
Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

Improving information system design: Using UML and axiomatic design☆

Luís Caviquea,⁎, Mariana Caviqueb, Armando Mendesc, Miguel Caviqued

a Universidade Aberta and LASIGE-FCUL, Portugal
b Universidade Europeia and ISCTE-UL, Portugal
c Universidade Açores and LIACC, Portugal
d Escola Naval, Portugal

a r t i c l e i n f o

Article history:
Received 11 June 2021
Received in revised form 26 September 2021
Accepted 28 October 2021
Available online xxxx

Keywords:
Enterprise architecture
Organization alignment
UML
CRUD matrix
Axiomatic Design

a b s t r a c t

A unified view of the Information System (IS) design is essential for dealing with complexity. However, the
literature proposes many denominations, depending on the layer, methodology, framework, or tool. This
multitude of approaches does not allow a holistic view of the system. Besides, in Information Systems, the
search for good practices in design is still a relevant issue. A subset of essential Unified Modeling Language
(UML) diagrams is chosen to create a broad view of the IS. CRUD matrix is one of the preferred approaches
to articulate the sub-systems of applications and data. Axiomatic Design (AD) provides rules for the im
provement of the IS design. This work presents a method to create object-oriented elements based on the
CRUD matrix aligned with the business strategy. An integrated student-based case study on logistics is
provided. In the discussion, a new IS architect role is proposed supported by the CRUD/AD method.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Information Systems (IS) are an input/output mechanism that
collects data, store it, and distribute information. However, new
legislation, new entities, and new interactions create challenges in
information management. The alignment of business strategy with
technology is crucial. The alignment asks of the information tech
nology (IT) process to achieve business objectives in any business
organization.

Software development is far from having a genuine impact on
organizations. The Standish Group International (2010)) says 64% of
software features are rarely or never used. Besides, the cost of poor
software quality in 2018 in the USA is two trillion dollars (Krasner,
2021). This value includes unsuccessful software projects, poor
quality in legacy systems, and operational software failures. There
fore, a better-quality software design is needed.

Despite the high number of methodologies (Van-Bon and
Verheijen, 2006) in Information Systems, the search for good prac
tices in design is still a relevant issue. What a good design is, is still a
subject of controversy in IS.

UML (Unified Modeling Language) (Fowler, 2003) is a powerful
toolbox that facilitates systems analysis and is an essential vehicle
for design quality improvement. The use of UML iteratively in ana
lysis and design allows the fulfillment of the system requirements
with object-oriented design and relational databases models.

The bibliography on UML tools is vast, and it is presented at
different levels and formats.

Despite that, the UML bibliography gives a disconnected view of
the systems, as each chapter refers to use-case diagrams, class dia
grams, activity diagrams, state diagrams, sequence diagrams, and
physical diagrams. UML joined a set of diagrams of different authors
without merging them. Each UML diagram corresponds to a partial
view of the system. As a result, UML is usually presented in frag
ments in a poorly unified vision.

Most design methodologies are too detailed and allow incon
sistency in process descriptions instead of providing a global over
view. Enterprise Architecture (EA) (Lankhorst, 2013) promises an
integrated approach to deal with complexity. EA goes beyond the
symbolic models, such as UML diagrams, and achieves more co
herent and meaningful tools, the so-called semantic models.

Returning to the origins, BSP (Business Systems Planning) (IBM,
1978) presents four essential elements for Information Systems
Planning, coined as the Iron Cross: actors, applications, data, and
technological systems (Rocha and Freixo, 2015). This work demon
strates that they can create a unified IS view using a subset of es
sential UML diagrams.

https://doi.org/10.1016/j.compind.2021.103569
0166-3615/© 2021 Elsevier B.V. All rights reserved.

☆ The authors gratefully acknowledge the support of WorldCIST 2021 conference.

]]]]
]]]]]]

⁎ Corresponding author.
E-mail addresses: luis.cavique@uab.pt (L. Cavique),

mariana.cavique@universidadeeuropeia.pt (M. Cavique),
armando.b.mendes@uac.pt (A. Mendes), cavique.santos@marinha.pt (M. Cavique).

Computers in Industry 135 (2021) 103569

http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
https://doi.org/10.1016/j.compind.2021.103569
https://doi.org/10.1016/j.compind.2021.103569
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2021.103569&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2021.103569&domain=pdf
mailto:luis.cavique@uab.pt
mailto:mariana.cavique@universidadeeuropeia.pt
mailto:armando.b.mendes@uac.pt
mailto:cavique.santos@marinha.pt
https://doi.org/10.1016/j.compind.2021.103569

This document defines an Enterprise Architecture perspective by
creating vertical and horizontal alignments to ensure consistency. In
search of a unified view of the system, UML tools links with the CRUD
matrix, the acronym of < create, read, update, delete > (Martin, 1983).

Axiomatic Design (AD) is a theoretical structure to achieve a good
design. AD represents the design using matrices from customer needs
to process variables. The output of Axiomatic Design is a system
composed of a set of loosely coupled modules. For a thorough ex
planation see Suh (1990, 1995, 2001, 2005). AD is a comprehensive,
concise, and consistent theory that provides insight into the IS design.

1.1. Objective

EA aims for a high-level view of the system. Some methodologies
use the intricate concepts of views, and new languages that evolve
into more specific fields, increasing the lexical complexity and losing
the necessary simplicity of the architecture. However, most scientific
literature proposes solutions with many synonyms depending on the
layer, methodology, framework, or tool to answer these challenges.
The objective is to create a holistic view of the EA, mainly by im
proving the Information System design using the minimum jargon.

1.2. Contribution

This document extends the work that integrates UML diagrams
and CRUD matrix to align information systems (Cavique et al., 2021).
It merges another work on Axiomatic Design to improve the design
in object-oriented diagrams (Cavique and Cavique, 2021). The con
tribution of this work is the proposal of the CRUD/AD method. In this
work, by CRUD/AD matrix, we mean a CRUD matrix that ensures the
axioms of AD. The novelty of this document is the articulation of
UML diagrams, CRUD matrix, and Axiomatic Design to find what the
good practices in Information System design are.

1.3. Organization

The remaining of the paper is organized as follows. Section 2
reports the background information. Section 3 presents the pro
posed model with a running student-based case study on the lo
gistics of Covid-19 vaccines. Section 4 reports the discussion, and
finally, in Section 5, conclusions are drawn.

2. Background information

This section presents the concept of Enterprise Architecture. Previous
works of the authors integrated the CRUD matrix with UML. Moreover,
this section shows an approach on how to align architectures in EA. The
Axiomatic Design theory is introduced to establish the rules for making
good designs. In the final sub-section, Axiomatic Design is applied to re-
design the CRUD matrix using an object-oriented approach.

2.1. Enterprise architecture

EA is the current approach to long-term Planning for Information
Systems. EA provides an appropriate context to business goals, in
tegration between information systems, and better utilization of
information technology.

John Zachman introduces the first enterprise architecture fra
mework (Zachman, 1987). The framework has a two-dimension
matrix that the enterprise architects must fill. The lines refer to the
levels, roles in the organization, and columns to essential resources
such as data, function, and people.

Spewak and Hill (1995)) propose the Enterprise Architecture
Planning, a data-oriented approach to provide data quality, data
interoperability, and data sharing. It allows the intervention in
changing environments with controlled costs.

TOGAF, The Open Group Architecture Framework, (TOGAF, 2011)
is a more recent generic framework for developing technical archi
tectures that evolved into an enterprise architecture framework.
TOGAF has a set of four components, where the Architecture De
velopment Method (ADM) stands out. The ADM is the core of TOGAF,
consisting of a cyclic approach for developing the enterprise archi
tecture. TOGAF’s ADM comprises eight iterative steps, which con
stitute a framework for enterprise architects.

EA models usually have three layers: business/process archi
tecture, information system (data and applications) architecture, and
technological architecture (Ward and Peppard, 2002; TOGAF, 2011;
Lankhorst, 2013).

Enterprise Architecture (Lankhorst, 2013) uses the word 'archi
tecture' from building and construction, referring to a holistic view.
ArchiMate is one of the most famous enterprise modeling languages,
created to be a meta-model of UML or BPMN (Business Process
Model and Notation) tools. However, the proposed ArchiMate lan
guage evolves into specific fields, increasing the linguistic com
plexity and losing architecture simplicity.

Hinkelmann et al. (2016)) anticipate a next-generation enterprise
information systems paradigm based on an Agile approach. The
proposed meta-modeling framework supports enterprise ontologies.

In the book of Desfray and Raymond (2014)) proposed the EAP
(Enterprise Architecture Profile) language, extending the UML con
cepts to represent all TOGAF objects. In addition, the authors pro
mised a practical guide using UML and BPMN in the paper sub-title.

Barros et al. (2000)) modeled business processes, business enti
ties, business roles, and business events using UML language.
However, they dealt only with the business layer, not addressing the
IS and technological layers.

Silingas and Butleris (2009) proposed an approach to custo
mizing UML tools for domain-specific modeling needs. The authors
reused the generic Zachman framework to answer the 6 Wh (what,
how, why, who, when, where) questions in the Business, System, and
Technology models. However, they do not provide a straightforward
procedure to apply the approach.

Perez-Castillo et al. (2019) conducted a systematic mapping study
on enterprise architecture. The authors conclude that the process is
costly and subject to errors, discouraging enterprises from adopting EA.

2.2. CRUD matrix integrated with UML

In Enterprise Architecture, many synonyms depend on the layer,
methodology, framework, or tool used. It makes essential to find a
synthesis with a reduced number of entities. In this work, the four
elementary elements of the Iron Cross were chosen: the actors, the
activities, the data, and the infrastructure. Some of the synonyms are as
follows:

(i) actors are a synonym of lines-of-responsibility;
(ii) activities are a synonym of applications, tasks, uses-cases, or

operational processes;
(iii) data is a synonym of classes or informational entities;
(iv) infrastructure is a synonym of service.

In the following examples, actors are (α, β), activities (A, B, C), and
data (X, Y, Z, W). The proposed version of Enterprise Architecture has
three layers:

• Business / Processes Architecture: where processes are made up
of activities (A, B, C) and managed by human actors (α, β);

• Information System Architecture: with two different software
groups, the data (X, Y, Z, W) and the applications (A, B, C);

• Technological Infrastructure Architecture: consists of hardware
components and essential software (operating systems and da
tabase management systems).

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

2

CRUD matrix was popularized by James Martin (1983)) in his
book Managing the Data-base Environment. CRUD matrix crosses
information between applications and data classes.

Once filled, the CRUD matrix goes through exchanging rows and
columns to find clusters where each application performs Create,
Update and Delete (CUD) operators. In the matrix, multiple appli
cations can use the Read operator with no restrictions.

We add the CRUD counters to the matrix to validate incon
sistencies in the CRUD matrix (Cavique, 2020). In the CRUD matrix,
many reads, R, are allowed. On the other hand, only one CUD is
advisable to maintain consistency. For example, Fig. 1 shows the
CRUD counter with value 1211, indicating 1 Create, 2 Reads, 1 Up
date, and 1 Delete. Preferably, CRUD counters should be 1N11, i.e., a
unique Create, Update and Delete and multiple Read operators, in
order to uncouple the system.

The CRUD counters help identify areas that should be studied and
support questioning about the duplication of operators. Many con
flicts happen if the counters are different from 1N11. For example,
when a CRUD counter returns 2222, it conflicts with CUD. One way
to solve it is to disaggregate the involved elements to achieve a
loosely coupled global system.

We combine CRUD with UML in this work since UML diagrams
are popular in the software industry. Moreover, UML has a broad
community of professionals.

In the Business and Information Architectures layers, three of the
four elements of the Iron Cross are used: the actors, the use-cases/
applications, and the data classes. Fig. 2 shows that only three UML
diagrams (use-case, class diagram, and sequence diagram) are en
ough to represent a system. Although the CRUD matrix is not a UML
tool, it can complete a system view. The fourth element regards the
Technological Architecture layer, where the deployment diagram
is used.

It is possible to address a system view using one element, a pair
of elements, and a trio with the three elementary vectors (actors,
applications/use-cases, data/classes). However, the only possible

diagram with a single element is the class diagram. When using the
pair (actors, applications/use-cases), the use-case diagram is re
presented. The CRUD matrix represents the pair (applications/use-
cases, data/classes). Finally, the sequence diagrams illustrate the trio
of (applications/use-cases, actors, data/classes).

2.3. Enterprise architecture alignment

The challenge of EA is to create a vertical alignment that allows
communication among the business team, IS team, and IT team,
merging the three layers into a single architecture. Organization
alignment is essential in companies that foster unity between layers
(vertical alignment) and within the same layer (horizontal
alignment).

Valorinta (2011) shows how external and internal organizational
management impacts IT alignment, given the increasing importance
of aligning IT and business functions.

Pereira and Sousa (2005) align architectures using a set of
heuristic rules grouped in three clusters. This work presents an
overview of alignment in organizations, supported by rules that alert
to poor designs.

Based on the work of Pereira and Sousa (2005), this work pro
poses an approach that reuses the CRUD matrix and assures vertical
and horizontal alignment. Three heuristic rules support the align
ment of the information system. The heuristic rules, shown in Fig. 3,
can be summarized as follows:

#1 The data items must support the processes activities of the
business processes;.

#2 Each processing activity of the business process is automated
by a single application;.

#3 Each data item is managed (CUD) by a single application in
the CRUD matrix.

Rules #1 and #2 guarantee the vertical alignment, and rule #3
the horizontal alignment. Rules #1 and #2 are closely related to
business processes, and they are matched by rule #3. Note that rule
#3 uses the CRUD matrix and is equivalent to the CRUD counters.

2.4. Axiomatic design

To obtain a self-contained document, in this section, the most
relevant aspects of Axiomatic Design (AD) (Suh, 1990, 2001, 2005)
are presented. AD has similarities with the CRUD matrix regarding
the Design Matrix.

The design process maps along with four domains: customer
domain, functional domain, physical domain, and process domain, as

Fig. 1. CRUD matrix with counters.

Fig. 2. The three essential elements supported by UML diagrams and the CRUD
matrix. Fig. 3. Heuristic rules for enterprise alignment.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

3

shown in Fig. 4. Each domain has the corresponding vector of ele
ments: customer attributes {CAs}, functional requirements {FRs},
design parameters {DPs}, and process variables {PVs}. AD applies to
any new design, like engineering, industrial, organizational, or
software.

According to AD, a good design needs the following two axioms:

- First axiom, the Independence Axiom: maintain the in
dependence of functional requirements;

- Second axiom, the Information Axiom: minimize the information
content of the design.

The mapping procedure expresses the relationships between
every two sequential domains. The design is usually about the
mapping from FRs to DPs. A good design needs to have the same
number of FRs as the number of DPs. Therefore, the design matrix
[A] is a square matrix, and the design equation is {FRs} = [A].{DPs}.

In the expanded form, the item Aij relates FRi with DPj.

… = …FR

FRn

A A n

An Ann

DP

DPn

1 11 1

1
.

1

The design matrix can show three types of designs: uncoupled,
decoupled, and coupled. The uncoupled design is the ideal design,
and the decoupled is acceptable as a good design. A coupled design
is a poor design. The corresponding design matrixes are respectively
a diagonal matrix, an upper or lower triangular matrix, or a full
matrix, as follows:

={ } { }FR
FR

X
X

DP
DP

Uncoupled 1
2

0
0

. 1
2

={ } { }FR
FR

X
X X

DP
DP

Decoupled 1
2

0 . 1
2

={ } { }FR
FR

X X
X X

DP
DP

Coupled 1
2

. 1
2

If the number of FRs is greater than the number of DPs, length
(FRs) > length(DPs), then the design is coupled, or some FRs cannot
be fulfilled. When length(FRs) < length(DPs), the design is re
dundant, which can turn into a coupled, decoupled, or uncoupled
design.

The design is a hierarchical process of decomposition from the
top FR-DP to the leaf elements. The decomposition zigzag between
two domains, from {FRs} to {DPs}, and then from DPs at a level to the
FRs at the following lower level. Fig. 5 depicts the zigzag process.

The Information Axiom aims to minimize the information of the
design. Given p, the probability of satisfying FR with DP, the in

formation content is given by = ()I log
p2
1 .

In an uncoupled design, the probability of satisfying FR1,., FRn
with DP1,., DPn, is the product of the probability of independent

events. Therefore, the information content is the sum of the in
formation of accomplishing each FR:

= =
= =

I I log
p
1

i

n

i
i

n

i1 1
2

If the design is uncoupled or decoupled, the chosen design
should have minor information content.

Therefore, it is possible to compare AD with the CRUD matrix. In
AD, the CAs are the system requirements mapped into the applica
tions. The applications correspond to the FRs of AD. The data ar
chitecture corresponds to the DPs and the CRUD matrix to the design
matrix [A]. The goal of the CRUD matrix is to maintain the in
dependence of the applications. Therefore, both methods try to find
a design that corresponds to a diagonal matrix.

2.5. Re-design CRUD with axiomatic design

This sub-section focuses on how AD can improve the CRUD
structure in IS designs. The similarities between AD and IS rules are
discussed. This section ends with an object-oriented re-design by
applying AD to Software [chapter 5, Suh (2001)].

As stated before, the design maps between FRs and DPs. In an
ideal design, each DP must fulfill an FR so the design matrix [A] of
the design equation {FRs} = [A]. {DPs} is square.

The {FRs} correspond to 'what' are the goals to achieve, and {DPs}
match with 'how' to reach them. In this work:

- functional requirements {FRs} correspond to the applications {A,
B, C}, that are aligned with the business architecture;

- the design parameters {DPs} match the data items {X, Y, Z, W},
that should support the business architecture;

- The design matrix [A], which maps FRs and DPs, coincides with
the CRUD matrix.

In other words, {FRs} = [A]. {DPs} corresponds to {Apps}=[CRUD].
{Data}. DPs can also be seen as Design Patterns as referred in Thomas
and Mantri (2015). In the design matrix the cells with operators
CRUD are replaced by an X.

CRUD matrix might express a good design. The aim of CRUD and
the design matrix is to maintain the independence of the functional
requirements. Usually, an uncoupled design has less information
content than a decoupled or coupled design. Therefore, an un
coupled design has a high probability of success than the other types
of designs.

When the number of FRs is less than the number of DPs, the
solution is redundant or coupled, as stated by Theorem 3 (Suh, 1990).
Gonçalves-Coelho et al. (2012a, 2012b) claim that redundant designs
follow seven theorems that allow classifying the design.

Fig. 1 shows a redundant design. Application C operates on data-
items/tables Z and W. According to AD, the design equation is:

=
FR A
FR B
FR C

X

X

X X

DP X
DP Y

DP Z
DP W

_
_
_

.

_
_
_
_

Fig. 4. The domains of axiomatic design by Suh (2001)).

Fig. 5. Zig-zagging.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

4

In software engineering, an application can make a change on a
table and then on another table. Therefore, it is possible to split an
application in two. As a result, the concept of redundancy is more
flexible in software than in many engineering fields. The redundant
design of application C and data (Z, W) is equivalent to two different
states of the same FR that can be fulfilled by DP_Z or DP_W as
follows:

=FR C X X
DP Z

DP W
{ _ } []. _

_
equals to

=FR C X
DP Z
DP W

{ _ 1} []. _
_

and

=FR C X
DP Z
DP W

{ _ 2} []. _
_

Application C can be divided into C1 when addressing table Z and
C2 when addressing table W. The design matrix can turn into a
square matrix by re-designing FR-C as shown in Fig. 6, using a square
sub-matrix, where FR-C changes to FR-C1 and FR-C2.

2.6. Integration of the two approaches

Using the similarities between IS and AD, the axioms and theo
rems of AD can support new heuristic rules in IS. Table 1 shows the
additional rule #4 based on AD and the similarities between heur
istics rules and AD.

AD imposes a square design matrix in an ideal design (Theorem
4) (Suh, 1990). Therefore, the CRUD matrix should be square. As per
rule #4, the number of applications is equal to the number of data
items.

Rule #4, where the number of applications is equal to the
number of data items, is a consequence of theorem 4 in AD. CRUD/
AD matrix means a CRUD matrix improved with the first axioms
of AD.

The CRUD matrix allows uncoupled designs. However, decoupled
matrices seem not to be adequate for IS. This statement agrees with
Theorem Soft 1 (Suh, 2001), which states that uncoupled software or
hardware systems can operate without precise knowledge of the
design elements (i.e., modules).

2.7. Object-oriented re-design

Object-oriented (OO) techniques are some of the most potent
paradigms widely used in software design. An object is a bundle of
data associated with a set of operations that act on that data. The
object-oriented paradigm supports four critical features: abstraction,
encapsulation, inheritance, and modularity.

OO techniques encapsulate data and the operations that ma
nipulate data in a specific object. OO paradigm allows a higher level
of abstraction, focusing on interface characteristics and omitting the
details of data and operations. In addition, the system's modularity
allows independence. By decomposing each problem into loosely
coupled intra-objects, internal changes to one object do not affect
any other.

In the afore presented Fig. 6, each cross ('X') in the design matrix
[A], corresponds to an object. Each object i, corresponds to an {FR(i)}

= [A(i,i)]. {DP(i)} in the design matrix and consequently to the
equivalent cell i in the CRUD matrix.

Therefore, four objects {A.X, B.Y, C1.Z, C2.W} exist in the un
coupled design matrix. The OO data items can be enriched because
there is one relation between one FR and one DP. Fig. 7 illustrates the
four objects.

The OO design supported by the AD concept of independence
reinforces the OO paradigm. In addition, it can incorporate the ad
vantages of modularity and reuse, providing savings in the software
project development.

3. Proposed CRUD/AD model

In this section, the proposed model defines the diagrams for each
layer and the vertical and horizontal alignment heuristic rules of the
EA. A procedure to ensure alignment is detailed, and a run case-
study is presented.

3.1. Heuristic rules to align enterprise architecture

Fig. 8 shows the three layers of EA associated with UML diagrams.
The 1st layer (above) shows the sequence of activities in the Busi
ness/Process Architecture. The 2nd layer describes the list of appli
cations (on the left) and the data diagram (on the right). The CRUD
matrix merges applications and data items (in the middle) of the
Information System Architecture. Finally, the 3rd layer illustrates the
Technological Architecture of the infrastructure.

A UML activity diagram with partitions (swim-lanes) or a sim
plified version using a UML use-case diagram can represent the
process diagram.

Entity-Relationship diagram or a class diagram in UML can re
present the data. Also, in the 2nd layer, there is a list of applications
and a CRUD matrix that unify applications and data.

Finally, an architecture diagram or UML implementation re
presents the infrastructure diagram using components and nodes.

The set of diagrams must be aligned to assure consistency in their
articulation. Two alignments are generally considered vertical and
horizontal alignment.

In the business area, the description of the architecture starts
with the "Business Area Narrative". The narrative can be obtained
through meetings, focus groups, interviews (structured or un
structured), or case studies. The narrative generally includes a survey
of the 'as-is' system (past and present) and the intended or 'to-be'
(future) design associated with a set of functional requirements.

The system architect needs to address the design of two com
plementary views: the view of the functional analyst about process
architecture who deals with the end-users (1st layer), and the
system analyst approach focused on the IS/IT architecture (2nd and
3rd layer).

Fig. 9 illustrates a set of rules to achieve the Enterprise Archi
tecture alignment. Pereira and Sousa (2005) proposed three heur
istic rules that guarantee the alignment of the information system. In
addition, rule #4 was introduced with AD, and rules #0 and #5
connect the additional UML diagrams. The revised heuristic rules are
as follows:

#0 The process architecture must support the narrative of the
business area;.

#1 The data architecture must support the narrative of the
business area;.

#2 Each processing activity is automated by a single application;.
#3 Each data set is managed (CUD) by a single application;.
#4 Re-design of CRUD matrix according to the concept of in

dependence of AD;.
#5 Each infrastructure is associated with one or more applica

tions. Fig. 6. Re-design of FR-C.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

5

Two heuristic rules apply to the business narrative. Rule #0 re
gards process architecture, and rule #1 to data architecture.

The business activities that can be automated are called appli
cations and must follow rule #2. Moreover, rule #3 applies to data
items and applications by the CRUD matrix.

After the survey of the Business Narrative, rules #0 and #1 in
itiates the two complementary views of the system. Then rule #2
allows the digital transformation of activities into applications. Rule
#3 uses data and applications to create the CRUD matrix. Rule #4 re-
designs the CRUD matrix using AD. Finally, rule #5 associates a
technological infrastructure with one or more applications.

Rules #0, #1, #2, and #5 guarantee the vertical alignment be
tween layers, rule #3 ensures the horizontal alignment within the
layer, and rule #4 improves the core of the IS.

3.2. Procedure to ensure alignment

Procedure 1 ensures the alignment in the Enterprise Architecture
numbered by the layer number: (1) for the 1st layer of Business
processes, (2) for the 2nd layer of information system, IS, and (3) for
the 3rd layer, technological architecture.

Procedure CRUD/AD:
(P0) define the business narrative;.
(P1) define the business architecture: UML activity diagram;.
(P2) define the information system architecture:
(P2.a) define the data architecture: class diagram;.
(P2.b) define the application's architecture: applications;.
(P2.c) define the CRUD matrix and re-design it allowing AD in

dependence;.
(P2.d) detail CRUD cells with sequence diagrams;.
(P3) define the technological architecture: deployment diagram.
This procedure is further detailed in the following paragraphs:
(P0) Define the business narrative. The narrative should refer to

the actors, activities, and data and how they are articulated.
(P1) Define the process architecture (or sequence of activities).

List the activities, list the actors and fill in the matrix activities
versus actors. Develop a UML use-case diagram or a UML activity
diagram with lines of responsibility with the system actors. Apply
rule #0, where the process architecture must support the narrative
of the business area.

(P2.a) Define Data architecture. Create an Entity-Relationship
diagram or a UML class diagram for the data architecture re
presenting the necessary data that correspond to the requirements
referred to in the narrative. Apply rule #1, where the data archi
tecture must support the narrative of the business area.

Table 1
Heuristic rules versus Axiomatic Design.

Heuristic rules in IS Axiomatic Design

#1 the data items must support the processes activities of the business narrative data items correspond to {DPs}
#2 a single application automates each process activity of the business processes applications correspond to {FRs}
#3 each data item is managed by a single application in the CRUD matrix design matrix [A] ensuring the independence of FRs
#4 the number of applications is equal to the number of data-items Theorem 4 in Axiomatic Design:length(FRs) = length(DPs)

Fig. 7. Object-oriented re-design supported by AD.

Fig. 8. Three layers of the EA.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

6

(P2.b) Apply rule #2, so each automated activity must correspond
to a single application. Produce the CRUD matrix representative of
the relationship between applications and classes (data).

(P2.c) Apply rule #3, making each data set managed (CUD) by a
single application. By applying rule #4, re-design CRUD and the class
diagram with Axiomatic Design.

(P2.d) Detail the CRUD matrix for each application, associating a
sequence diagram, which details the message sequences between
the classes.

(P3) Define technological architecture. The UML deployment
diagram includes technological platforms, servers, client computers,
databases, and operating systems. Next, apply rule # 5, associating
one or more applications to each infrastructure.

Finally, summarize the three lists of the essential system ele
ments (actors, activities, and data classes), and check the vertical and
horizontal alignment of heuristic rules.

3.3. Running Case-Study

The importance of fighting COVID-19 motivates this student-
based case-study. The study centers on the information model for
vaccine distribution logistics and the national vaccination program
user vaccination. The study starts with Information System Narrative
based on a requirement report, meeting, or interview with the de
cision-makers. The business narrative is as follows.

3.3.1. (P0) The business narrative
The system to fight against Covid-19 has the following needs.

- To vaccinate about 10 million healthcare users;
- There are more than a hundred vaccination centers around the

country and a logistic hub that coordinates all the operations;
- The case-study focuses on a vaccination center;
- The users must have an identifier, name, contacts, age, and other

medical information;
- The data regarding vaccination centers should include the ad

dress, vaccine capacity, and number of users;
- There are several types of vaccines; some need two doses and

others in a single one;

- User records in the vaccination center include of vaccine and the
shot dates;

- Number and type of vaccines available at each vaccination center;
- Every time a user is vaccinated, the information is recorded in the

system;
- In each vaccination center, there are daily entries and exits of

vaccines;
- Entries correspond to new boxes of vaccines carried by the

police;
- Each box has hundreds of vials; at each vial corresponds to 5 or 6

vaccine doses;
- Each box belongs to a vaccine lot number;
- The vaccine exits should correspond to the vaccines taken by the

users.

The logistic hub provided the maintenance of the vaccination
center, the different types of vaccines, and the users' identifi
cation.

There are different groups of employees that manage the IS in the
vaccine center: employees who maintain information about users
and vaccination centers; employees who update vaccine entries at
the centers; employees who update vaccine exits at the centers; and
employees who update the data of vaccinated users.

The vaccine center manager wants a daily report about the users
vaccinated and the number of vaccines available: number of vials of
the vaccines' entries, number of vials of the vaccines' exits, and
vaccinated users (divided by a factor of 5).

3.3.2. (P1) Business architecture
First, it is necessary to create is a glossary of specific terms for the

IS. Then, the system needs a list of activities and actors. Thus, the
matrix of Use-cases (using verbs) versus Actors (using nouns) is built
as per Fig. 10.

The matrix of use-cases versus actors is the input to build the
UML activity diagram. The UML activity diagrams with swim lanes
are shown in Fig. 11. The manager of each center has information to
control the number of vaccines available, used, and eventually
wasted.

Fig. 9. Heuristic rules to align the Enterprise Architecture.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

7

3.3.3. (P2) Information architecture
Rule #0 uses the SI narrative to create the matrix use-cases

versus Actors, accomplished by the functional analyst. On the other
hand, rule #1 is performed by the systems analyst, who transforms
the narrative into a UML class diagram (P2.a), shown in Fig. 12.

The look-up classes are Users, Vaccination Center and Vaccines.
The intermediate class Vaccine-Entries links the classes Vaccines
and Vaccine-Exists. Finally, the fact classes are the ternary class
Vaccinated-users and the class Vaccine-Exists.

In the UML class diagram, the number of symbols should be as
small as possible, where the Inheritance, Association, and
Aggregation are presented. In the example, only associations link the
classes.

By applying rule #2, the list of applications/use-cases can be
found, corresponding to the P2.b step. In the following step, P2.c, the
CRUD matrix is defined. Fig. 13 shows the CRUD matrix representing
the relationship between applications and classes/data.

Rule #3 says a single application manages each data item, which
the CRUD counters show as 1N11 type.

In the procedure to ensure alignment, multiple iterations can
occur. If in a previous iteration the business narrative referred to the
maintenance of the vaccinated users and vaccines exits, according to
AD, the FR and DP would be as follows:

FR1: maintain vaccination centers.
FR2: maintain types of vaccines.
FR3: maintain users' information.
FR4: maintain vaccine entries.
FR5: maintain vaccinated users and vaccine exists.
DP1: vaccination centers.
DP2: vaccines.
DP3: users.
DP4: vaccinated users.
DP5: vaccine entries.
DP6: vaccine exits.
With five FRs and six DPs, the design matrix would be redundant,

where FR5 maintains two design parameters, DP4 and DP6, as
follows:

=

FR
FR
FR
FR
FR

X
X

X
X

X X

DP
DP
DP
DP
DP
DP

1
2
3
4
5

.

1
2
3
4
5
6

According to AD, rule #4, an ideal design follows Independence
Axiom. The design matrix should be re-designed into a square

Fig. 10. Matrix of Use-cases versus Actors.

Fig. 11. UML activity diagram with swim-lanes.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

8

matrix by slitting FR5 into FR5a to maintain vaccinated users, and
FR5b maintain vaccines exists, as shown in Fig. 12. The OO re-design
can the performed over the class diagram.

In the example, a diagonal matrix was found. Each element of the
diagonal is an object-oriented class re-designed that corresponds to
the CRUD cells. Each CRUD cell can be presented in a Sequence
Diagram at the intersection of a use-case and a data item, as defined
in step P2.d.

As a CRUD cell example, Fig. 14 shows the CRUD cell of the Use-
case maintaining vaccine that exists using three classes. The classes

Vaccines and Vaccine-entries provide information, using the Read
operator, and class Vaccine-exits is the target to perform the CRUD
operators.

There is consistency with the CRUD matrix and the use-case
diagram/ matrix (use-cases, actors), ensuring vertical alignment
with two levels for each sequence diagram.

3.3.4. (P3) Technological architecture
This work proposes rule #4 to force the number of applications

equal to the number of data items. Consequently, rule #4 re-designs
the OO elements, ensures a good design, and establishes horizontal
alignment with the business.

Rule #5 makes the concept of CRUD cells at the technologic level,
or re-designed classes are called in this subsection 'service' using the
SOA (service-oriented architecture) terminology. SOA consists of
many modules that encapsulate well-delimited units of function
ality, enabling data exchange with Web services (Romero and
Vernadat, 2016).

There are advantages if services are loosely coupled to the system
associated with the computing resource of virtual machines. The
benefits of physical independence include performance isolation,
easy resource management, and the on-demand deployment of

Fig. 12. UML class diagram.

Fig. 13. CRUD matrix.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

9

computing environments. Depending on the needs, different mod
ules can be joined or withdrawn in this environment, plugged or
unplugged from the system. It guarantees flexibility that allows the
dynamic allocation of resources to balance the system's effective
workload.

The service concept can be seen as an architecture paradigm that
integrates complex engineering systems. Autonomy and loose cou
pling allow a system to adapt to the dynamic nature with permanent
re-design needs.

In the technological architecture, the services can be specified
using the UML deployment diagrams.

3.4. Summarizing the model

Business strategy alignment with IS and IT is a longstanding
problem because of the increasing complexity of the designs.
Moreover, the IS concept of a good design is still a subject of con
troversy. Adopting AD theory allows defining what a good design is
in IS. AD helps to design the CRUD matrix of IS projects. As stated
before, CRUD/AD means the CRUD matrix ensured by the
Independence and Information Axioms.

The problem of many synonyms for the same element, de
pending on the viewpoint, is an IS issue. In the example, the actor
has no synonym; the synonyms of activity are use-case and appli
cation; the synonym of the class is data-item; the synonyms of the
object are CRUD cell and service.

In this model, the CRUD/AD matrix is the core of the Enterprise
Architecture. The main inputs are the UML activity diagram and the
UML class diagram. Its direct output is the UML sequence diagrams
close to the applications that would run in an environment defined
by the UML deployment diagrams.

To summarize the metric of the proposed Enterprise Architecture
model, the elements belong to the three layers: Model (1st layer, 2nd
layer, 3rd layer).

Then, the following elements are presented in the layer, where
some of them are synonyms: Model ((actors, activities); (applica
tions, classes); services).

In a balanced design, the number of activities should be equal to
the number of applications (rule #1), the number of applications
should be equal to the number of classes (rule #4), and finally, the
number of services should be equal to the number of applications
(rule #5). Thus, the metric of good design follows the expression
Model ((M, N); (N, N); N).

The number of elements that express the model for the Vaccine
case is ((5,6); (6,6); 6), with M = 5 and N = 6. Therefore, the repetition
of N = 6 is according to the definition of a good design.

To obtain a unified view with the minimum jargon of the
Enterprise Architecture, the model uses a minimal subset of the UML
diagrams, shown in Table 2. Minimal jargon is a way to avoid errors
in the use of the model.

4. Discussion

The CRUD/AD model is proposed in the previous section. The
model suggests creating the CRUD/AD architect that maintains a
unified view of the EA with the minimum jargon. The design soft
ware processes claim to use Design theories and Project
Management. It is necessary to clarify the ontological differences
between both.

This section discusses the following topics. First, the concepts of
Design Theory and Project Management are distinguished. Then
CRUD/AD architect is emphasized. Finally, Data Dictionary urges
attention to increase the holistic view of the IS.

4.1. Design theory and project management

Hubka and Eder (1996) contribute to defining a taxonomy for
Design Science. They proposed a two-by-two crossover framework.
Technical systems and design processes cross with methodological
declarations, descriptive and prescriptive. The descriptive descrip
tion of the design allows defining the Design Process (or Project
Management) in a socio-technical context. The prescriptive de
scription includes methodologies and Theories of Design.

Agile methods are recent methodologies to foster a design. They
help the design management, mainly by defining how the design
team must work. However, they do not give a theoretical foundation

Fig. 14. UML sequence diagrams of the use-case maintain vaccine exists.

Table 2
A subset of UML diagrams.

Layer UML diagrams and CRUD/AD

1) Business / Process Architecture - UML use-case / activity
diagram

2) Information System Architecture - UML class diagram
- CRUD/AD matrix
- UML sequence diagram

3) Technological Architecture - UML deployment diagram

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

10

to develop the product. Scrum is one of the most well-known Agile
methods in the software industry. It promotes team creativity as
well as offers rules for action (Weber et al., 2017). Scrum encourages
iterative and incremental design development allowing changing
the customer needs during the design process.

V-Modell (2021) has management mechanisms and tools for
project execution. The management mechanisms include project
organization and project planning. The project execution addresses
the specification and subdivision at the V's downward branch, fol
lowed by realization and integration on the upward component.

Regarding the taxonomy mentioned above, Agile and V methods
are mostly methodologies for design management. However, both
methods are in the middle of the prescriptive and descriptive defi
nition of the design process. On the contrary, AD is a pure design
theory. The need for integration between Agile and V methods with
AD comes from an industrial need. However, integration is not an
ontological need and may cause interference in theory application.
Using AD with Agile methods may create coupling and controversy.
Thus, design can start using AD rules and end in the latter stages
using Agile methods (Puik and Ceglarek, 2018). It is a way to de
couple methodological declarations from prescriptive ones.

In any case, AD can benefit from using Agile and V-Modell
methods to succeed in enterprise applications. Furthermore, AD can
benefit from the integration fundamentals of V-Modell. The ad
vantage of Agile and V-Modell methods is providing a methodology
for creating a design team and guiding it to make it work. It is es
sential as an innovation method, but it does not provide a way to
evaluate a solution. AD provides a way to classify a solution.

AD can help to create methodologies as it is a Design theory.
Therefore, AD can help create design guidelines for production
methods (Rauch et al., 2015). Project management might be in
dependent of the Design theory.

In this work, the CRUD/AD method, with the six rules (#0.#5), is
an example of Design theory. On the other hand, the CRUD/AD
procedure, with four basic steps (P0, P1, P2, P3), gets closer to Project
management.

4.2. CRUD/AD architect

This paper aims to define an Enterprise Architecture with vertical
and horizontal alignments to ensure consistency. It uses UML, the
CRUD matrix, and Axiomatic Design as a theoretical framework. The
CRUD/AD matrix is the core of the IS design. Regarding subjects
closer to Project management in the CRUD/AD model, two ap
pointments should be added about the role of the CRUD/AD architect
and the relevance of the Data Dictionary.

Some methodologies use the intricate concepts of viewpoint and
view, integrating diverse architecture descriptions. A viewpoint es
sentially corresponds to the concepts, models, and techniques.
Moreover, a view usually focuses on the concerns of the stake
holders. As an illustration, the methodologies of TOGAF and
ArchiMate include 30 views and 20 viewpoints, respectively
(Lankhorst, 2013). Thus, it generates a long and multifaceted dialect
that is hard to apply.

IS has two classic views of the enterprise, the functional analyst
view and the system analyst view. The functional analyst creates a
bridge between the final users and the IS, specifying requirements,
defining business processes, and realigning roles. UML activity dia
grams are a standard tool for functional analysts. On the other hand,
the system analyst is responsible for specifying the transformation
of the business narrative, based on documents and requirements,
into a software model. An example of a system analyst tool is a UML
class diagram. Thus, the understating of the business generates two
diverse views of IS, the functional and system analysts. The CRUD
matrix can merge both views.

The proposed model asks for a CRUD/AD architect. The CRUD/AD
architect summarizes the applications and data views and enhances
the system using Axiomatic Design. In other words, the CRUD/AD
architect generates the EA integration, creating a core between the
three enterprise layers. The business functions and data items are
aggregated in the CRUD/AD cells. The AD concept of ideal design is
essential to make it possible. Each CRUD/AD cell is then deployed in
the technological layer, ensuring a loosely coupling.

4.3. Data dictionary

In the early database systems, the normalization of names in the
IS was encouraged to define all the enterprise names in the Data
Dictionary. A data dictionary collects the names, definitions, and
attributes of the data items, the application, the actors, and the
physical elements. The data dictionary is more recently known as
metadata, i.e., the data about the data. Given the multiple view
points for the same subject, this work suggests a glossary of terms of
the enterprise to manage the synonymous.

With the evolution of search capacities in the IS, the data dic
tionary has lost relevance. Nowadays, the emphasis is given to
iterative and interactive perspectives, including the version control
automated, quality assurance, and agile tools, disregarding the data
dictionary. As a result, the IS has unavoidable consequences of the
duplication and redundancy of the central elements.

To summarize this section, we consider that the CRUD/AD ar
chitect assures the system's stability against the hustle and bustle of
daily life, maintaining EA design with Data Dictionary accountability.
The new CRUD/AD role supported by the business narrative and
mission should integrate:

- the Data Dictionary tool: data, applications, actors and techno
logical support;

- the consistency of the system using the CRUD/AD method.

This work proposes a CRUD/AD architect assisted with the Data
Dictionary. The Project Management phase benefit from it. CRUD/AD
can coexist with complementary methodologies such as Agile and V-
Modell.

5. Conclusions

Organizations are getting more global, more extensive, with
more relationships, and consequently more complex. Therefore, a
unique and holistic view of Enterprise Architecture (EA) is increas
ingly necessary.

However, scientific literature proposes solutions with many sy
nonyms depending on the layer, methodology, framework, or tool to
answer these challenges. There is not a broad view of the system.
Additionally, new languages evolve into more specific fields, in
creasing the lexical complexity and losing the necessary simplicity of
the architecture. Instead of creating an overview of the organization,
most EA methodologies create new diagrams with new symbols that
require many hours of learning. Recent studies conclude that the EA
process is costly and subject to errors, causing enterprises not to
adopt EA.

The proposed procedure that checks the alignment in EA has
three basic heuristic rules that guarantee the alignment of the
Information System (IS). The proposed model extended the rules by
connecting the UML diagram, the CRUD matrix, and the Axiomatic
Design (AD) theory.

EA, founded on the three layers, Business/ Process Architecture,
Information System Architecture, and Technological Architecture,
promises companies to deal with digital transformation. The three
layers approach allows a clear presentation of EA. Moreover, it

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

11

permits horizontal and vertical alignment of business and informa
tion technology (IT) holistically.

This work proposes the CRUD/AD method. The approach deals
with the three layers of EA, the four elements of the Iron Cross, and
the six rules for organizational alignment. The model uses UML
diagrams since a vast community of professionals commonly uses
them. Although the CRUD matrix is not a UML tool, it can complete a
system view. The proposed model firstly defines a set of UML dia
grams for each layer of the EA. Then heuristic six rules are detailed to
ensure vertical and horizontal alignment.

This work attempts to reduce and standardize the multiple sy
nonyms in IS and establish rules to find good practices in design. We
integrate UML diagrams with CRUD from an EA perspective, allowing
a holistic view of the organization. The addition of AD ensures a
comprehensive, concise, and consistent design.

The proposed procedure has three steps to check the alignment
in the EA, each procedure for each organizational layer. Firstly, the
business narrative was defined. Then, business architecture, in
formation architecture, and technological architecture apply the (1)
use-case/activity diagrams, (2) class diagrams, CRUD matrix with
sequence diagrams to detail the applications, and (3) infrastructure
diagram, respectively. The steps between diagrams are supported by
heuristic rules, allowing the alignment of the system.

The number of elements in each layer can summarize the CRUD/
AD model: Model ((actors, activities); (applications, classes); ser
vices). A good design has the same number (N) of activities, appli
cations, classes, and services. A metric of good design is synthesized
through the expression Model ((M, N); (N, N); N).

We believe the model gives a holistic view of the EA through the
three layers. Moreover, the proposal of the CRUD/AD architect pro
vides the needed integration of the IS by creating a core between the
layers.

CRediT authorship contribution statement

Luís Cavique: Conceptualization, IS Methodology, Supervision.
Mariana Cavique: Writing, Writing − review & editing. Armando B.
Mendes: Writing − review & editing. Miguel Cavique: AD
Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing fi
nancial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Barros, A., Duddy, K., Lawley, M., Milosevic, Z., Raymond, K., Wood, A., 2000, Processes,
Roles, and Events: UML Concepts for Enterprise Architecture, In: Evans A. , Kent S.,
Selic B. (eds), UML 2000: The Unified Modeling Language, Lecture Notes in
Computer Science, Springer, vol. 1939, pp. 62–77.

Cavique, L., Cavique, M., 2021, Axiomatic Design applied to CRUD matrix in
Information Systems, the 14th International Conference on Axiomatic Design,
ICAD, Lisboa, Portugal.

Cavique, L., Cavique, M., Mendes, A.B., 2021. Integration of UML diagrams from the
perspective of enterprise architecture. In: Rocha, Á., Adeli, H., Dzemyda, G.,
Moreira, F., Ramalho Correia, A.M. (Eds.), Trends and Applications in Information
Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and
Computing, vol. 1366 Springer, Cham. https://doi.org/10.1007/978-3-030-72651-
5_44

Cavique, L., 2020, Modelação de Sistemas de Informação: Elementos essenciais na
visão integrada das ferramentas do UML com a matriz CRUD [Information
Systems Modeling: Essential elements in the integrated view of UML tools with
the CRUD matrix], Recursos Educativos, Universidade Aberta, Portugal.

Desfray, P., Raymond, G., 2014, Modeling Enterprise Architecture with TOGAF: A
Practical Guide Using UML and BPMN, Elsevier Inc., ISBN 978–0-12–419984-.

Fowler, M., 2003, UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Addison-Wesley Professional, 3rd Edition, ISBN: 978–032-119–368-1.

Gonçalves-Coelho, A.M., Neştian, G., Cavique, M., Mourão, A., 2012a. Tackling with
redundant design solutions through axiomatic design. Int. J. Precis. Eng. Manuf.
13, 1837–1843. https://doi.org/10.1007/s12541-012-0241-x

Gonçalves-Coelho, A.M., Neştian, G., Cavique, M., Mourão, A., 2012b. Tackling with
redundant design solutions through axiomatic design. Int. J. Precis. Eng. Manuf.,
vol. 13, 1837–1843. https://doi.org/10.1007/s12541-012-0241-x

Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., Merwe, A., Woitsch, R.,
2016. A new paradigm for the continuous alignment of business and IT:
Combining enterprise architecture modeling and enterprise ontology. Comput.
Ind., vol.79, 77–86. https://doi.org/10.1016/j.compind.2015.07.009

Hubka, V., Eder, W., 1996. Design Science. Springer-Verlag, London Limited.
IBM Corporation, 1978, Business System Planning Information - System Planning

Guide, International Business Machines Corporation, 2nd edition, New York.
Krasner, H., 2021, The cost of poor software quality in the U.S.: a 2020 report,

Consortium for Information & Software Quality.
Lankhorst, M., 2013. Enterprise Architecture at Work: Modelling, Communication and

Analysis, 3rd ed. Springer ISBN: 978364-229-650-5.
Martin, J., 1983. Managing the Database Environment. Prentice-Hall, Englewood Cliffs,

New Jersey ISBN: 013-550-582-8.
Pereira, C.M., Sousa, P., 2005. Enterprise architecture: business and IT alignment. In:

Haddad, H., Liebrock, L.M., Omicini, A., Wainwright, R.L. (Eds.), SAC. ACM, pp.
1344–1345.

Perez-Castillo, R., Ruiz-Gonzalez, F., Genero, M., Piattini, M., 2019. A systematic
mapping study on enterprise architecture mining. Enterp. Inf. Syst., vol. 13 (5),
675–718.

Puik, E., Ceglarek, D., 2018, Application of Axiomatic Design for Agile Product
Development, MATEC Web of Conferences 223, 01004, 12th International
Conference on Axiomatic Design, ICAD, https://doi.org/10.1051/matecconf/
201822301004.

Rauch, E., Dallasega, P. and Matt, D., 2015, Axiomatic Design based Guidelines for the
Design of a Lean Product Development Process, 9th International Conference on
Axiomatic Design, Procedia CIRP 34, p. 112 – 118.

Rocha, Á., Freixo, J., 2015. Information architecture for quality management support in
hospitals. J. Med. Syst. 39, 125.

Romero, D., Vernadat, F., 2016. Enterprise information systems state of the art: past,
present, and future trends. Comput. Ind., vol. 79, 3–13.

Silingas, D., Butleris, R., 2009, Towards customizing UML tools for enterprise archi
tecture modeling, In: Nunes M.B., P. Isaías, P. Powell (eds), IADIS International
Conference Information Systems, ISBN: 978–972-8924–79-9.

Spewak, S., Hill, S.C., 1995. Enterprise Architecture Planning: Developing a Blueprint
for Data, Applications, and Technology. John Wiley & Sons, New York City.

Suh, N.P., 1990. The Principles of Design. Oxford University Press.
Suh, N.P., 1995. Design and operation of large systems. J. Manuf. Syst., vol. 14 (3)),

203–213.
Suh, N.P., 2005. Complexity: Theory and Applications. Oxford University Press, New

York.
Suh, N.P., 2001. Axiomatic Design: Advances and Applications. Oxford University Press

ISBN 019-513466-4.
The Standish Group International, 2010, Modernization, clearing a pathway to success.
Thomas, J., Mantri, P., 2015, Axiomatic Design/Design Patterns Mashup: Part 1

(Theory), the 9th International Conference on Axiomatic Design, ICAD, Procedia,
Elsevier, vol. 34, pp. 269–275.

TOGAF, 2011, The open group architecture framework (Version 9.1), The Open Group.
V-Modell, X.T., 2021, Part 1: Fundamentals of the V-Modell, accessed September 2021,

〈ftp://ftp.heise.de/pub/ix/projektmanagement/vmodell/V-Modell-XT-Gesamt-
Englisch-V1.3.pdf〉.

Valorinta, M., 2011. IT alignment and the boundaries of the IT function. J. Inf. Technol.,
vol. 26, 46–59.

Van-Bon, J., Verheijen, T., 2006, Frameworks for IT Management: an Introduction,
ITSM Library, Publisher: Van Haren, ISBN-13: 978–9077212905.

Ward, J., Peppard, J., 2002. Strategic Planning for Information Systems, 3rd edition.,.
John Wiley and Sons Ltd. ISBN: 0470841478.

Weber, J., Förster, D., Stäbler, M. and Paetzold, K., 2017, Adapt! – Agile Project
Management Supported by Axiomatic Design, MATEC Web of Conferences 127,
01018, 12th International Conference on Axiomatic Design, ICAD 2017, https://doi.
org/10.1051/matecconf/201712701018.

Zachman, J.A., 1987. A framework for information systems architecture. IBM Syst. J. 26
(3), 276–292.

L. Cavique, M. Cavique, A. Mendes et al. Computers in Industry 135 (2021) 103569

12

https://doi.org/10.1007/978-3-030-72651-5_44
https://doi.org/10.1007/978-3-030-72651-5_44
https://doi.org/10.1007/s12541-012-0241-x
https://doi.org/10.1007/s12541-012-0241-x
https://doi.org/10.1016/j.compind.2015.07.009
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref5
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref6
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref6
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref7
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref7
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref8
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref8
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref8
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref9
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref9
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref9
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref10
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref10
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref11
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref11
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref12
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref12
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref13
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref14
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref14
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref15
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref15
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref16
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref16
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref17
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref17
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref18
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref18
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref19
http://refhub.elsevier.com/S0166-3615(21)00176-7/sbref19

	Improving information system design: Using UML and axiomatic design
	1. Introduction
	1.1. Objective
	1.2. Contribution
	1.3. Organization

	2. Background information
	2.1. Enterprise architecture
	2.2. CRUD matrix integrated with UML
	2.3. Enterprise architecture alignment
	2.4. Axiomatic design
	2.5. Re-design CRUD with axiomatic design
	2.6. Integration of the two approaches
	2.7. Object-oriented re-design

	3. Proposed CRUD/AD model
	3.1. Heuristic rules to align enterprise architecture
	3.2. Procedure to ensure alignment
	3.3. Running Case-Study
	3.3.1. (P0) The business narrative
	3.3.2. (P1) Business architecture
	3.3.3. (P2) Information architecture
	3.3.4. (P3) Technological architecture

	3.4. Summarizing the model

	4. Discussion
	4.1. Design theory and project management
	4.2. CRUD/AD architect
	4.3. Data dictionary

	5. Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

