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Abstract 
Hybrid perovskite-silicon tandem solar cell architectures are currently considered as one of 
the more promising architectures for the widespread deployment of devices employing 2 
junctions. These have the potential to go beyond the single junction Shockley-Queisser limit 
(ca. 33%). In fact, lab scale devices have already surpassed 29% efficiencies[1], already 
displacing the current record efficiencies for single junction silicon and perovskite devices. 
 
A range of strategies have been reported to interconnect the bottom silicon sub-cell with the 
top perovskite sub-cell [2, 3]. Forming a tunnel junction between the sub-cells is one such 
strategy. The connecting intermediate layer must efficiently transport one type of carrier 
from each sub-cell, whilst hindering the other carrier type. It must have a high vertical 
conductivity, but low lateral conductivity to prevent carrier recombination. Additionally, the 
optical coupling between the two sub-cells is critical to minimise parasitic absorption and 
unwanted reflectivity. 
 
Here we report on the current status of our approach[4] at forming tunnel junctions directly 
on the silicon sub-cell using GILD[5]. We believe that this approach is scalable, cost-effective, 
and simple to integrate into manufacturing lines, unlike tunnel junction formation by ion 
implantation [6]. 
 
In short, our doping system consists of an Nd:YAG ns pulsed 1064nm laser coupled to a high 
speed galvano head, which permits the rastering of the laser spot over areas up to 10x10 
cm2. The wafer samples are held in an argon filled chamber at atmospheric pressure and 
saturated with phosphorus(V) oxychloride (POCl3). The laser pulse melts a thin (hundreds of 
nm) layer which quickly incorporates the phosphorus adsorbed at the surface of the wafer 
before solidifying. 
 
To form n++/p++ tunnelling interfaces we used our system to n++ dope a thin layer on p++ 
emitters that were already formed on n-type silicon wafers. Laser pulse energy, spot spacing 



and pattern, and number of passages are varied and their impact on phosphorus n++ doping 
profiles is analysed by secondary-ion beam microscopy. Because the surface undergoes 
melting-solidification cycles, the resultant surface topology is analysed by atomic force 
microscopy (AFM) and scanning electron microscopy (SEM). 
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1.1 Perovskite on silicon tandem solar cells

Device type Bandgaps (eV) AM1.5G efficiency (%)

Single junction 1.34 33.68

Double junction 0.94 and 1.73 46.06

Tripe junction 0.93, 1.40eV and 2.05 51.94

• Theoretical efficiencies of >45% are possible for a combinational range of top 
and bottom cell bandgaps of 0.9 to 1.1 eV and 1.55 to 1.75eV respectively.

• Practical efficiencies are estimated to be at 35%

Bremner et al. Prog. Photovolt: Res. Appl. 2008; 16:225–233

• Why tandem devices?
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1.1 Perovskite on silicon tandem solar cells

• Tandem devices require an electrical connection between top and bottom cell, so that 
electrons and holes can be recycled tandem photon absorption.

• The recombination junction allows holes and electrons to recombine at minimal energy loss.
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1.1 Perovskite on silicon tandem solar cells

• Current flow is determined by placement of selective contacts.
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This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO

1.1 Perovskite on silicon tandem solar cells
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This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO

1.1 Perovskite on silicon tandem solar cells
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1.1 Perovskite on silicon tandem solar cells

• Graph shows all reported perovskite on silicon device 
efficiencies and areas in a 2-terminal monolithic configuration

Data labels represent cell area
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Mailoa (2015) A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction.
Appl Phys Lett 106:121105. 

• 13.7% efficiency – homojunction c-Si subcell

• Nanocrystalline Si tunnel junction

• Very poor performance due to lack of optimization of several layers (6 years is a long time in this area).
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Albrecht (2016) Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature.
Energy Environ Sci 9:81–88.

• 18,1% efficiency – heterojunction c-Si subcell

• Amorphous silicon layer requires low temperature processing of top perovskite subcell. ITO layer causes parasitic light 
absorption.
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Werner (2016) Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2.
J Phys Chem Lett 7:161–166.

• 19% efficiency – heterojunction c-Si subcell

• Amorphous silicon layer requires low temperature processing of top perovskite subcell.

• IZO layer causes parasitic light absorption.
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Wu (2017) Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency.
Energy Environ Sci 10:2472–2479.

• 22% efficiency, c-Si homojunction

• Configuration permits high temperature processing on top of c-Si bottom subcell

• ITO layer causes parasitic light absorption and metal grid reduces illumined area.
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Bush (2017) 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells With Improved Stability.
Nat Energy 2:1–7.

• 23.6% efficiency, c-Si heterojunction

• Amorphous silicon layer requires low temperature processing of top perovskite subcell. ITO layer causes 
parasitic light absorption.
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Sahli (2018) Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon 
Recombination Junction.
Adv Energy Mater 8:1–8. 

• 25.2% efficiency, c-Si heterojunction

• Amorphous silicon layer requires low temperature processing of top perovskite subcell.

• ITO Free – improved optics. Employs a tunnelling junction
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Sahli (2018) Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. 
Nat Mater 17:820–826.

• 25.2% efficiency, c-Si heterojunction

• Amorphous silicon layer requires low temperature processing of top perovskite subcell.

• ITO Free – improved optics. Employs a tunnelling junction on a textured surface!
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Zheng (2019) Large-area 23%-efficient monolithic perovskite/homojunction-silicon tandem solar cell with enhanced uv
stability using down-shifting material.
ACS Energy Lett 4:2623–2631.

See also: Zheng (2018) Energy Environ Sci 11:2432–2443 & Zheng (2018) ACS Energy Lett 3:2299–2300.

• 23% efficiency – homojunction c-Si subcell employing current state of the art PERC technology (passivate rear contact)

• 16 cm2 large area (21.8%, Zheng (2018) ACS Energy Lett 3:2299–2300)

• FREE of a recombination or tunnel junction layer – perovskite electron selective contact is deposited directly onto silcon
hole selective contact

• Compatible with high temperature processing for perovskite top subcell.
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied
• Nogay (2019) 25.1%-Efficient monolithic perovskite/silicon tandem solar cell based on a p-type monocrystalline textured 

silicon wafer and high-temperature passivating contacts.
ACS Energy Lett 4:844–845.

• 25.1% efficiency – c-Si subcell employing cost effective p-type wafers and thermally stable passivating contacts 
(800deg.C)

• Compatible with high temperature processing for perovskite top subcell.

• SiCx by PECVD then heavily doped with 
phosphorous to form nc-SiCx(n).

• nc-Si(p+):H by PECVD to form the 
recombination junction
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1.1 Perovskite on silicon tandem solar cells

• Strategies for interconnecting the top and bottom subcells are varied

• Al-Ashouri (2020) Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. 
Science (80- ) 370:1300–1309. 

• RECORD 29.15% efficiency – Helmholtz Zentrum Berlin

• Still employs ITO recombination layer.

• SiOx optical interlayer used to enhance IR transmittance to bottom cell and hence boost device performance.

• New Self Assembled Monolayer developed as a hole selective contact for the Perovskite.
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1.1 Perovskite on silicon tandem solar cells

• Take home messages are for recombination junction:

• TCOs 

• parasitic light absorption

• high lateral conductivity, shunting for large areas

• Tunnelling diode

• a-Si based limit top cell processing temperatures to below 200 deg.C

• PECVD is slow, so can be problematic for upscaling.

• An excellent recent review:
De Bastiani (2020) Recombination junctions for efficient monolithic perovskite-based tandem solar cells: Physical principles, 
properties, processing and prospects.
Mater Horizons 7:2791–2809. https://doi.org/10.1039/d0mh00990c
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1.2 Esaki Tunnelling Diode

• A tunnelling Esaki diode requires

• highly (degenerately) doped layers

• with abrupt changes in doping profiles

• Conduction and valence bands become energetically aligned

• Band bending is such that the physical distance between layers is sufficiently 
small to permit electrons and holes to tunnel and recombine.
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1.3 Gas Immersion Laser Doping (GILD)

• Gild Process

1. Substrate is immersed in atmosphere containing dopant source

2. Pulsed laser melts a thin surface layer

3. Dopant adsorbed at sample surface dissolves into melt and rapidly diffuses within melt region

4. Melt recrystallizes

5. Dopant adsorption

6. Laser fires further along
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1.3 Gas Immersion Laser Doping (GILD)

• Doping profile control
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1.3 Gas Immersion Laser Doping (GILD)

• Tunnel junctions should be possible because:

• High dopant incorporation (above solubility limit)

• Molten zone and short time scales (ns) results in abrupt dopant concentrations

• Examples of reports of highly doped silicon by GILD

• Carey (1989) In-situ doping of silicon using the gas immersion laser doping (GILD) process.
Appl Surf Sci 43:325–332.

• Kerrien (2002) Ultra-shallow, super-doped and box-like junctions realized by laser-induced doping.
Appl Surf Sci 186:45–51.
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2 Phosphorus GILD on c-Si wafers)

• Goal: Phosphorous Gas Immersion Laser Doping of p+ silicon emitters

• to form n++/p+ tunnelling interface

• on large surface areas – hence scalable

• Similar approach taken by:
• Bellanger (2018) Silicon Tunnel Junctions Produced by Ion Implantation and Diffusion Processes for Tandem Solar Cells.

IEEE J Photovoltaics 8:1436–1442.
• Fave (2017) Fabrication of Si tunnel diodes for c-Si based tandem solar cells using proximity rapid thermal diffusion.

Energy Procedia 124:577–583.

• Was successful, but employed Ion implantation or sacrificial wafers…
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2 Phosphorus GILD on c-Si wafers)

• Apparatus setup and approach

• Start with c-Si wafer with boron doped emitter

• Dope emitter with Phosphorus using GILD

• Dopant source is POCl3

• Industry standard P source

• Safe (unlike Phosphine PH3)

• Cost effective

• 1064nm ns pulsed laser coupled to highspeed x-y galvano mirror head
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2.1 Overview of our past work

• Approach

• GILD on p type c-Si wafer (low doping)

• Work presented at:

Gaspar (2020) Laser Phosphorous Doping at High Scan Rates for Crystalline Junction Formation in Silicon/Perovskite Tandem Solar Cells.
The 30th International Photovoltaic Conference Science and Engineering Conference (PVSEC-30) & Global Photovoltaic Conference 
(GPVC 2020). Jeju, Republic of Korea

Gaspar (2020) Sequential silicon surface melting and atmospheric pressure phosphorus doping for crystalline tunnel junction formation 
in silicon/perovskite tandem solar cells.
In: 37th EU PVSEC 2020, European PV Solar Energy Conference and Exhibition, Lisbon, Portugal
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2.1 Overview of our past work Scanning Electron Microscopy (SEM)
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2.1 Overview of our past work
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2.1 Overview of our past work Secondary Ion Mass Spectrometry (SIMS)

Varied number of passes (n)
d = 2 m

Comparison laser spot spacing: d = 1  m vs d = 2 m
Varied number of passes (n)

Laser pulse energy EP = 40 J

Laser line spacing D = 10 m
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2.2 Current results Scanning Electron Microscopy (SEM)

d = 2 µm; n = 1x

p vs p++/p+ wafers

Magnification 4000x

p wafer p++/p+ wafer
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Scanning Electron Microscopy (SEM)
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Scanning Electron Microscopy (SEM)
d = 1 µm d = 2 µm d = 3 µm

n
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x

n
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Magnification 4000x

2.2 Current results
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Processing parameters: d = 2 µm; n = 1x

Atomic Force Microscopy (AFM)

Scan direction

2.2 Current results
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d = 1 µm; n = 1x

RMS = 4.7 nm

d = 2 µm; n = 1x

RMS = 7.1 nm

1 µm1 µm

d = 3 µm; n = 1x

No clear interaction was verified!

50 nm

- 50 nm

Unprocessed samples with no 

significant roughness!

RMS = 0.5 nm

Atomic Force Microscopy (AFM)2.2 Current results
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d = 1 µm; n = 1x

RMS = 4.7 nm
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RMS = 7.1 nm

1 µm1 µm

Unless rastered with a larger number of scans
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1 µm

RMS = 6.0 nm

50 nm
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Atomic Force Microscopy (AFM)2.2 Current results
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d = 1 µm; n = 1x 

RMS = 4.7 nm

1 µm
50 nm

- 50 nm

d = 1 µm; n = 9x

RMS = 6.8 nm

1 µm

RMS = 6.8 nm

And if increasing the number of scans

Atomic Force Microscopy (AFM)2.2 Current results
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Secondary Ion Mass Spectrometry (SIMS)2.2 Current results

Laser pulse energy EP = 40 J

Laser line spacing D = 10 m

d = 1 m d = 2 m d = 3 m

Observation and modelling of Boron pile-up in c-Si laser doping, due to Boron segregation coefficient >1 
Lill (2017) Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon. Materials (Basel) 10:189. 
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Conclusions

• Laser interaction with emitter (p++/p+ wafer) is weaker than on 
p-type wafer

• Morphology compared by SEM

• Boron pile-up observed as reported in literature

• Laser spot overlap between pulses is fundamental to

• Surface film morphology, and

• And doping profile

• Future questions

• Is it possible to melt the c-Si and still maintain a flat surface?

• What will the doping profile of P be on the emitter (p++/p+ 
wafer)?

?
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De Bastiani (2020) Recombination junctions for efficient monolithic perovskite-based tandem 
solar cells: Physical principles, properties, processing and prospects. Mater Horizons 7:2791–
2809.

TCO has high lateral conductivity which 
imposes constraints due to shunting.

TCO causes parasitic absorption due to 
free carriers – free carrier absorption-FCA 
(which can also lead to some unwanted 
device heating)

nc-Si tunnel junctions are slow to grow.

This is where laser processing can come it.



Gas Immersion Laser Doping of silicon wafers: Large area n++ phosphorus doping on p++ emitters by laser spot rastering @ E-MRS Spring Meeting - May 31st to June 1st 52

e-

h+

p++ n++



Gas Immersion Laser Doping of silicon wafers: Large area n++ phosphorus doping on p++ emitters by laser spot rastering @ E-MRS Spring Meeting - May 31st to June 1st 53

Voltage

C
u
rr

en
t Negative resistance 

region

VvalleyVpeak

Ipeak

Ivalley

Ohmic 
region



Gas Immersion Laser Doping of silicon wafers: Large area n++ phosphorus doping on p++ emitters by laser spot rastering @ E-MRS Spring Meeting - May 31st to June 1st 54

1. immersion 2. Laser pulse & 
melting

3. Dopant 
diffusion in melt

4. recrystallization 5. Dopant adsorption 6. Laser pulse +(x,y)
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Laser pulse & 
melting

Dopant diffusion 
in melt

Laser pulse & 
melting

Dopant diffusion 
in melt

recrystallization
Dopant 

adsorption
Laser pulse & 

melting

Dopant diffusion 
in melt

recrystallization

recrystallization

Sequential pulsing = higher doping

Higher pulse energy = deeper melt = deeper doping
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c-Si (n or p type)

p+ emitter (B doped)
n++ P by GILD 
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Tunnel junction
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n++ P by GILD

c-Si (n or p type)
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c-Si (n or p type)

p+ emitter (B doped)
Tunnel junction

Start with standard wafer 
with a p+ emitter

n++ dope the emitter
To form n++/p+ tunnel 

junction
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1.1 Perovskite on silicon tandem solar cells
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• Current flow is determined by placement of selective contacts.

N-I-P configuration - n layer is 
deposited first onto substrate
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