.36 28.72
76.55 24.60
62.79 21.26
52.06 18.53
43.56 16.28
36.78 14.41
31.31 12.83
26.87 11.49
23.21 10.35
20.19 9.37



Table 2
Correlation parameters A, B and C of Eq. (1) for the viscosity the studied ILs as a function of temperature.

A B C AAD/% Tg

[C4mim][(CF3SO2)2N] 0.16502 763.17 164.67 0.06 185.30a

Water-free 0.16789 757.55 165.35 0.08
[C4mim][N(CN)2] 0.20856 635.10 171.10 0.08 180.58b

Water-free 0.20625 638.51 170.75 0.11
[C2mim][C2SO4] 0.19355 780.22 172.10 0.03 185.95c

Water-free 0.19715 775.08 172.60 0.05
[Aliquat][N(CN)2] 0.03813 1425.4 145.76 0.19 183.21d

a Average of all 9 data sets presented in Table SM1 of Supplementary Material.
b Average of 3 data sets presented in Table SM1 of Supplementary Material.
c Average of 5 data sets presented in Table SM1 of Supplementary Material.
d Reference in Table SM1 of Supplementary Material.
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Tg = 185.30 K for [C4mim][(CF3SO2)2N], Tg = 180.58 K for [C4mim][N
(CN)2], Tg = 185.95 K for [C2mim][C2SO4] and Tg = 183.21 K for [Ali-
quat][N(CN)2], all very close to each other. Since the C parameter is
similar for most of the ILs, some authors take it as constant and
equal to 165.06 K [16,17]. However, if this might be useful for gen-
eralized equations, Table 2 shows that the values of C vary between
145.76 K and 172.10 K for our ILs, values around 10–20 K below the
reported glass temperature. It must be remembered that these
experimental values of the glass temperature are determined by
Differential Scanning Calorimetry or by Thermal Gravimetric Anal-
ysis, and therefore the uncertainty is never smaller than 3 K,
depending on the temperature scanning rates used (see, e.g., in
Table SM1, the standard deviation of the mean for [C2mim]
[C2SO4], 8 K).

The comparison of the present data with literature was based in
the published data registered in the NIST Database ILThermo (v2.0)
[18]. All temperature data refers to ITS-90. This comparison will be
done separated for each ionic liquid. In Supplementary data all
data sets and their sources are described, including Literature
source, Technique, Temperature Range/K, Pressure Range/MPa,
No. of Data Points, Assigned Uncertainty [In the presented tables,
the assigned uncertainty is the claimed by the authors, corrected,
when applicable, to expanded global uncertainty (relative or abso-
lute), at 95% confidence level, (k = 2)], Sample Origin and Water
Content.

For [C4mim][(CF3SO2)2N] forty eight data sets were found, using
capillary tube (Ostwald or Ubbelohde) viscometry, cone and plate
viscometry, concentric cylinders viscometry, falling or rolling
sphere viscometry and moving piston method, with assigned
uncertainties from

Ur (g) = 0.011–0.29, from samples synthesized at authors labo-
ratories or commercial. All the information available is present in
Table SM2, including original references. Fig. 2 compares the vis-
cosity results obtained in this work with the available literature
data, having Eq. (1) as the reference. Data with deviations greater
than ±10% are not shown. This is the case of Huddleston et al.
(2001), using a capillary tube with an assigned uncertainty of
29% and deviations of +37.5%, McFarlane et al. (2005) working with
a cone and plate rheometer with an assigned uncertainty of 6.0%
and deviations between �12% and +16%, Zhang et al. (2007) work-
ing with a concentric cylinder viscosimeter, with an assigned
uncertainty of 2.3% but deviations of �12.7%, and Gelinas et al.
(2016) obtained with a moving piston method, without claimed
uncertainty or sample purity information, and deviations of
�12.8%. It is clear from this figure that most of the data fall
within ± 5% deviations from our equation, exceptions for the data
of Chen et al. (2008), obtained with a concentric cylinder viscome-
ter and assigned uncertainty of 30% and deviations up to �9%, Kak-
inuma et al. (2017), obtained with a concentric cylinder
viscometer, with an assigned uncertainty of 10.4%, and deviations
up to
3

�10%, Yadav et al. (2018), obtained with a falling ball viscome-
ter and assigned uncertainty of 4.4% and deviations up to �8% and
some data points, not systematic, from other authors. Also present
are the data reported in this paper.

These data have different water contents in the samples mea-
sured. Therefore, in order to have a better view of the correct
agreement between the published data, we obtained ‘‘water-free”
viscosity values, following a methodology described by Widegren
and Magee (2007) [7], Santos et al. (2010) [19], Queirós et al.
(2020) [20] and Paredes at al. (2020) [9], following eq (2), valid
for small contents in water:

gwf ¼ gwf 0; Tð Þ ¼ gexp x; Tð Þ � @g
@x

� �
T

x ð2Þ

Here gwf is the ‘‘water free” value of the viscosity of the ionic
liquid, for the molar fraction of water in the ionic liquid, x. The
value of the derivative @g

@x

� �
Twas estimated at each temperature

from the publish data on the viscosity of [C4mim][(CF3SO2)2N] +wa-
ter mixtures, reported by Widegren et al. (2005) [18], Lopes et al.
(2011) [21], Andanson et al. (2016) [22] and Alcalde et al. (2018)
[23], and extrapolated for � = 0, lim

x!0

@g
@x

� �
T . These values are func-

tion of temperature, and were fitted for 283.15–323.15 K to a func-
tion of the type:

lim
x!0

@g
@x

� �
T
¼

Xi¼j

i¼0

ciT
�i ð3Þ

for j = 2 and used to correct all the experimental data with ref-
erence to water content of the samples, including present data.
This function is near zero for temperatures above 330 K and can
be extrapolated without significant error up to 393 K, the highest
temperature measured so far, by Tariq et al. (2011) [13], is repre-
sented in Fig. 3a. As this ionic liquid is not a strong absorbent of
water, the corrections are small, around 0.6% for our data, with
samples with wH2O = 0.00012 (xH2O = 0.00279).

Fig. 4 shows the deviations of the literature ‘‘water-free” data
from our Vogel-Fulcher-Tammann equation (VFT) fit for the
‘‘water-free” values, reported in Table 3. Coefficients of this equa-
tion are also shown in Table 2. Only results with deviations smaller
than 5% are shown. The agreement between the data reported in
Fig. 4 is very satisfactory, being excellent and within mutual uncer-
tainty (~2%) with many sets of data. We can conclude that our data
represents an excellent representation as a function of tempera-
ture of the viscosity of [C4mim][(CF3SO2)2N], in the temperature
range (278.15–373.15) K, with an uncertainty Ur = 0.02.

For [C4mim][N(CN)2] sixteen data sets are available in the liter-
ature, using capillary tube (Ostwald or Ubbelohde) viscometry,
concentric cylinders viscometry and moving piston method, with
assigned uncertainties from Ur (g) = 0.011 to 0.11, from samples
synthesized at authors laboratories or commercial. All the informa-



Fig. 2. Deviations from the available [C4mim][(CF3SO2)2N] viscosity data from Eq. (1). Present data are also shown.

Fig. 3. The function lim
x!0

@g
@x

� �
Tas a function of temperature, in Pa�s, for a) [C4mim]

[(CF3SO2)2N]; b) [C4mim][N(CN)2]; c) [C2mim][C2SO4].
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tion available and the data references are present in Table SM3.
Fig. 5 compares the viscosity results obtained in this work with
the available literature data, having Eq. (1) as the reference. Data
with deviations greater than ±15% are not shown. This is the case
of Fendt et al. (2011), using a concentric cylinders viscometer, with
an assigned uncertainty of 6.5% and deviations up to + 61%, and
some data points of Sanchez et al. (2009), obtained with a capillary
tube, with an assigned uncertainty of 2.7% and deviations up to
�32.8%. It is clear from this figure that data of Kakinuma et al.
(2017), obtained with a moving piston method, with an assigned
uncertainty of 5.4% has a systematic deviation between �10 and
�12% for temperatures up to 340 K, then decreasing to �4% at
353 K, and the remaining points of Sanchez et al. (2009) have a
totally different temperature coefficient. Fig. 4 also displays the
data presented in this paper, at the base line.

As the data have also different water contents from our sam-
ples, wH2O = 0.00011 (xH2O = 0.00253), the same methodology
described above was applied to obtain viscosity ‘‘water-free” val-
ues. Two sets of viscosity of [C4mim][N(CN)2] + water mixtures
were found, by Carvalho et al. (2010) [16] and Havlov and Dohnal
(2018) [24]. However, these last data cover compositions very dis-
tant from infinite dilution, so where not used in the extrapolation
to zero water content. Data of Carvalho et al. (2013) [16] was
extrapolated for � = 0, lim

x!0

@g
@x

� �
T and then fitted to a function given

by Eq. (3), for j = 3. The variation of this function with temperature
is shown in Fig. 3b. Eq. (2) was then used to correct all the exper-
imental data with reference to water content of the samples,
including present data. Deviations from our Vogel-Fulcher-
Tammann equation (VFT) fit for the ‘‘water-free” values, reported
in Table 2, are shown in Fig. 6. Coefficients of this equation are also
shown in Table 2. Only results with deviations smaller than 5% are
shown. The magnitude of the corrections is very small, around 0.2%
for our data at the lowest temperature.

Several sets deviate from our data by more than the mutual
uncertainty, namely at temperatures below 300 K, either positive
like data of Carvalho et al. (2010) [16] or negative, like data of
Engelmann et al. (2012) [25], Calado et al. (2015) [26] and Almeida
et al. (2016) [27]. Above 300 K all the data agrees with our data
within their mutual uncertainties. No reason was detected for
these discrepancies, as the purity and water content of the samples
used are similar to ours. However, this might be possibly attributed
to problems in temperature control in the measuring cells at the



Fig. 4. Deviations from the available [C4mim][(CF3SO2)2N] ‘‘water-free” viscosity data from Eq. (1). Present data are also shown. The dashed lines represent the value of our
data uncertainty, Ur = 0.02.

Table 3
Water-free viscosities, gwf, for [C4mim][(CF3SO2)2N], [C4mim][N(CN)2], [Aliquat][N
(CN)2] and [C2mim][C2SO4], as a function of temperature, at P = 0.1 MPa.a Values at
298.15 where used in Eq. (4).

T/Kb [C4mim][(CF3SO2)2N]
gc/mPa�s

[C4mim][N(CN)2]
gc/mPa�s

[C2mim][C2SO4]
gc/mPa�s

283.15 104.12 60.57 218.56
288.15 80.20 47.49 161.56
293.15 63.03 37.98 122.31
298.15d 50.45 30.95 94.67
303.15 41.02 25.60 74.72
308.15 33.84 21.49 60.01
313.15 28.28 18.25 48.97
318.15 23.91 15.69 40.51
323.15 20.42 13.62 33.95
328.15 17.62 11.92 28.78
333.15 15.32 10.53 24.65
338.15 13.45 9.37 21.30
343.15 11.89 8.39 18.56
348.15 10.58 7.56 16.30
353.15 9.47 6.84 14.42
358.15 8.53 6.23 12.84
363.15 7.73 5.70 11.51
368.15 7.04 5.23 10.38
373.15 6.45 4.83 9.43

a u (P) = 1 kPa.
b u (T) = 0.02 K.
c Ur(g) = 0.02.
d Recommended values at 298.15 in bold.
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lower temperatures. The ‘‘water-free” values for the viscosity of
[C4mim][N(CN)2] are presented in Table 3. We can conclude that
our data represents an excellent representation as a function of
temperature of the viscosity of [C4mim][N(CN)2], in the tempera-
ture range (278.15 to 373.15) K, with an uncertainty Ur = 0.02.

For [C2mim][C2SO4] twenty six data sets are available in the lit-
erature, using capillary tube (Ostwald or Ubbelohde) viscometry,
concentric cylinders viscometry, rolling sphere viscometry, vibrat-
5

ing wire viscometry, surface light scattering and moving piston
method, with assigned uncertainties from Ur (g) = 0.018 to 0.17,
from samples synthesized at authors laboratories or commercial.
All the information available and the data references are present
in Table S3. Fig. 7 compares the viscosity results obtained in this
work with the available literature data, having Eq. (1) as the refer-
ence. Data with deviations outside the interval +10% to �6% are not
shown. This is the case of Majhi et al. (2016) [28], using a cone and
plate viscometer, with an assigned uncertainty of 2.0%, and devia-
tions up to �31%, probably to deficient operation of the rheometer.

This figure shows that several data sets have positive deviations
in relation to our data, as high as + 8% at the lower temperatures.
This might be an artifact for temperatures below 283 K, the lower
limit of the VFT correlation, extrapolated down to 255 K. However,
some data have negative deviations, and other with excellent
agreement with our data, to within ± 2%, cases of Pereiro et al.
(2012) [29], Fernandez et al. (2008) [30], Pinto et al. (2014) [31]
and Anwar and Riyazuddeen (2017) [32], and some data, for tem-
peratures 310 K of other authors.

All data reported has water contents which differ from our sam-
ples, wH2O = 0.00010 (xH2O = 0.00131). The same methodology
described above was applied to obtain viscosity ‘‘water-free” val-
ues. Five sets of data on the viscosity of [C2mim][C2SO4] + water
mixtures were obtained from literature, namely those of Gomez
et al. (2006) [33], Rodriguez and Brennecke (2006) [34], Torrecilla
et al. (2008) [35], Bhattacharjee et al. (2012) [36] and Krannich
et al. (2016) [37], which cover compositions for low water content.
These data was extrapolated for x = 0, lim

x!0

@g
@x

� �
T and fitted to a func-

tion given by Eq. (3), for j = 4, for 278.15 < T (K) < 363.15. The vari-
ation of the obtained function is shown in Fig. 3c, and it is clear that
its value is bigger than for the previous ionic liquids, a factor of five
or more, especially at the lower temperatures. The ‘‘water-free”
values for the viscosity of [C2mim][C2SO4] are also presented in
Table 3.



Fig. 5. Deviations from the available [C4mim][N(CN)2] viscosity data from Eq. (1). Present data are also shown.

Fig. 6. Deviations from the available [C4mim][N(CN)2] ‘‘water-free” viscosity data from Eq. (1). Present data is also shown. The dashed lines represent the value of our data
uncertainty, Ur = 0.02.
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Deviations from our Vogel-Fulcher-Tammann equation (VFT)
fit for the ‘‘water-free” values, reported in Table 2, are shown
in Fig. 8. Coefficients of this equation are also shown in this
table. Only results with deviations � 6% and +10% are shown.
The magnitude of the corrections is more significant, around
0.4% for our data at the lowest temperature. It is clear from this
figure that the comparison is different, for the data that agrees
with ours to within 2%, twice our expanded relative uncertainty.
This is the case for most of the points of Fernandez et al. (2008)
[30], Rodriguez and Brennecke (2006) [34], high temperature
points of Schmidt et al. (2012) [38], Pinto et al. (2014) [31] up
to 338 K, Anwar and Riyazuddeen (2017) [32] and Zivkovic
et al. (2018) [39]. Our data represents an excellent representa-
tion as a function of temperature of the viscosity of [C2mim]
[C2SO4], in the temperature range (278.15 to 373.15) K, with
an uncertainty Ur = 0.02.
6

For the viscosity of [Aliquat][N(CN)2], only our data is available
in the literature. Fig. 9 shows the deviations of our data to the VFT
fit, Eq. (1), which coefficients are also displayed in Table 2. As
already explained in a recent publication by some of the authors
[9], Vogel-Tammann-Fulcher is not the best form to analyze the
dependence of viscosity on temperature of ionic liquids, although
it is claimed by some authors, as for example Angell and Share
(1970) [14] and Navia et al. (2005) [15] among others, that inter-
pret the parameter C as a glass transition temperature, it has been
very difficult to correlate the value found for each ionic liquid with
its molecular structure. All the ionic liquids studied here present a
deviation plot sigmoid shaped as that shown in Fig. 9 for [Aliquat]
[N(CN)2].

An equation recommended for the variation of standard refer-
ence data by IUPAC [40,41] and for the viscosity of water by IAPWS
[42,43] represents much better the curvature of the experimental



Fig. 7. Deviations from the available [C2mim][C2SO4] viscosity data from Eq. (1). Present data are also shown.

Fig. 8. Deviations from the available [C2mim][C2SO4] ‘‘water-free” viscosity data from Eq. (1). Present data is also shown. The dashed lines represent the value of our data
uncertainty, Ur = 0.02.
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data dependence of temperature and was applied recently to the
viscosity, electrical conductivity and ion self-diffusion coefficient
of [C6mim][(CF3SO2)2N], the IUPAC reference ionic liquid [8], to
define reference data and reference equations for these properties
[9], and to the viscosity of [C4mim][(C2F5)3PF3], in comparison with
several other equations, including VFT [44]. This equation was
adopted by IUPAC and IAPSW, and has the form:

lng� ¼
Xi¼j

i¼0

Ai T
�ð Þ�i ð4Þ

where g* and T* are the dimensionless variables defined as:

T� ¼ T Kð Þ=298:15K
g� ¼ g Tð Þ=g 298:15Kð Þ ð5Þ
7

The number of coefficients Ai was optimized for each ionic liq-
uid, with j = 4 for all. Their values, standard deviations and AAD/%
of each fit is given in Table 4. Values of g (298.15 K) were taken
from our water-free experimental data, for each fluid, and are high-
lighted in Table 3. It is clear that the values of AAD are much smal-
ler than in the VFT equation (Table 2) for all the four ionic liquids.
Fig. 10 shows the deviations of the water-free experimental data
from Eq. (4), as a function of temperature. Deviations are random
(not systematic and no trend) and do not amount by more than
0.06%, except for some points for [C2mim][C2SO4], that can reach
0.1%.

As expected, the three imidazolium-based ILs measured in this
work display much lower viscosity values than the [Aliquat][N
(CN)2], which is clearly linked to the large alkyl chains (C8 and



Fig. 9. Deviations of the experimental points for [Aliquat][N(CN)2] from the VFT fit.
Dashed lines represent the boundaries of the AAD value. Also shown deviations
using IUPAC Eq. (4).

Fig. 10. Deviations of the water-free experimental points from IUPAC equation, Eq.
(4), for all ionic liquids studied, as a function of temperature.
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C10) of this IL, a five-component mixture of methylhexyldiocty-
lammonium (0.8%), methyltrioctylammonium (29.8%), methyl-
dioctyldecylammonium (43.6%), methyloctyldidecylammonium
(21.9%), and methyltridecylammonium (3.8%) [1]. The increase in
the viscosity with the increase of the alkyl side-chains length of
the cation in the imidazolium-based ionic liquids is well docu-
mented. Two main explanations have been forward for this fact:
the increase of van der Waals interactions between alkyl side-
chains of the cations in the homologous series [45] and the forma-
tion of nano-structural domains permeated by charged/polar net-
work for ionic liquids with alkyl chain length longer than C6 [46].
On the other hand, the increase of the length of the alkyl sidechains
leads to a larger hydrodynamic radius and thus a smaller mobility,
less fluidity and higher viscosity.

Within the imidazolium family the viscosity increases in the
following order of the anions [N(CN)2] < [(CF3SO2)2N] < [C2SO4],
for the same cation. Ionic liquids with dicyanamide ion, [N
(CN)2]�, are known to be among the ILs with the smallest viscosi-
ties, as with [SCN]� and [C(CN)3]� ions [44,47], having interesting
properties for industrial applications, namely as heat transfer fluids
[48]. Viscosities of almost all members of the 1-alkyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)amide family
were reported in the temperature range between 278.15 and
393.15 K, by Tariq et al. [13] concluded that for short chain ILs
the formation of nano-domains is not possible as the non-polar
part is not large enough. The formation of such nano-segregated
domains can also contribute to the increase in viscosity. The bis(tri
fluoromethanesulfonylimide) anion, [(CF3SO2)2N], a bulkier anion
than the cyano-ions, creates less mobility to the ionic liquid and
therefore contributes to a higher viscosity. For ethylsulfate anion,
[C2SO4], viscosity increases due to sulfur atom (greater anion size)
and to the possibility of forming clusters/aggregates between the
anions, which restricts the mobility and the self-diffusion coeffi-
cient of the ion, therefore increasing the viscosity. So does the pos-
sibility of stronger molecular interactions due to hydrogen bonding
[49].
Table 4
Correlation parameters Ai of Eq. (4) for the water-free viscosity of the studied ILs as a fun

Ionic Liquid A0 A1 A2

[C4mim][(CF3SO2)2N] 11.70207 ± 0.94929 �74.38819 ± 4.13722 130.2
[C4mim][N(CN)2] �9.00119 ± 1.31981 12.84325 ± 5.75202 �3.4
[C2mim][C2SO4] 13.54652 ± 4.30112 �87.28607 ± 18.74531 156.8
[Aliquat][N(CN)2]a �14.93634 ± 0.84078 32.04042 ± 3.66432 �45.5

a Raw data.
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4. Conclusions

The viscosity of four in-house-made ionic liquids (ILs), [C4mim]
[(CF3SO2)2N], [C4mim][N(CN)2], [C2mim][C2H5SO4] and [Aliquat][N
(CN)2], was measured in the temperature range 283.15 K-
373.15 K, at P = 0.1 MPa, ranging from 4.83 to 1216 mPa�s. Data
for the viscosity of [Aliquat][N(CN)2], a five-component mixture
of methylhexyldioctylammonium (0.8%), methyltrioctylammo-
nium (29.8%), methyldioctyldecylammonium (43.6%), methy-
loctyldidecylammonium (21.9%), and methyltridecylammonium
(3.8%) is presented for the first time. The three imidazolium based
ILs measured in this work display much lower viscosity values than
the [Aliquat][N(CN)2], which is clearly linked to the large alkyl
chains (C8 and C10) in the nitrogen atom of this IL.

Data was compared with literature, using water-free values, by
correcting the estimated water content of all the samples studied,
by us and available in the literature. The Vogel-Tammann-Fulcher
was found not to be the best form to correlate the dependence of
viscosity on temperature of ionic liquids, the experimental data
having been fitted to an equation developed by IUPAC and IAPWS,
with AAD smaller than 0.04%.

The viscosity increases with the increase of the alkyl side-chains
length of the cation in the imidazolium-based ionic liquids, possi-
bly due to the increase of van der Waals interactions between alkyl
side-chains of the cations in the homologous series and to the for-
mation of nano-structural domains permeated by charged/polar
network for ionic liquids with alkyl chain length longer than C6.
Increase of the alkyl sidechains leads to a larger hydrodynamic
radius and thus a smaller mobility, less fluidity and higher viscos-
ity. Within the imidazolium family the viscosity increases in the
following order of the anions [N(CN)2] < [(CF3SO2)2N] < [C2SO4],
for the same cation. For the ethylsulfate anion, [C2SO4], viscosity
increases due to sulfur atom (greater anion size) and to the possi-
bility of forming clusters/aggregates between the anions, which
restricts the mobility and the self-diffusion coefficient of the ion,
ction of temperature.

A3 A4 AAD/%

226 ± 6.7435 �96.87852 ± 4.87219 29.34182 ± 1.31655 0.0088
9612 ± 9.37561 �7.28808 ± 6.77386 6.94195 ± 1.83041 0.0137
101 ± 0.5542 �120.6000 ± 2.07535 37.52933 ± 5.96515 0.0471
1776 ± 5.97272 36.37641 ± 4.31527 �7.96274 ± 1.16606 0.0006
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therefore increasing the viscosity. Hydrogen bonding and stronger
interactions also supports this belief.
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