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ABSTRACT: The classical Butler equation used to describe
surface tension and the surface composition of liquid mixtures is
revisited. A straightforward derivation is presented, separating basic
chemical thermodynamics and assumptions proper to Butler’s
model. This model is shown to conceal an approximation not
recognized by other researchers. The shortcoming identified
consists of not allowing surface standard values to vary with
surface tension by virtue of the changing composition. A more
rigorous equation is derived and shown to yield the Butler equation
in case of incompressible surface phases. It is concluded that the
Butler equation slightly overestimates ideal surface tensions.
Butler’s surface-phase concentrations of the surface-active
component are also slightly overestimated in the surface-active
component dilute range, being just underestimated at higher concentrations. Despite this, Butler’s model stands as a very good
standard due to its versatility.

■ INTRODUCTION
Predicting the surface tension and the composition of layers
overlying liquid mixtures has been the goal of much research
over more than a century.1,2 The renowned Gibbs adsorption
isotherm2−5 (GAI) is a fundamental equilibrium equation that
is the foundation stone of this field of inquiry. However, in the
case of a binary mixture, GAI only links the surface tension to
the relative adsorption, which is the difference between
adsorption of one component and that of the other.5 Among
the milestones in this pursuit, the Butler equation6 published in
1932 is of the foremost influence. Indeed, it was not only the
first workable proposal for estimating both the surface
composition and surface tension but also the starting point
for the advancements due to Hoar and Melford,7 Sprow and
Prausnitz,8 and Kaptay.9 This notwithstanding, it has been
claimed by Rusanov10 and by Santos and Reis11,12 that Butler’s
model is not so rigorous as generally regarded. Furthermore, it
has been emphasized by different authors3,13 that molecular-
thermodynamic models must be validated against the GAI, a
condition that Radke3 suspects that is not met by the Butler
equation. Present examination of the Butler equation was
prompted by Kaptay’s9 recently improved derivation that
removed some, not all, previous reservations to its acceptance.
A straightforward derivation of the Butler equation is advanced
in terms of formal chemical thermodynamics. Properties of the
ideal surface region proposed by Butler are carefully examined
since the ideal model for liquid mixtures has proven very useful
to describe the essential features of mixtures.14 It will be shown
that indeed Butler’s original and subsequently improved

derivations conceal an approximation, namely, that the chosen
standard state for describing surface energy changes with
varying compositions is not a constant.
Based on a previous thermodynamic development,11,12 an

equation for the surface tension of ideal liquid mixtures is
concisely derived. This alternative approach accounts for the
variation of standard chemical potentials with changing surface
tension from its value for a pure component to its current value
at the composition of interest. Remarkably, the alternative
equation reduces to the classical Butler equation for
incompressible surface phases, as claimed by Rusanov10 on
different grounds. A quantitative evaluation of the effect of this
hidden approximation is presented for the molecular mixture,
water−ethanol, at 298.15 K and for the metallic liquid alloy,
cooper−tin, at 1400 K and is shown to be insignificant.

■ BUTLER EQUATION

Formal Thermodynamics Derivation. Considering a
physical planar surface phase15 of molecular components A
and B at fixed temperature T and pressure p that is in
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thermodynamic equilibrium with an underlying liquid phase,
the differential of the surface-phase Gibbs energy is

G S T V p A n nd d d d d ds s s
A A

s
B B

sγ μ μ= − + + + + (1)

where G stands for Gibbs energy, S for entropy, V for volume,
γ for surface tension, A for surface area, and μi and ni for
chemical potential and the amount of the substance,
respectively, of component i = A, B. The superscript “s”
denoting the surface phase is only attached to properties whose
equilibrium values are different in both phases.
It follows from eq 1 that

G A( / )T p n n
s

, , ,A
s

B
sγ = ∂ ∂ (2)

G n( / )T p A nB
s

B
s

, , , A
sμ = ∂ ∂ (3)

The variation of surface Gibbs energy with the composition at
constant T and p can be established from eq 3 by applying the
rule of partial differentiation to introduce an extra restriction.
This gives
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It has been shown2,16−18 that the derivative (∂A/∂nB
s )T,p,nA

s is
the partial molar surface area of B designed for conditions of
constant T and p, and denoted18 A T p( , )B

A T p
A
n

( , )
T p n

B
B
s

, ,
s
A

i
k
jjjjj

y
{
zzzzz= ∂

∂
(5)

Inserting eqs 2, 3, and 5 into eq 4 leads to

G
n

A T p( , )
T p n

B

s

B
s

, ,
B

A
s

i
k
jjjjj

y
{
zzzzzμ γ= ∂

∂
−

(6)

Equation 6 is not new, but now it has been concisely derived
using classical thermodynamics only. This is an important step
because the Butler equation is based on it. Furthermore, it is
noted that eq 6 is identical to eq 21e of ref 2, eq 13 of ref 9,
and eq 2d of ref 19 although a misprint certainly occurred in
the last two equations, where A appears as an extra constraint
in the partial derivative of Gs. For simplicity, the following
shorthand is introduced

g
G
n

T p n
B
s

s

B
s

, ,
s
A

i
k
jjjjj

y
{
zzzzz= ∂

∂
(7)

In the bulk phase, μB is described by

RT f xln( )B B B Bμ μ= * + (8)

where R is the gas constant and f B is the rational activity
coefficient of B at mole fraction xB; an asterisk denotes a pure-
component property. Hence, the standard state is the pure
liquid B.
The equilibrium condition between the surface and bulk

phases requires the uniformity of μB so that from eqs 6 and 8,
and considering eq 7, one obtains

g A T p RT f x( , ) ln( )B
s

B B B Bμ γ= * + + (9)

Equation 9 is valid over the full composition range. Since f B
= 1 for xB = 1, then

g AB
,s

B B Bμ γ* = * + * * (10)

By noting that gB = (∂G/∂nB)T,p,nA = μB, it follows from eq 10
that gB*

,s ≠ gB* = μB*.
Subtracting eq 10 from eq 9 yields

g g A A T p RT f x( , ) ln( )B
s

B
,s

B B B B Bγ γ= * − * * + + (11)

A
A T p

g g

A T p
RT

A T p
f x

( , ) ( , ) ( , )
ln( )B

B

B

B
s

B
,s

B B
B Bγ γ= *

*
+

− *
−

(12)

It is remarked that proceeding from eqs 6 to 12 required only
well-established chemical thermodynamics (see eq 8) and the
phase-equilibria thermodynamics expressed in eq 9. Hence, eq
12 is a rigorous expression for the dependence of surface
tension on the mixture composition at constant T and p that
does not involve any approximation or extra thermodynamic
assumption.
Butler’s original contribution was to put forward an equation

for the difference (gB
s − gB*

,s). Assuming that this difference can
be expressed by an equation similar to eq 8, for changes with
the composition at fixed T and p, Butler6 proposed the
following expression

g g RT f xln( )B
s

B
0,s

B
s

B
s= + (13)

where gB
0,s is the corresponding standard-state value.

From eqs 6, 7, and 13, one obtains

g A T p RT f x( , ) ln( )B B
0,s

B B
s

B
sμ γ= − + (14)

Using the artifact gB
0,s = gB*

,s + gB
0,s − gB*

,s and recalling eq 10, eq
14 leads to

g g A T p A

RT f x

( , )

ln( )

B B B
0,s

B
,s

B B B

B
s

B
s

μ μ γ γ= * + − * − + * *

+ (15)

Hence, this approach implicitly assumes a surface standard
chemical potential, μB

0,s, having the form

g g A T p A( , )B
0,s

B B
0,s

B
,s

B B Bμ μ γ γ= * + − * − + * * (16)

However, Butler considered gB
0,s to be a constant,

independent of the surface-phase composition and thus equal
to gB*

,s. Therefore, from eqs 12 and 13 one obtains the
commonly accepted form of the Butler equation

A
A T p

RT
A T p

f x

f x( , ) ( , )
lnB

B

B B

B
s

B
s

B B

i

k
jjjjjj

y

{
zzzzzzγ γ= *

*
+

(17)

In accordance with this treatment, Butler’s standard chemical
potential, μB

0,s(Butler), becomes

A T p A(Butler) ( , )B
0,s

B B B Bμ μ γ γ= * − + * * (18)

It is interesting to note that Butler’s approach still makes some
allowance for a change in the value of the surface standard
chemical potential with varying surface compositions.
It is emphasized that in the abovementioned derivation of

the Butler equation, no assumption was made regarding the
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surface-phase thickness, in agreement with the improved
derivation of the Butler equation recently achieved by Kaptay9

without assuming a surface monolayer. This notwithstanding,
why some authors3,10−12 have argued that the Butler equation
still contains an approximation? If so, it must be found in a
hidden assumption within eq 13. To clarify this matter, the
focus is directed to Butler’s ideal surface phase.
The ideal model14 acquires special relevance in surface

thermodynamics because experimentally, the surface-region
composition is not easily accessible.20−22 Since for an ideal
liquid mixture according to Raoult’s law, xB

(ideal) = xB
(real), then

the corresponding ideal surface phase should be defined so that
xB
s(ideal) = xB

s(real). These equalities hold for equilibrium attained
from the joint conditions μB

(ideal) = μB
s(ideal) and μB

(real) = μB
s(real).23

According to Butler, the ideal model for the surface region is
obtained from eq 13 by setting f B

s = 1

g g RT xlnB
id,s

B
id,0,s

B
s= + (19)

and from eq 17
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To progress, pure molar and ideal partial molar surface areas
need to be modeled.24 Usually, they are calculated from well-
known relationships as proportional to some power of the pure
molar volume2,8,9,11,19 or the partial molar volume in the ideal
bulk phase.2,8,9,19 Since the latter does not vary with the
composition, then A T p( , )B

id = AB* and eq 20 simplifies to
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A

x
x

lnid
B

B

B
s

B

i
k
jjjjj

y
{
zzzzzγ γ= * + * (21)

Noting that an analogous expression holds for component A
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A

x
x

lnid
A

A
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s

A
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zzzzzγ γ= * + * (22)

equating eqs 21 to 22 allows the estimate Butler’s surface-
phase composition by solving the nonexplicit expression25,26

x x
x x

A

RT
ln

( / )
(1 )/(1 )

( )r
B
s

B

B
s

B

A B AA/Bi
k
jjjjj

y
{
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γ γ
− −

=
* − * *

(23)

where rA/B = AA*/AB*.
Butler’s ideal surface tensions are then obtained by inserting

these xB
s values in eq 21.

Alternatively, solving eq 21 for xB
s and eq 22 for xA

s and
considering that xA

s + xB
s = 1, a nonexplicit equation is obtained

for the calculation of γid. Using these values in eq 21 gives xB
s .

In fact, this alternative way is the most frequently employed.
However, it is not certain that Butler’s ideal surface-phase
compositions thus calculated, and which should be used in eq
19, match those of the corresponding real surface phase. In
other words, it is legitimate to look for hidden assumptions in
the modern derivation of ideal Butler equations leading to eqs
21 and 22. In addition to equating A T p( , )B

id in eq 20 to AB*,
there is no guarantee that the standard value gB

id,0,s in eq 19 is
rigorously composition independent. Indeed, at fixed T and p,
standard states in the ideal surface phase with composition xB

s

should be the pure liquid components under the surface
tension of the ideal mixture at that composition because, as

demonstrated by Rudisill and LeVan,13 only these pure-
component standard states satisfy the GAI.
Finally, it is noticed that Gs in eq 1 is defined as the

Legendre transform of the surface-phase internal energy, Us,
with respect to the variables T and p, Gs = Us − TSs + pVs.
Guggenheim27 made a different choice by introducing the
surface-phase transformed Gibbs energy, herein denoted G’s,
defined as G’s = Us − TSs + pVs − γA = Gs − γA. However, it is
paradoxical that using the differential of G’s does not lead to
the useful Butler equation.

Hidden Approximation. The suspected variation of gB
id,0,s

with the composition can be estimated using the Taylor
formula for a single variable around gB*

,s, which provides a
sound mathematical answer to this question. Its application
gives
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Differentiation of eq 10 in order of γB* gives
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The Gibbs−Duhem equation for the surface phase of pure
liquid B is27

S T V p Ad d d d 0,s ,s
B B Bγ μ− + * * + * =* *

(26)

Division by dγB* at fixed T and p gives
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Hence, eq 25 simplifies to
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Singling out the first summation term in eq 24 and considering
eq 28 leads to

g g
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By noting that (∂AB*/∂γB*)T,p > 0 is a thermodynamic
requirement for a stable surface phase,28 even disregarding
the higher-order terms of Taylor expansion, one concludes that
gB
id,0,s ≠ gB*

,s for xB
s < 1. In other words, Butler’s assumption of

constant standard states gi
0,s while the composition is changed

at fixed T and p conceals a presumably small approximation.
On the other hand, Butler’s approach leading to eq 20 for γid

does not provide a clue to calculate A T p( , )B
id , which has

been considered constant and equal to AB*. However, using an
advanced thermodynamic treatment,18 A T p( , )B

id and

A T p( , )A
id have been calculated for the system water (A)−

ethanol (B) at 298 K and shown to vary slightly with the
composition. Over the full range from pure water to pure
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ethanol, A T p( , )A
id increases 6% and A T p( , )B

id decreases 2%
(see Table S2 of ref 18).

■ ALTERNATIVE EQUATION
Ideal Surface Phase. According to the Lewis−Randall

formulation of chemical thermodynamics, the chemical
potential of B in a bulk ideal mixture is

T p RT x( , ) lnB
id

B Bμ μ= * + (30)

It is reasonable to base the formulation of surface ideality on
the following expression11−13

T p RT x( , , ) lnB
id

B
id,0,s id

B
sμ μ γ= + (31)

Then, at equilibrium

T p RT
x
x

( , , ) lnB B
id,0,s id B

s

B
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y
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zzzzzμ μ γ* − =

(32)

Turning to the Taylor formula, standard chemical potentials
become related as follows
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Separating the first term and considering eq 27 give
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Assuming constant surface thickness of a pure liquid, it is
shown in the Supporting Information that4,11
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Inserting the latter result into eq 34 leads to
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Recalling the series expansion
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and setting the variable x as
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one finds that
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Finally, combining eqs 32 and 40 gives

V
A p V

A
p

RT
A

x
x( / )

ln 1
( )

ln
T T

B

B

id
B

B

B

B

B
s

B

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

i
k
jjjjj

y
{
zzzzz

γ γ*

∂ * ∂
+

− *
*

∂ *
∂

= *

(41)

Bearing in mind that e(c In z) = zc, eq 41 is transformed into
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where (∂AB*/∂p) can be estimated using the model-based eq
S7.
Since an analogous equation holds for xA

s and recalling xA
s +

xB
s = 1, γid can be computed from the resulting nonexplicit
expression and thereby the surface-phase composition
calculated. Although eqs 40 and 42 are not new,11 the
foregoing proof is shorter. Note that this alternative approach
is not amenable to yield an explicit equation for γid as eq 21 nor
an equation for xB

s similar to eq 23, which are both proper to
Butler’s approach.

■ RESULTS AND DISCUSSION
Considering a given binary system at fixed T, p, and xB, it is
clear that calculated values for xB

s and γid depend on the chosen
model, the Butler equation, or the alternative equation.
However, these models are not too dissimilar. Indeed,
inasmuch as ln(1 − x) ≈ −x for |x| < 1, x being given by eq
39, eq 41 reduces to eq 21, a fact appreciated by other
authors,29,30 and consequently xB

s (Butler’s approach) ≈ xB
s

(alternative approach). Considering eqs 39, S9, and S10, this
equivalence is best for binary systems of components with not
significantly different surface tensions, large molar volumes,
and low isothermal compressibilities. This same outcome arises
from retaining only the first term of Taylor expansion in eq 33,
which amounts to considering (∂AB*/∂p)T null (see eq 36).
Equivalently, in view of eqs 28 and 35, (∂gB*

,s/γB*)T,p = 0 for an
incompressible surface phase so that from eq 29, gB

id,0,s = gB*
,s,

which is Butler’s nonstated assumption. This is an important
result on the account of Rusanov’s harsh criticism of Butler’s
model “because it involves compressible bulk phases and
incompressible monolayer”.10 It is underlined that the
alternative model makes provision for compressible surface
phases. Present arguments have been based on ideal surface
properties that provide reference values for estimating excess
quantities. Excess surface tensions γE = γ − γid are linked to
surface-phase activity coefficients.31 Hence, any approximation
made while computing Butler’s ideal surface tension values will
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be included in Butler’s activity coefficients to describe real
surfaces.
Comparison of Models. Two binary systems were used to

compare ideal surface tension and the surface composition
predicted by Butler’s and alternative equations. Labeling B as a
surface-active constituent, the examined systems are water
(A)−ethanol (B) at 298.15 K, which is a mixture of molecular
liquids, and the liquid alloy cooper (A)−tin (B) at 1400 K.
Molar surface areas of the pure components were estimated on
the basis of hexagonally close-packed disks in a monolayer of
close-packed equal spheres (packing factor f i(hcp) =
1.091);7,32 additional calculations were made using the packing
factor for cubic cells f i(cc) = 1.000, as recommended by

Kaptay19,33 for simple liquid metals, and which is also
employed for molecular liquids.8 The required physical data
for water and ethanol (refs 34−36) and for copper and tin
(refs 37−39) are presented in Table S1. For Butler’s model
values, xB

s was calculated using eq 23, and then eq 21 was
employed to obtain γid. For the alternative model values, an
equivalent procedure was used, namely, resorting to eq 42 and
its analogue for xA

s and solving xA
s + xB

s = 1 for γid. Plots of ideal
surface tension ( f i(hcp) = 1.091) and the difference between
surface compositions, expressed as % deviation, calculated by
both models against the bulk concentration are shown in
Figures 1 and 2, respectively, for both binary systems.

Figure 1. Ideal surface tension, γid, versus the bulk mole fraction of component B, xB. Solid lines for the alternative model and broken lines for
Butler’s model. Surface packing factor f i(hcp) = 1.091.

Figure 2. Difference between estimated surface mole fractions by the alternative and Butler’s equation expressed as % deviation from the alternative
model. Surface packing factor f i(hcp) = 1.091.
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Figure 1 shows that Butler’s ideal surface tensions are
marginally larger than those calculated with the alternative
equation. Consequently, the corresponding excess surface
tensions are slightly different.
The unexpected behavior observed in Figure 2 deserves

some clarification. Indeed, solving eq 21 for Butler’s xB
s values,

dividing by eq 42 for the alternative xB
s values, and taking

logarithms and resorting to the series expansion

xln(1 ) n
x
n1

n

− = − ∑ =
∞ (|x| ≤ 1 and x given by eq 39), yield
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Analysis of eq 43 shows that the first term on the r.h.s. is
positive and the remainder negative; the magnitude of the
remainder decreases with increasing xB since (γ

id − γB*) varies
between (γA* − γB*) and zero. Therefore, xB

s (Butler) <
xB
s (alternative) for low xB values and opposite for large xB
values. Moreover, since these differences are negligible,
particularly for xB ≥ 0.2, one may conclude that Butler’s
model introduces unimportant errors in the calculated surface-
phase compositions.
The impact of the adopted packing factor on theoretical

calculations of ideal surface tensions was evaluated for both
representative binary systems. The outcome of this analysis is
condensed in Figure 3, which shows that a smaller f i entails
smaller γid values as well as smaller differences between
alternative and Butler’s models. The generally small differences
depend on the composition, being imperceptible at high
concentrations of the surface-active component. The chemical
nature of the mixture components having a noteworthy effect
on γid estimates which depend on the computed molar surface
areas, that are calculated using f i values. In sum, for both binary
systems, γid (Butler, f i = 1) > γid (alternative, f i = 1) > γid

(Butler, f i = 1.091) > γid (alternative, f i = 1.091), despite an
overall modest impact of the packing factor value on the
reliability of Butler’s model.
Finally, one may speculate about the major factor

contributing to the deviation of Butler’s model from the
alternative approach herein presented. Clearly, it is the
isothermal compressibility of the pure compounds, which is

of the order of 1 GPa−1 for molecular liquids,40 while not
amounting to more than a few 0.01 GPa−1 for liquid metals.41

The magnitude difference between isothermal compressibilities
offsets the pure-component surface tension differences γH2O* −
γEtOH* = 49.72 mN m−1 and γCu* − γSn* = 801 mN m−1, resulting
in minor deviations of γid and xB

s for both systems.

■ CONCLUSIONS

The Butler equation merits a good score in this examination.
As widely acknowledged, it has provided a good basis to
estimate the surface tension and the surface-phase composition
of planar liquid mixtures. The Butler equation is, herein,
deduced using formal thermodynamics allowing the disclosure
of an underlying hidden approximation. This consists of
implicitly assuming that in the thermodynamic description of
surface phases at fixed T and p, the standard-state values of
mixture constituents are not affected by the surface tension
variation that accompanies composition changes. An alter-
native equation allowing for the effect of surface tension on
surface standard chemical potentials is worked out. It is shown
that it reduces to the conventional Butler equation when molar
surface areas of the pure components are not affected by
surface tension or pressure variations. Interestingly, this
conclusion corroborates Rusanov’s10 inference that the Butler
equation is only exact for incompressible surface phases.
Summing up, even though imperfect, the Butler equation has

the advantage of providing an explicit and mathematically
simple expression for the surface tension of liquid mixtures.
This feature has allowed various surface phenomena to be
successfully modeled2,19,26,42−46 while employing the Butler
equation. It has been, herein, demonstrated that it can
continue to be confidently applied because of the small,
largely inconsequent numerical errors involved.
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Derivation of eqs 35 and 36 and physical properties of
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Figure 3. Effect of the packing factor f i-value on the difference between calculated ideal surface tensions by the alternative and Butler’s models,
expressed as % deviation from the alternative model for (⧫), f i(hcp) = 1.091 and (●), f i(cc) = 1.000.
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