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Abstract. Some properties of the solutions of free boundary problems of obstacle-
type with two phases are considered for a class of heterogeneous quasilinear elliptic

operators, including the p-Laplacian operator with 1 < p < ∞. Under a natural
nondegeneracy assumption on the interface, when the level set of the change of phase

has null Lebesgue measure, a continuous dependence result is proved for the charac-
teristic functions of each phase and sharp estimates are established on the variation
of its Lebesgue measure with respect to the L1-variation of the data, in a rather
general framework. For elliptic quasilinear equations whose heterogeneities have ap-
propriate integrable derivatives, it is shown that the characteristic functions of both

phases are of bounded variation for the general data with bounded variation. This

extends recent results for the obstacle problem and is a first result on the regularity
of the free boundary of the heterogeneous two phases problem, which is therefore an

interface locally of class C1 up to a possible singular set of null perimeter.

§1. Introduction

We consider stationary free boundary problems with two phases in the form

(1.1) Au + λ+χ{u>0} − λ−χ{u<0} = f a.e. in Ω

associated with a quasilinear elliptic operator of p-Laplacian type

(1.2) Au = −div
(
a(x,∇u)

)
,

where Ω is a bounded open connected subset of Rn, n ≥ 2, and the vector field

a(x, η) : Ω× Rn → Rn

is Lipschitz continuous in x ∈ Ω and continuous differentiable in η ∈ Rn \ {0}. Here
f = f(x) and λ± = λ±(x) ≥ 0 are given bounded functions, and χ{u>0}, χ{u<0} denote
the characteristic functions of each phase

{u > 0} =
{
x ∈ Ω : u(x) > 0

}
and {u < 0} =

{
x ∈ Ω : u(x) < 0

}
.

In the special linear homogeneous case of the Laplacian A = −∆ with f ≡ 0 and
constant λ± > 0, the whole free boundary

(1.3) Φ = Ω ∩
(
∂{u > 0} ∪ ∂{u < 0}

)
has finite (n − 1)-dimensional Hausdorff measure (Hn−1(Φ) < ∞), as it was shown by
Weiss [25], and is locally the union of two C1-surfaces in the neighborhood of each “branch
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point” (see [17]). In the recent monograph [16], the characterization of free boundary
points and the analysis of their properties show that the regular and singular one-phase
points ∂{u > 0} \ ∂{u < 0} and ∂{u < 0} \ ∂{u > 0} are locally as in the obstacle
problem, while the two-phase free boundary points ∂{u > 0} ∩ ∂{u < 0} may be branch
points if |∇u| = 0, or, by the implicit function theorem, open portions of C1,α graphs
where |∇u| > 0, which have been shown to be in fact locally real-analytic.

However, these results cannot be expected to be true always in the case of nonhomo-
geneous coefficients and more general operators of the type (1.2). In the general case,
problem (1.1) was introduced and treated as a variational inequality by Duvaut and Lions
in the framework of temperature control problems regulated by interior heat injection
(see [9, Chapter 2]). In fact, (1.1) can be regarded as a model for the control of the
interface in the steady-state two-phase Stefan problem:

(1.4) Φ0 = {u = 0} = {x ∈ Ω : u(x) = 0},

i.e., of the level set of the melting stationary temperature u separating the liquid phase
{u > 0} from the solid phase {u < 0} (see, for instance, [19] and the references therein).

In general, we may have Φ0 ) Φ and (1.1) should be regarded as a quasilinear partial
differential equation with discontinuous nonlinearities

(1.5) Au ∈ F (x, u) a.e. in Ω,

where F (x, u) : Ω× R → R is a monotone decreasing function in u for a.e x ∈ Ω (see [7]
or [20]).

In §2, we use a natural regularization of the Heaviside function to solve (1.5) with
the additional mixed boundary conditions, which allows us to characterize equation (1.5)
with the right-hand side f − ζ(u) ∈ F (u) with a bounded function ζ ∈ ∂J(u) related to
the characteristic functions of {u > 0} and {u < 0}. Indeed, ζ is given as the element of
the subdifferential in u of the convex functional

(1.6) J(v) =
∫

Ω

[
λ+(x) v+(x) + λ−(x) v−(x)

]
dx,

where v+ = max(v, 0) and v− = (−v)+.
Although the classical theory of monotone operators [14] yields the existence, unique-

ness, and global continuous dependence of the solution of our problems, using the L1-
theory we can obtain an additional interesting estimate on the phase variations. This
extends the remark of [21], obtained for the one obstacle problem, to the two phases
problem in the case of nondegenerate interfaces, i.e., essentially when Φ = Φ0, for which
we provide sufficient conditions on the data λ± and f in order to hold that nondegener-
acy. These results complement, in §3, the general remarks on the stability of both phases
in terms of their characteristic functions under a natural nondegeneracy condition.

Finally, in §4, we give bounded variation estimates on Au, by extending to the two-
phase heterogeneous case the results obtained earlier in [4] and [6] for the one obstacle
problem. This estimate provides the regularity of the nondegenerate free boundary,
which, outside a possible singular set of null perimeter, is locally of class C1. These
results are new even for the homogeneous p-Laplacian operator (1 < p < ∞) and for
linear second order partial differential operators with Lipschitz coefficients, and are valid
for general bounded data f, λ± with bounded variation, with their sum λ+ +λ− positive,
continuous, and having integrable derivatives.
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§2. Approximation and continuous dependence of the solution

In this paper we suppose the standard structural assumptions, with 1 < p < ∞, for
the operator A given by (1.2), with a(x, 0) = 0 and

n∑
i,j=1

∂ai

∂ηj
(x, η) ξiξj ≥ γ0

(
κ + |η|2

) p−2
2 |ξ|2,(2.1)

n∑
i,j=1

∣∣∣∣∂ai

∂ηj
(x, η)

∣∣∣∣ ≤ γ1

(
κ + |η|2

) p−2
2 ,(2.2)

∣∣a(x1, η)− a(x2, η)
∣∣ ≤ γ2|x1 − x2|

(
κ + |η|2

) p−1
2(2.3)

for some κ ∈ [0, 1] and some positive constants γ0, γ1, γ2, for x ∈ Ω, η ∈ Rn \ {0} and
for all ξ = (ξ1, . . . , ξn) ∈ Rn. It is well known that this implies the existence of γ > 0
such that (see [23, Lemma 1])

(2.4)
n∑

i=1

(
ai(x, η)− ai(x, ξ)

)
(ηi − ξi) ≥ γ

{(
κ + |η|+ |ξ|

)p−2 |η − ξ|2 if p ≤ 2,
|η − ξ|p if p ≥ 2.

Therefore, in particular, we cover the heterogeneous quasilinear operators of the p-
Laplacian type when κ = 0,

Au = −div
(
M(x)

(
κ + |∇u|2

) p−2
2 ∇u

)
,

where M(x) may be a Lipschitz continuous positive definite matrix uniformly in x ∈ Ω̄,
and it may also include, for p = 2, linear second order operators with variable coefficients
Mij(x) in divergence form.

We assume that the boundary ∂Ω = ΓD ∪ ΓN is Lipschitz, where the two regular
components are such that Hn−1(ΓD) > 0, with Hn−1 denoting the (n − 1)-dimensional
Hausdorff measure.

For equation (1.1) we consider mixed Dirichlet and Neumann boundary conditions

(2.5) u = h on ΓD and
∂u

∂νA
= a(∇u) · ~n = g on ΓN .

We assume that

f ∈ L∞(Ω), g ∈ L∞(ΓN ) and h ∈ W 1,p(Ω),(2.6)

λ± ∈ L∞(Ω), λ± ≥ 0 and λ+(x) + λ−(x) > 0 a.e. x ∈ Ω,(2.7)

and introduce the functional framework

Vh =
{
v ∈ W 1,p(Ω) : v = h on ΓD

}
,(2.8)

〈Au, v〉 =
∫

Ω

a(x,∇u) · ∇v and 〈L, v〉 =
∫

Ω

fv +
∫

ΓN

gv, v ∈ V0,(2.9)

Following [9], our problem may now be formulated as the elliptic variational inequality

(2.10) u ∈ Vh : J(v)− J(u) ≥ 〈L−Au, v − u〉, v ∈ Vh.

The standard theory of monotone operators allows us to state that our problem is well
posed in the following sense (see, for instance, [14] or [22]).

Proposition 2.1. Under the assumptions (2.6)–(2.7), there exists a unique solution of
(2.10), and there exists ζ ∈ V ′

0 such that

(2.11) ζ = L−Au ∈ ∂J(u).
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Moreover, for a sequence of data hη → h in W 1,p(Ω), fη → f , and λη± → λ± in Lp′(Ω),
gη → g in Lp′(ΓN ), for the corresponding solutions uη of (2.10) we have uη → u in
W 1,p(Ω) as η →∞.

Remark 2.1. If in (2.5) the Neumann condition is replaced by a two-phase boundary
condition of the type

∂u

∂νA
+ µ+χ{u>0} − µ−χ{u<0} = g on ΓN .

then (2.10) will also be the variational formulation of this problem if we replace J by JN

defined by

JN (v) =
∫

Ω

(λ+v+ + λ−v−) +
∫

ΓN

(µ+v+ + µ−v−).

Although we may expect, from (2.11) and from our departure equation (1.1), that

(2.12) ζ(x) = λ+(x)χ{u>0}(x)− λ−(x)χ{u<0}(x) a.e. in x ∈ Ω,

this characterization may not always hold, in particular when Ln(Φ0) > 0, i.e., if the
mushy region {u = 0} has positive Lebesgue measure.

A first characterization towards (2.12) may be obtained by approximating the solution
u of (2.10) by solutions uε of the regularized equation

(2.13) Auε + λ+Hε(uε)− λ−Hε(−uε) = f in Ω

with the same mixed boundary conditions (2.5). Here ε > 0 and Hε is the Lipschitz
approximation of the Heaviside function

(2.14) Hε(t) = 0, t ≤ 0, Hε(t) =
t

ε
, 0 ≤ t ≤ ε, Hε(t) = 1, t ≥ ε.

Theorem 2.1. A unique solution uε of (2.13), (2.5) is uniformly bounded in W 1,p(Ω)∩
C1,α(Ω) for some α, 0 < α < 1, and is such that, as ε → 0,

uε → u in W 1,p(Ω) ∩ C1,α′(Ω)

for all α′ < α, where u is the solution of (2.10). Moreover,

‖∇(u− uε)‖p
Lp(Ω) ≤ ε Cγ if p ≥ 2,(2.15)

‖∇(u− uε)‖2L2(Ω′) ≤ ε C ′ if 1 < p < 2,(2.16)

where Cγ = 1
γ (‖λ+‖L1(Ω) + ‖λ−‖L1(Ω)) and C ′ > 0 depends on Cγ , on Ω′ ⊂⊂ Ω, and on

an upper bound Λ′α of ‖∇uε‖C0,α(Ω′), but not on ε.

Proof. We remark that

(2.17) −λ−(x) ≤ ζε(x) = λ+Hε(uε)− λ−Hε(−uε) ≤ λ+(x) a.e. x ∈ Ω,

and therefore Auε ∈ L∞(Ω) uniformly in ε > 0. Hence, by the general C1,α local
regularity under the assumptions (2.1)–(2.3), for any Ω′ ⊂⊂ Ω we have (see [12, 8]
or [23])

‖uε‖C1,α(Ω′) ≤ Λ′α independent of ε > 0.

Since, by compactness, there is u ∈ Vh such that, as ε → 0 and for all 0 < α′ < α,

uε ⇀ u in W 1,p(Ω)-weak and in C1,α′(Ω′),

Hε(uε) ⇀ χ+ and Hε(−uε) ⇀ χ− in L∞(Ω)-weak*,

for some functions χ+ and χ− satisfying

0 ≤ χ+(x) ≤ 1 and 0 ≤ χ−(x) ≤ 1 a.e. x ∈ Ω.
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By the uniform convergence of uε and the definition (2.14), in the open subsets {u > 0}
and {u < 0} we have, respectively, χ+ ≡ 1, χ− ≡ 0 and χ+ ≡ 0 and χ− ≡ 1, because this
holds at the interior points of those subsets for Hε(uε) and Hε(−uε) with ε sufficiently
small. Hence,

ζε ⇀ λ+χ+ − λ−χ− in L∞(Ω)-weak*.

Then, as in [9, Chapter 1], passing to the limit in the variational formulation of (2.13),
(2.5)

(2.18)
∫

Ω

a(∇uε) · ∇w +
∫

Ω

ζεw =
∫

Ω

fw +
∫

ΓN

gw, w ∈ V0,

we may show that u is a unique solution of (2.10). Then, by (2.10) and (2.11) we may
conclude that

(2.19) ζ = λ+χ+ − λ−χ− a.e. in Ω,

by the definition of the subdifferential, and we have

(2.20)
∫

Ω

a(∇u) · ∇w +
∫

Ω

ζw =
∫

Ω

fw +
∫

ΓN

gw, w ∈ V0.

Consequently, we obtain

(2.21)
∫

Ω

[
a(∇u)− a(∇uε)

]
· ∇(u− uε) =

∫
Ω

(ζε − ζ) (u− uε).

In order to estimate the right-hand side, we start with the term corresponding to the
positive phase:∫

Ω

λ+

[
Hε(uε)− χ+

]
(u− uε)

≤
∫
{u>0}

λ+

[
Hε(uε)− 1

]
(u− uε) +

∫
{u=0}

λ+

[
Hε(uε)− χ+

]
(−uε)

≤
∫
{u>0}

λ+

[
Hε(uε)− 1

]
(−uε)

+
∫
{u=0}∩{uε<0}

λ+χ+uε +
∫
{u=0}∩{uε>0}

λ+

[
Hε(uε)− 1

]
(−uε)

≤ ε‖λ+‖L1(Ω)

by the property 1−Hε(t)t ≤ ε for t ∈ R, and because, as we have seen,

(2.22) 0 ≤ χ{u>0} ≤ χ+ ≤ 1− χ{u<0} a.e. in Ω.

Repeating the symmetric argument for the negative phase, we conclude that∫
Ω

(ζε − ζ) (u− uε) ≤ ε
(
‖λ+‖L1(Ω) + ‖λ−‖L1(Ω)

)
and (2.15) follows immediately from (2.21) and (2.4) with p ≥ 2. For 1 < p < 2, we
apply (2.4) in Ω′ ⊂⊂ Ω and, using the a priori bound for the gradients in Ω′, we easily
get (2.16) with C ′ = (2Λ′α)2−p(‖λ+‖L1(Ω) + ‖λ−‖L1(Ω))/γ. The strong convergence in
W 1,p(Ω) is now an easy consequence of those estimates. �

Remark 2.2. By the C1,α estimates up to the boundary (see [13]), if the boundary is
of class C1,γ , for the Dirichlet problem (ΓN = ∅), if h ∈ C1,γ(∂Ω), 0 < γ < 1, then
the solution u belongs to C1,α(Ω), 0 < α < γ, and, as a consequence, estimate (2.16) is
valid in the entire Ω. Analogously, for the Neumann problem (ΓD = ∅), under certain
compatibility conditions on the data (see [1]), we may obtain also C1,α-regularity up to
the boundary for g ∈ C0,γ(∂Ω), 0 < γ < 1.
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Remark 2.3. As a consequence of the proof of Theorem 2.1, the solution u of (2.10) also
solves (1.1) in a weak form

(2.23) Au + λ+χ+ − λ−χ− = f a.e. in Ω,

with the boundary conditions (2.5) with bounded functions χ+ and χ− satisfying (2.22)
and 0 ≤ χ{u<0} ≤ χ− ≤ 1− χ{u>0} a.e. in Ω.

Remark 2.4. When κ > 0 in (2.1)–(2.2), we can guarantee that the solution u has
integrable second derivatives, namely (see, e.g., [23, Proposition 1])

u ∈ H2
loc(Ω) if p ≥ 2 and u ∈ W 2,p

loc (Ω) if p ≤ 2.

§3. Stability of the phases under nondegeneracy

In general, we cannot preclude a “thick interface” Φ0, and by (2.22) and Remark 2.3
it is clear that

{0 < χ+ < 1} ∪ {0 < χ− < 1} ⊂ {u = 0} = Φ0,

where these possible nonempty subsets are defined up to null sets for the Lebesgue
measure Ln. Hence, a natural nondegeneracy condition is

(3.1) Ln(Φ0) = meas{u = 0} = 0,

which is obviously equivalent to

(3.2) χ+ = χ{u>0} and χ− = χ{u<0} a.e. in Ω.

For the class of differential operators with the property

(3.3) Av = Aw a.e. in {v = w},

it is simple to provide a sufficient condition on the external force f in order to generate
the nondegeneracy condition (3.1):

(3.4) f(x) > λ+(x) or f(x) < −λ−(x), a.e. x ∈ Ω.

Indeed, by (2.23) and (2.19), if u is a solution to the two-phase problem (2.11) with an
operator satisfying (3.3), with meas{u = 0} > 0, then we have Au = 0 a.e. in {u = 0},
and therefore

−λ− ≤ λ+χ+ − λ−χ− = f ≤ λ+ a.e. in {u = 0},
which contradicts (3.4).

Therefore we have shown the following interesting result.

Proposition 3.1. Under the assumptions (3.3) and (3.4), the interface Φ0 has zero
Lebesgue measure, i.e., (3.1) holds true.

Remark 3.1. Property (3.3) is associated with the local regularity of the solutions v and
w. For operators in the class (2.1)–(2.3) with κ > 0, for bounded data f , the standard
regularity of nonlinear operators yields the integrability of the second order derivatives
(see, e.g., [12, 15] or [23]), because the vector field a(x, η) is Lipschitz continuous in x,
as was recalled in Remark 2.4. Similarly, for κ = 0 and p ≤ 2, in particular, for linear
operators and the singular heterogeneous p-Laplacian operator, the local regularity still
implies condition (3.3). However, for κ = 0 and p > 2, i.e., for the heterogeneous p-
Laplacians of degenerate type, the integrability of the second order derivatives fails, but
we still have (3.3) by a well known theorem of Stampacchia and, knowing that, we may
prove that a(·,∇u(·)) ∈ (W 1,p/(p−1)

loc (Ω))n by the usual methods of [12, 15] or [23].
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Another immediate consequence of (3.1) and (3.2) is

(3.5) χ{u>0} = 1− χ{u<0} a.e. Ω,

and the strong approximation of the characteristic functions of both phases follows easily
from (2.13):

Hε(uε) → χ{u>0} and Hε(−uε) → χ{u<0} in Lq(Ω), q < ∞.

Indeed, we already know that these convergences hold weakly, and for q ≥ 2 it suffices
to check the convergence of Lq-norms. This follows from∫

Ω

χ{u>0} = lim
ε→0

∫
Ω

Hε(uε) ≥ lim sup
ε→0

∫
Ω

Hq
ε (uε)

≥ lim inf
ε→0

∫
Ω

Hq
ε (uε) ≥

∫
Ω

χq
{u>0} =

∫
Ω

χ{u>0},

(3.6)

and similarly for Hε(−uε) towards χ{u<0}.
As in the one obstacle problem (see [18] and [21]), these arguments give also a kind

of stability of the two phases in terms of their characteristic functions.

Theorem 3.1. Let (uη, χη+, χη−) be a solution of (2.23), (2.5) that corresponds to the
data fη, gη, hη, λη± and converging, as in Proposition 2.1, to a solution u of the limit
problem (1.1)–(2.5), under condition (3.2). Then

χη+ → χ{u>0} and χη− → χ{u<0} strongly in Lq(Ω), q < ∞,(3.7)

χ{uη>0} → χ{u>0} and χ{uη<0} → χ{u<0} strongly in Lq(Ω), q < ∞.(3.8)

Proof. Let, for some subsequence,

χη+ ⇀ χ∗+ and χη− ⇀ χ∗− in L∞(Ω)-weakly*.

Since we know that χη+ = 0 in {uη < 0}, we conclude that

0 ≤ χ∗+ ≤ 1− χ{u<0} a.e. in Ω

from the convergence

0 =
∫

Ω

u−η χη+ →
∫

Ω

u−χ∗+ = 0.

Since also χη+ = 1 in {uη > 0}, taking an arbitrary measurable set O ⊂ Ω, we have∫
O

u+
η χη+ =

∫
O

u+
η →

∫
O

u+.

On the other hand, since u+
η → u+ in Lq(Ω) for any q < +∞, and∫

O
u+

η χη+ →
∫
O

u+χ∗+,

we obtain
∫
O u+χ∗+ =

∫
O u+ for all O ⊂ Ω. Therefore, χ∗+ = 1 a.e. in {u > 0}, and so

0 ≤ χ{u>0} ≤ χ∗+.

Using the assumption (3.2), we conclude that

χ∗+ = χ{u>0} = 1− χ{u<0},

and, symmetrically, also
χ∗− = χ{u<0} = 1− χ{u>0}.

The strong convergences follow as in (3.6) and the same arguments apply by replacing
in the above proof χη+ by χ{uη>0} and χη− by χ{uη<0}, completing the results. �
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Remark 3.2. We stress that the nondegeneracy condition (3.2) is required only for the
limit problem and not for the approximating problems. Therefore, the positive and
negative phases have a kind of weak stability in Lebesgue measure if the interface has
null measure.

In fact, using the L1-contraction property of m-accretive operators in Banach spaces
(see [3]) and extending the stability property of [5] applied to the one obstacle problem
in [18] and [21], we can prove the following estimate.

Theorem 3.2. Let (u, ζ) and (û, ζ̂) denote the solutions of (2.11) corresponding to the
data (f, g) and (f̂ , ĝ), i.e., the solutions of (2.23), (2.5) with the same h and λ± as in
Proposition 2.1. Then

(3.9) ‖ζ − ζ̂‖L1(Ω) ≤ ‖f − f̂‖L1(Ω) + ‖g − ĝ‖L1(ΓN ).

If, in addition, both solutions satisfy the nondegeneracy condition (3.1) and

(3.10) λ+(x) + λ−(x) ≥ µ > 0 a.e. x ∈ Ω,

then

(3.11) meas
(
{u > 0} ÷ {û > 0}

)
≤ 1

µ

(
‖f − f̂‖L1(Ω) + ‖g − ĝ‖L1(ΓN )

)
where ÷ denotes the symmetric difference of sets, B ÷D = (B \D) ∪ (D \B).

Proof. Although estimate (3.9) is well known and is a consequence of the general theory
of m-accretive operators in L1(Ω) (see, for instance, [26] for a Dirichlet problem, or [1]
for a nonlinear Neumann problem), for completeness, we sketch a simple proof for our
mixed problem (see also [5] or [21]).

Multiply the difference of equations (2.23) for u and û,

ζ − ζ̂ = f − f̂ − (Au−Aû) a.e. in Ω,

by the measurable function

s(x) =


−1 on {u < û} ∪ {ζ < ζ̂},
0 on {u = û} ∩ {ζ = ζ̂},
1 on {u > û} ∪ {ζ > ζ̂},

which satisfies s ∈ σ(u − û), where σ denotes the maximal monotone graph of the sign
function (σ = ∂r, r(t) = |t|).

Integrating by parts, we obtain

‖ζ − ζ̂‖L1(Ω) =
∫

Ω

(ζ − ζ̂)s ≤
∫

Ω

(f − f̂)s +
∫

ΓN

|g − ĝ| ≤ ‖f − f̂‖L1(Ω) + ‖g − ĝ‖L1(ΓN ),

because
−

∫
Ω

(Au−Aû)s ≤
∫

ΓN

|g − ĝ|, ∀ s ∈ σ(u− û).

This inequality follows by using the fact that

(Au−Aû)s = (Au−Aû) sign(u− û) a.e. x ∈ Ω

for any s ∈ σ(u − û), by (3.3), and considering a smooth approximation σε(t) →ε→0

sign(t) with the boundary conditions (2.5) for u and û in integration by parts.
Finally, under condition (3.1) we have

ζ = λ+χ+ − λ−χ−

with
χ+ = χ{u>0} = 1− χ{u<0} = 1− χ−
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with similar definitions for ζ̂ with χ̂+ = χ{û>0} and χ̂− = χ{û<0} = 1− χ̂+.
Taking (3.10) into account, we immediately obtain (3.11) from estimate (3.9) and the

following inequality a.e. in Ω:

|ζ − ζ̂| =
∣∣λ+(χ+ − χ̂+)− λ−(χ− − χ̂−)

∣∣ =
∣∣(λ+ + λ−) (χ+ − χ̂+)

∣∣ ≥ µ|χ+ − χ̂+|. �

Remark 3.3. Inequality (3.11) can be used to estimate the free boundary stability when-
ever Φ0 = {u = 0} and Φ̂0 = {û = 0} are nondegenerate and both u and û have a
monotonicity property, for instance, if uxn

= ∂u
∂xn

≥ 0 and ûxn ≥ 0. Hence in a cylinder
subdomain D = ω × (−L, L) ⊂ Ω containing Φ0 and Φ̂0, we may define the following
upper semicontinuous functions of x′ ∈ ω:

ϕ(x′) = inf
{
xn : u(x′, xn) > 0

}
and ϕ̂(x′) = inf

{
xn : û(x′, xn) > 0

}
,

and from (3.11) we see that

(3.12) ‖ϕ− ϕ̂‖L1(ω) =
∫

D

∣∣χ{u>0} − χ{û>0}
∣∣ ≤ 1

µ

(
‖f − f̂‖L1(Ω) + ‖g − ĝ‖L1(ΓN )

)
≡ δ.

If, moreover, u and û are such that, for some ε > 0,

ue = ∇ · e ≥ 0 and ûe ≥ 0, ∀ e ∈ Cε =
{
x ∈ Rn : xn > ε|x′|

}
,

i.e., are monotone in some cone with axis en and opening 2 arctan(1/ε), then, under
assumption (3.1), the free boundaries may be locally given by Lipschitz graphs,

Φ0 ∩D =
{
xn = ϕ(x′), x′ ∈ ω

}
and Φ̂0 ∩D =

{
xn = ϕ̂(x′), x′ ∈ ω

}
with |∇′ϕ| ≤ ε and |∇ϕ̂| ≤ ε. Then, arguing as in [18, Theorem 6:5.3, p. 200], using
(3.12) and the Gagliardo–Nirenberg interpolation inequality, we may also estimate the
Hölder norm:

‖ϕ− ϕ̂‖C0,α(ω) ≤ Cε δ
1−α

n for any 0 ≤ α < 1.

§4. Regularity of the free boundary

In order to obtain the local boundedness of the Hn−1-measure of the essential nonde-
generate free boundary Φ0, we shall require a weak differentiability of the data:

(4.1) f and λ± are in BVloc(Ω),

i.e., are of bounded variation in Ω′ for all Ω′ ⊂⊂ Ω in the sense that

‖∇f‖(Ω′) = sup
{ ∞∑

i=1

∫
Ω′

f div ~ϕ; ~ϕ ∈ C∞
c (Ω′)n, ‖~ϕ‖∞ ≤ 1

}
< ∞.

We also require that, for some κ ∈ [0, 1],
n∑

i,j=1

∣∣∣∣ ∂2ai

∂xi ∂xj
(x, η)

∣∣∣∣ ≤ γ3

(
κ + |η|2

) p−1
2 ,(4.2)

n∑
i,j,`=1

∣∣∣∣ ∂2a`

∂ηj ∂xi
(x, η)

∣∣∣∣ ≤ γ4

(
κ + |η|2

) p−2
2 ,(4.3)

for positive constants γ3, γ4, for a.e. x ∈ Ω and all η ∈ Rn.

Theorem 4.1. Let u be the solution of (2.10) under the assumptions of Theorem 2.1.
If (4.2) and (4.3) are true, then

(4.4) Au ∈ BVloc(Ω).
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Proof. We recall from (2.20) and the proof of Theorem 2.1 that u can be approximated by
the solution uε of (2.13), where now we replace λ+, λ− and f by smooth approximations
λε+, λε− and fε with their gradients bounded in L1

loc(Ω) uniformly in ε, by assumption
(4.1). Hence, we have

Auε = fε − λε+Hε(uε) + λε−Hε(−uε) ⇀
ε→0

f − λ+χ+ + λ−χ− = Au

in Lq(Ω)-weak for all q < ∞, and it suffices to show that

(4.5)
∫

ω

∣∣(Auε)x`

∣∣ ≤ Cω, ` = 1, . . . , n,

for an arbitrary ω ⊂⊂ Ω and some constant Cω > 0 independent of ε > 0.
Consider a cut-off function ϕ ∈ C∞

c (Ω) such that ϕ ≡ 1 in ω and 0 ≤ ϕ ≤ 1 in Ω. Let
σδ(t), δ > 0, be a smooth approximation to sign(t), i.e., |σδ(t)| ≤ 1, σ′δ ≥ 0, σδ(0) = 0
and limδ→0 σδ(t) = sign(t). Observe that σδ(uεx`

) uεx`
is a nonnegative function and

lim
δ→0

H ′
ε(±uε) uεx`

σδ(uεx`
) =

∣∣(Hε(±uε)
)
x`

∣∣ a.e. in ω.

From the approximating equation (2.13) we find

(4.6) (Auε)x`
= Fε −

[
λε+H ′

ε(uε) + λε−H ′
ε(−uε)

]
uεx`

,

where Fε = fεx`
− (λε+)x`

Hε(uε) + (λε−)x`
Hε(−uε) is uniformly bounded in L1

loc(Ω).
Hence, if we prove that

(4.7)
∫

Ω

ϕ σδ(uεx`
) (−Auε)x`

≤ Cϕ, ` = 1, . . . , n,

for some constant Cϕ > 0 independent of ε and δ, we shall obtain (4.5) from the estimate∫
Ω

ϕ
[
λε+

∣∣∣(Hε(uε)
)
x`

∣∣∣ + λε−

∣∣∣(Hε(−uε)
)
x`

∣∣∣]
= lim

δ→0

∫
Ω

ϕ
[
λε+H ′

ε(uε) + λε−H ′
ε(−uε)

]
uεx`

σδ(uεx`
)

= lim
δ→0

∫
Ω

ϕ σδ(uεx`
)
[
Fε − (Auε)x`

]
≤

∫
Ω

ϕ|Fε|+ Cϕ

by recalling that λε+ and λε− are nonnegative and uniformly bounded.
Finally, in order to prove the remaining estimate (4.7), we integrate by parts as in [6]:∫

Ω

ϕ σδ(uεx`
) (Auε)x`

= −
∫

Ω

[
a(x,∇uε)

]
x`
· ∇

[
ϕ σδ(uεx`

)
]

= −
n∑

i=1

∫
Ω

∂ai

∂x`
(x,∇uε)

(
ϕ σδ(uεx`

)
)
xi

−
n∑

i,j=1

∫
Ω

∂ai

∂ηj
uεx`xj

ϕxi
σδ(uεx`

)

−
n∑

i,j=1

∫
Ω

∂ai

∂ηj
uεx`xj

uεx`xi
σ′δ(uεx`

) ϕ

= J1 + J2 + J3.

(4.8)
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Using the structural assumptions, we have

J1 =
n∑

i=1

∫
Ω

(
∂2ai

∂x` ∂xi
+

n∑
j=1

∂2ai

∂x` ∂ηj
uεxjxi

)
ϕ σδ(uεx`

)

≤ γ3

∫
Ω

(
κ + |∇uε|2

) p−1
2 ϕ + γ4

∫
Ω

(
κ + |∇uε|2

) p−2
2 |D2uε|ϕ ≤ 1

2
Cϕ,

J2 ≤ γ1

∫
Ω

(
κ + |∇uε|2

) p−2
2 |D2uε| |∇ϕ| ≤ 1

2
Cϕ,

J3 ≤ −γ0

∫
Ω

(
κ + |∇uε|2

) p−2
2 |∇uεx`

|2 σ′δ(uεx`
) ϕ ≤ 0,

where the choice of Cϕ > 0 independently of ε is possible because |∇uε| ∈ L∞loc(Ω), which
bound is independent of κ and ε, and uε ∈ H2

loc(Ω) uniformly in ε when κ > 0.
Since this last estimate fails in general for κ = 0, we need to estimate J1 and J2

independently of ε > 0, with the help of Lemma 4.1 below, with κ = ε, where uε is now
an approximating solution of (2.13), (2.5) with A regularized by Aε, with each aε(x, η)
satisfying (2.1)–(2.3) and (4.2)–(4.3) with κ = ε > 0. �

Lemma 4.1. Under the assumptions (4.1)–(4.3) and (2.1)–(2.3) we have the estimate

(4.9)
∫

Ω′

[(
κ + |∇uε|2

) p−2
2 |D2uε|

]2

≤ C ′, ∀Ω′ ⊂⊂ Ω,

where the constant C ′ > 0 depends on ‖∇f‖(Ω′′), ‖∇λ±‖(Ω′) and ‖∇uε‖L∞(Ω′′) with
Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, but is independent of κ ∈ (0, 1] and ε > 0.

Proof. Let G = G(t) be a smooth, odd, monotone nondecreasing function, and let ϕ ∈
C∞

c (Ω), ϕ ≥ 0. Since G(uεx`
) uεx`

≥ 0, if we multiply (4.6) by ϕ2G(uεx`
) and integrate

in Ω, then we obtain, as in (4.8),

(4.10)
∫

Ω

[
a(x,∇uε)

]
x`
· ∇(ϕ2G(uεx`

)) ≤
∫

Ω

Fε ϕ2 G(uεx`
).

Setting tε = (κ + |∇uε|2)1/2 and developing the left-hand side
n∑

i=1

∫
Ω

∂ai

∂x`

(
ϕ2G(uεx`

)
)
xi

+
n∑

i,j=1

∫
Ω

∂ai

∂ηj
uεx`xj

(
ϕ2G′(uεx`

)uεx`xi + 2 ϕ ϕxi G(uεx`
)
)
,

we use the structural assumptions (2.1)–(2.2) and (4.2)–(4.3) to obtain, from (4.10), for
` = 1, . . . , n:

γ0

∫
Ω

tp−2
ε |∇uεx`

|2ϕ2 G′(uεx`
) ≤

n∑
i,j=1

∫
Ω

∂ai

∂ηj
uεx`xi

uεx`xj
ϕ2 G′(uεx`

)

≤
∫

Ω

[
Fε −

n∑
i=1

(
∂2ai

∂x` ∂xi
+

n∑
j=1

∂2ai

∂x` ∂ηj
uεxjxi

)]
ϕ2 G(uεx`

)

−
n∑

i,j=1

∫
Ω

∂ai

∂ηj
uεx`xj 2 ϕ ϕxi G(uεx`

)

≤ C ′
ϕ

∫
Ω

[(
|Fε|+ γ3 tp−1

ε

)
ϕ + (ϕ γ4 + γ1) tp−2

ε |D2uε|
]
ϕ|G(tε)|,

(4.11)

because |G(uεx`
)| ≤ |G(tε)|.
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For p ≥ 2, we set G(t) = t and from (4.11) we see that

γ0

∫
Ω

tp−2
ε |D2uε|2ϕ2

≤ n C ′
ϕ

∫
Ω

ϕ2
[(
|Fε|+ γ3 Mp−1

ϕ

)
+ (ϕ γ4 + γ1) tp−2

ε |D2uε|ϕ
]
Mϕ,

where Mϕ = ‖tε‖L∞(supp ϕ) may be chosen independent of ε and κ.
By the Cauchy–Schwartz inequality and the monotonicity of tp−2, we have∫

Ω′

[
tp−2
ε |D2uε|

]2 ≤ Mp−2
ϕ

∫
Ω

tp−2
ε |D2uε|2 ϕ2

≤ Mp−1
ϕ C ′′

(
1 + Mp−1

ϕ +
∫

Ω

|Fε|ϕ2

)
,

provided ϕ ≥ 1 in Ω′, which proves (4.9), because |Fε| ≤ |∇fε| + |∇λ+ε| + |∇λ−ε| and
f , λ+, and λ− are locally of bounded variation.

For 1 < p < 2, we set G(t) = (ε + t2)
p−2
2 t and since G′(t) ≥ (p− 1) (ε + t2)

p−2
2 , from

(4.11) with sε = (ε + |uεx`
|2)1/2 ≤ tε and ` = 1, . . . , n we get

γ0(p− 1)
∫

Ω

sp−2
ε tp−2

ε |∇uεx`
|2ϕ2

≤ C ′
ϕ

∫
Ω

[(
|Fε|+ γ3 tp−1

ε

)
ϕ + (ϕ γ4 + γ1) tp−2

ε |D2uε|
]
ϕ tp−1

ε .

Again using the Cauchy–Schwartz inequality and observing that now sp−2
ε ≥ tp−2

ε , we
may conclude as before that∫

Ω

[
tp−2
ε |D2uε|

]2
ϕ2 ≤ C∗Mp−1

ϕ

(
Mp−1

ϕ +
∫

Ω

|Fε|ϕ2

)
. �

As a consequence of equation (1.1), in the nondegenerate interface case, using (3.5),
we may write

(4.12) χ{u>0} =
f −Au + λ−

λ+ + λ−
a.e. in ω,

where we have introduced the subset

(4.13) ω =
{
x ∈ Ω : (λ+ + λ−)(x) > 0

}
.

Assuming now that

(4.14) λ+ + λ− ∈ C(Ω) ∩W 1,1
loc (Ω),

as an immediate consequence of Theorem 4.1, from (4.12) it follows that the characteristic
functions χ{u>0} and χ{u<0} of both phases are locally of bounded variation in ω and,
by a well-known theorem of De Giorgi (see, e.g., [11]), this yields the following regularity
of the free boundary.

Theorem 4.2. Under the structural conditions (2.1)–(2.3), (4.2)–(4.3) on the heteroge-
neous operator A and the assumptions (2.6)–(2.7), (4.1), and (4.14), where the interface
is nondegenerate, i.e., if Ln(Φ0 ∩ ω) = 0, the free boundary is, up to a set of null
perimeter (i.e., of ‖∇χ{u>0}‖-measure zero), the union of an at most countable family
of C1-hypersurfaces.

Remark 4.1. As is known from measure theory (see, e.g., [10]), an open set O ⊂ Rn

whose characteristic function is locally of bounded variation has a boundary ∂O with
locally with finite perimeter. Its singular component Σ ⊂ ∂O, that is, the subset of
points with null upper n-dimensional Lebesgue densities with respect to O and Rn \ O,
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has null perimeter (i.e., ‖∇χO‖(Σ) = 0) and its essential boundary ∂eO = ∂O \ Σ
has locally finite (n − 1)-dimensional Hausdorff measure. Although the corresponding
regularity for the heterogeneous one obstacle problem was shown in [6], implying that
a similar conclusion holds for the free boundary in the one-phase local situation, no
concrete conclusion is known at the free boundary branch points for general operators
with nonhomogeneous data.
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