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A B S T R A C T   

Reliable satellite estimates of chlorophyll-a concentration (Chl-a) are needed in coastal waters for applications 
such as eutrophication monitoring. However, because of the optical complexity of coastal waters, retrieving 
accurate Chl-a is still challenging. Many algorithms exist and give quite different performance for different 
optical conditions but there is no clear definition of the limits of applicability of each algorithm and no clear basis 
for deciding which algorithm to apply to any given image pixel (reflectance spectrum). Poor quality satellite Chl- 
a data can easily reach end-users. To remedy this and provide a clear decision on when a specific Chl-a algorithm 
can be used, we propose simple quality control tests, based on MERIS water leaving reflectance (ρw) bands, to 
determine on a pixel-by-pixel basis if any of three popular and complementary algorithms can be used. The 
algorithms being tested are: 1. the OC4 blue-green band ratio algorithm which was designed for open ocean 
waters; 2. the OC5 algorithm which is based on look-up tables and corrects OC4 overestimation in moderately 
turbid waters and 3. a near infrared-red (NIR-red) band ratio algorithm designed for eutrophic waters. 

Using a dataset of 348 in situ Chl-a / MERIS matchups, the conditions for reliable performance of each of the 
selected algorithms are determined. The approach proposed here looks for the best compromise between the 
minimization of the relative difference between In situ measurements and satellite estimations and the number of 
pixels processed. Conditions for a reliable application of OC4 and OC5 depend on ρw412/ρw443 and ρw560, used 
as proxies of coloured dissolved organic matter and suspended particulate matter (SPM), as compared to ρw560/ 
ρw490, used as a proxy for Chl-a. Conditions for reliable application of the NIR-red band ratio algorithm depend 
on Chl-a and SPM. These conditions are translated into pixel-based quality control (QC) tests with appropriately 
chosen thresholds. Results show that by removing data which do not pass QC, the performance of the three 
selected algorithms is significantly improved. After combining these algorithms, 70% of the dataset could be 
processed with a median absolute percent difference of 30.5%. The QC tests and algorithm merging methodology 
were then tested on four MERIS images of European waters. The OC5 algorithm was found to be suitable for most 
pixels, except in very turbid and eutrophic waters along the coasts where the NIR-red band ratio algorithm helps 
to fill the gap. Finally, a test was performed on an OLCI-S3A image. Although some validations of water 
reflectance are still needed for the OLCI sensors, results show similar behavior to the MERIS applications which 
suggests that when applied to OLCI data the present methodology will help to accurately estimate Chl-a in coastal 
waters for the next decade.   

1. Introduction 

Chlorophyll-a concentration (Chl-a hereafter), a proxy for phyto
plankton biomass, is needed for a variety of applications in coastal 

waters, including fish-farming (Gernez et al., 2017; Chassot et al., 2010), 
and eutrophication monitoring (Reinart and Kutser, 2006; Harvey et al., 
2015). In particular, there is a growing interest in the use of satellite Chl- 
a data for eutrophication monitoring (European Commission, 2014; 
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OSPAR, 2017; Gohin et al., 2019) in the context of legal obligations on 
EU member states under the Water Framework Directive (WFD) and 
Marine Strategy Framework Directive (MSFD). Indeed, contrary to in 
situ data, satellite data allows for more coherent transnational ap
proaches within and between marine regions and sub-regions. 

There has been considerable success in retrieving accurate Chl-a 
from water reflectance with blue/green-ratio algorithms such as OC4 
(O’Reilly et al., 1998) in oceanic “case 1” waters (Morel and Prieur, 
1977) where the variation of optical in-water properties (absorption and 
scattering) is dominated by phytoplankton and associated material. In 
contrast, the optical complexity of coastal waters makes it difficult to 
accurately retrieve biogeochemical parameters using satellite remote 
sensing (Sathyendranath et al., 1989; Lee and Hu, 2006; Dierssen, 
2010). Chl-a retrieval by blue/green band-ratio algorithms tends to fail 
when applied to coastal waters where optical properties may be strongly 
influenced by non-covarying concentrations of suspended particulate 
matter (SPM) and coloured dissolved organic matter (CDOM) or where 
the Chl-a can reach extremely high values (Smith, 2003; Goyer et al., 
2005; Smith et al., 2018). Such waters are defined as optical “case 2” 
waters, and a large variety of regional algorithms have been developed 
to improve Chl-a estimations from water reflectance in these types of 
waters (see Odermatt et al., 2012 for a review). However, there is in 
general no clear definition of when an algorithm will give reliable 
output nor of which algorithm will perform best for each image pixel. 
This lack of knowledge on validity domains of algorithms also prevents 
any automatic and reliable global processing. 

In order to tackle this problem and facilitate automated processing 
for any water type, we define a set of simple “quality control tests” (QC 
tests hereafter) for three popular and complementary Chl-a algorithms. 
These QC tests first define a validity domain for each algorithm and 
ensure the validity of a Chl-a estimate within a certain uncertainty 
range. They also allow to switch between Chl-a algorithms when they 
are used in a complementary way. The selected Chl-a algorithms are the 
classic empirical blue-green bands ratio algorithm (OC4, O’Reilly et al., 
1998), the five channel Chl-a algorithm for coastal water (Gohin et al., 
2002, named OC5 hereafter) and finally the semi-analytic near infrared 
(NIR) - red band ratio algorithm defined by Gons (1999). OC4 is an 
empirical blue-green band ratio algorithm with the shortest spectral 
band shifting from 443 nm to 510 nm with increasing Chl-a. This al
gorithm is designed for case 1 waters and its median error was estimated 
to be around 35% for oceanic waters at global scale (Bailey and Werdell, 
2006). Although OC4 is generally not suitable for coastal waters where it 
often overestimates the Chl-a concentration because of high CDOM 
absorption and/or SPM concentration (Dierssen, 2010), it can be used 
for certain coastal zones with optical water properties close to those of 
the open ocean. The OC5 algorithm is an empirical algorithm based on 
look up tables (LUTs). It has been designed to correct the overestimation 
of the OC4 algorithm in moderately turbid and/or high CDOM waters 
and is based on a training dataset from the western Mediterranean Sea, 
the Bay of Biscay and the English Channel. OC5 LUTs are based on a 
triplet of entries: the maximum ratio of reflectance blue/green used by 
the OC4 algorithm and the normalized water leaving radiances at 412 
and at 560 nm. The OC5 LUTs were originally developed for the Sea
WiFS sensors (Gohin et al., 2002) but additional LUTs adapted to other 
ocean colour sensors (MODIS AQUA, MERIS and OLCI) are available. 
The third algorithm evaluated in this study is the Gons (1999) algorithm. 
It is based on the NIR-red band ratio (i.e. reflectance bands 705 nm and 
665 nm) which increases with Chl-a. These types of algorithms are 
applicable in turbid, eutrophic waters where the NIR-red reflectance is 
significant enough to be insensitive to radiometric noise and where the 
effect of red Chl-a absorption is sufficient to be measurable. Among the 
variety of NIR-red band ratio algorithms (Dall’Olmo et al., 2005; 
Gitelson et al., 2007; Le et al., 2009; Moses et al., 2009; Gilerson et al., 
2010), we selected the Gons (1999) version because of its semi- 
analytical structure which makes it less dependent on validation data
sets compared to empirical algorithms. However, this algorithm is based 

on some assumptions and a final calibration step. In fact, the Gons 
(1999) algorithm assumes a constant back scattering coefficient in the 
red and NIR, a negligible absorption from CDOM and non-algal particles 
compared to water absorption at 672 nm, 704 nm and 750 nm and to 
water and chlorophyll-a absorption at 672 nm. Finally, a constant 
chlorophyll-a specific absorption coefficient is assumed. 

Previously, application criteria based on remote sensing reflectances 
(Lee and Hu, 2006; Morel and Bélanger, 2006; Park et al., 2010) or 
parameters such as Chl-a itself (Bricaud and Morel, 1987) have been 
proposed to identify case 1 waters where OC4 can be readily applied. 
The criteria proposed by Lee and Hu (2006) are based on the average 
relationship (observed at global scale) between Chl-a and suspended 
particulate matter concentration on the one hand and between the Chl-a 
concentration and CDOM absorption on the other hand, which allows to 
distinguish case 1 from case 2 waters. With an approach based on sim
ulations using a model for inherent optical properties, Park et al. (2010) 
provided a quality control flag for the utilization of MODIS Chl-a esti
mations derived from the OC4 algorithm in turbid waters. Assuming that 
the single case-1/case-2 waters differentiation is not sufficient to 
describe the diversity of optical water characteristics, Moore et al. 
(2001) described 6 optical water types derived from clustering analysis 
applied to reflectance spectra. Then, for any satellite reflectance spectra, 
a membership index to each optical water type is calculated allowing the 
selection and blending of bio-optical algorithms. Based on this meth
odology, uncertainty products for MODIS Chl-a were calculated (Moore 
et al., 2009). Using a similar methodology, Hieronymi et al. (2017) 
blended 13 Chl-a neural network algorithms developed for 13 optical 
water classes in order to process waters ranging from extremely turbid to 
extremely absorbing (high CDOM) and Jackson et al. (2017) presented a 
new set of 14 optical water classes that result from the OC-CCI imple
mentation of the Moore et al. (2009) fuzzy classification approach. 
Recently, Neil et al. (2019) tested 48 Chl-a algorithms on a dataset 
covering the 13 optical water types and attempted to provide recom
mendations for each water type. Nevertheless, as the same reflectance 
spectra may result from a large diversity of water constituent combi
nations (Hieronymi et al., 2017) with different absorbing and scattering 
properties, Chl-a retrieval within the same optical water class can 
sometimes be rather challenging. To process oligotrophic and eutrophic 
waters simultaneously, alternative switching algorithms using blue- 
green and NIR-red band-ratio algorithms have been proposed (Gons 
et al., 2008; Smith et al., 2018) but they have been developed/tested for 
certain regions and water types (i.e. case 1 waters in Smith et al., 2018). 
Given the large variety of coastal and inland waters and Chl-a algorithms 
presenting different degrees of complexity, the user can easily be 
confused when it comes to selecting an appropriate Chl-a algorithm. A 
given algorithm may be derived from a limited regional or local data set 
or even from a synthetic database, and it is not easy to know which al
gorithms works best in the coastal area that one wants to investigate. 

The aim of this study is to develop and to provide robust reflectance- 
based QC tests and a suitable algorithm switching approach for coastal 
waters in order to choose between OC4, OC5 and Gons (1999) algo
rithms. QC tests should avoid unreliable algorithm performances 
whereas the switching approach reduces the overall uncertainties while 
processing most of the pixels. QC tests are developed with a novel 
methodology based on percent difference of satellite estimations 
compared to the respective in situ match-up data. 

An in situ/satellite matchups dataset was produced using water 
reflectance from the MEdium Resolution Imaging Spectrometer (MERIS; 
Rast et al., 1999). The MERIS sensor was selected for the analysis 
because of its long operational period (from March 2002 to May 2012), 
which over the years has allowed ESA’s MERIS validation team to collect 
a reasonable number of in situ/satellite reflectance match-up data, 
covering different water types. ESA have recently launched the Sentinel- 
3 series of follow-up missions for MERIS, each hosting an Ocean and 
Land Colour Instrument (OLCI, Nieke et al., 2012) with spectral char
acteristics are very close to MERIS. In addition, the 709 nm band, 
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present on MERIS and OLCI (but not available for MODIS and VIIRS), is 
particularly useful for Chl-a estimation in turbid, eutrophic waters. The 
following sections describe the datasets used and the methodology to 
determine reflectance-based quality control tests for the OC4, OC5 and 
NIR-Red band ratio algorithms. In the results section, we present the 
derivation of these QC tests, the performance of the algorithms before 
and after QC, as well as examples of applications to MERIS and OLCI 
data. Finally, this novel methodology for the design and application of 
QC tests as well as the approach used for switching between algorithms 
is discussed and potential applications in support of the European Ma
rine Strategy Directive (MFSD) are presented. 

2. Data and methods 

2.1. Chl-a in situ/satellite matchups 

A total of 235 in situ Chl-a and MERIS matchups were extracted from 
the MERMAID database (http://mermaid.acri.fr/home/home.php, 
Barker et al., 2008) with MEGS 8.1 processing at reduced resolution (RR, 
spatial resolution: 1040 m × 1160 m). In situ Chl-a was mostly deter
mined with High Performance Liquid Chromatography (HPLC, 95%) 
otherwise with spectrophotometry (5%). The Chl-a in situ database was 
complemented with measurements published in the Coast Colour Round 
Robin (CCRR) dataset (Nechad et al., 2015) providing in situ optical and 
biogeochemical data from different coastal regions over the world. In 
the CCRR dataset, Chl-a was measured by lab fluorometry (57%) and 
HPLC (43%). Fluorometry measurements were performed after water 
filtration and extraction in solvent, detailed protocols are provided in 
Nechad et al., 2015. MERIS match-ups were extracted from MEGS8.1 RR 
level 2 products downloaded from the ODESA platform (http://www. 
odesa-info.eu/info/) for the CCRR in situ Chl-a observations. Reduced 
resolution is provided by the MERMAID platform for matchups extrac
tion and was used by the MERIS validation team (Barker et al., 2008). 
For the MERMAID and CCRR datasets, MERIS matchups were acquired 
in a time window of ±2.5 h from the in situ observation. The median of 
nine pixels around the location of the in situ measurement was used 
(macropixels). Data was accepted if at least 3/9 valid pixels were 
available in the respective macropixel, and if no extreme variation was 
observed in a micropixel (coefficient of variation lower than 1.5). The 
following Level-2 data quality masks were applied to the MEGS 8.1 
water leaving reflectance (ρw hereafter) data: LAND, CLOUD, HIGH_
GLINT, MEDIUM_GLINT, and LOW_SUN. A final quality control step was 
applied to remove data points with negative ρw values at 443 nm. No 
additional quality control was applied to in situ Chl-a data as the validity 
and consistency of the data were previously verified by the contributors 
and managers of the CCRR and MERMAID database (Nechad et al., 
2015; Barker et al., 2008). The resulting dataset (Table 1) contained 348 

Chl-a/MERIS matchups from July 2002 to July 2011, with 235 points 
from the MERMAID dataset and 113 points from the CCRR dataset with 
in situ Chl-a ranging from 0.05 mg per cubic meter (mg m− 3) to 31 mg 
m− 3

. Data points are mostly distributed in North European waters and to 
a lesser extent along North America coasts (Fig. 1) but cover a wide 
variety of optical conditions. 

Chl-a products were generated using MERIS-dedicated algorithms. 
The OC4 blue-green band ratio algorithm was computed with factors 
recently updated by O’Reilly and Werdell (2019). The MERIS adaptation 
proposed by Gons et al. (2002) and Gons et al. (2005) was used for 
updating the NIR-red band ratio algorithm of Gons (1999). A LUT spe
cific to the spectral reflectance of MERIS processed by MEGS8.1 was 
used to retrieve OC5 Chl-a (Gohin et al., 2002; Gohin, 2011). Detailed 
information on these algorithms can be found in Table 2. In the 
following, these algorithms will be referred to as OC4, OC5 and NIR-RED 
with their respective Chl-a products CHL_OC4, CHL_OC5 and CHL_RED. 
Fig. 2 shows scatterplots of in situ Chl-a versus CHL_OC4, CHL_OC5 and 
CHL_RED in logarithmic (panels A, B and C) and linear scales (panels D, 
E and F). Scatterplots show expected patterns (see Section 3.2 for a 
detailed discussion) with an overestimation of CHL_OC4 and to a lesser 
extent CHL_OC5. A high scatter of CHL_RED when in situ Chl-a is low is 
also observed. This is not surprising as NIR_RED algorithm is known to 
be applicable only for eutrophic waters (Gons et al., 2002). Finally, no 
impact of the data source (HPLC, fluorometry and spectrophotometry) 
on the quality of the matchup can be observed suggesting a good 
coherence of the dataset. 

Table 1 
Description of the CCRR-MERMAID database.  

Database Region (code) Chl-a measurement Chl-a range (mg m-3) Number of matchups 

CCRR Central California fluorometry 1.09–11.28 6 
CCRR Southern California HPLC 0.10–6.03 9 
CCRR Chesapeake Bay HPLC 9.3–12.3 3 
CCRR Med. Sea (Morocco) fluorometry 0.12–1.62 12 
CCRR North Sea fluorometry 0.30–31.5 39 
CCRR North Sea HPLC 0.53–8.65 41 
CCRR Oregon Washington HPLC 0.20–0.84 3 
MERMAID Atlantic coast of Portugal (Algarve / PortCoast) HPLC 0.11–3.08 59 
MERMAID Black Sea (BioOptEuroFleets) HPLC 0.34–0.62 5 
MERMAID North-Western Med. Sea (Boussole) HPLC 0.07–3.16 21 
MERMAID Bristol Irish Sea (Bristol Channel and Irish Sea) Spectrophotometry 0.45–0.92 4 
MERMAID Beaufort Sea (CASES) HPLC 0.23–3.52 8 
MERMAID North Sea (MUMMTriOS) HPLC 0.33–27.28 33 
MERMAID Baltic Sea (N.W. Baltic Sea) Spectrophotometry 1.09–6.27 10 
MERMAID Southern California (PlumesAndBlooms) HPLC 0.38–4.97 36 
MERMAID French coastal waters (REPHY) HPLC 0.40–31.5 59  

Fig. 1. Spatial distribution of the in situ Chl-a observations with a MERIS 
matchup in the CCRR-MERMAID dataset. The highest number of observations 
was measured in the North Sea. 
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2.2. Assessment of satellite Chl-a algorithm performance 

Following the recommendations of Bailey and Werdell (2006) sat
ellite Chl-a estimations were assessed against in situ data with the 
metrics listed below:  

• The median ratio (MR hereafter) is defined as 

MR = median
(

Chl − asat

Chl − asitu

)

(1) 

This metric allows to measure a potential bias in the Chl-a estima
tion. If satellite estimations overestimate Chl-a concentration MR is 

significantly higher than 1, if Chl-a concentrations are underestimated 
MR is significantly lower than 1. 

• The median absolute percent difference (MAPD) indicates the rela
tive difference between in situ observation and satellite estimation 
and is computed via 

MAPD = median
(

100×
|Chlasat − Chlasitu|

Chlasitu

)

(2) 

A type 1 linear regression is also computed between Chl-asat and Chl- 
ain situ and the following metrics were considered:  

• The Root Mean Square of Difference (RMSD), which measures the 
scatter of the data from the regression line.  

• The slope and the intercept of the regression line allow to see if there 
is a systematic multiplicative or additive bias  

• The coefficient of determination (r2) measures the goodness of fit of 
the linear regression for satellite Chl-a retrieval as function of the in 
situ Chl-a and depends strongly on the dataset range. 

2.3. Definition of application criteria 

2.3.1. Methodology overview 
Fig. 3 provides a general overview of the approach used to determine 

the algorithm-specific application criteria. Starting from a priori 
knowledge on the OC4, OC5 and NIR-RED algorithms, a set of conditions 
for the optimal performance of each algorithm was defined and 

Table 2 
Description of the three Chl-a algorithms considered in this study.  

Algorithm Reference Description 

OC4 O’Reilly and 
Werdell (2019) 

Chla = 10(a+bR+cR2+dR3+eR4) 

where R = log10

(

max
(

ρw443
ρw560

,
ρw490
ρw560

,
ρw510
ρw560

))

a = 0.42487, b = − 3.20974, c = 2.89721, d =
− 075258, e = − 0.98259  

OC5 Gohin et al. 
(2002) 

Chla is a function of CHL_OC4, ρw412 and ρw560. 

Specific OC5 LUTS for MERIS were provided by F. 
Gohin. 

NIR-RED Gons et al. 
(2005) 

Chla =
1

0.0161
∙
ρw709
ρw665

∙(0.70+bb) − 0.40 − bb
1.062 

bb =
1.61∙ρw779

(0.082 − 0.6∙ρw779)

Fig. 2. Chl-a estimated from MERIS reflectance with OC4 (panels A and D), OC5 (panels B and E) and NIR-RED (panels C and F) algorithms, compared to in situ Chl- 
a. For a better visualisation scatterplots are presented in log-log (upper panels) and linear-linear scale (lower panels). For the NIR-RED algorithm (right panels), the 
dotted grey line represents the limit Chl-a = 3 mg m− 3 that it is recommended to consider when applying this algorithm. Performance metrics for these algorithms 
applied to the whole CCRR-MERMAID dataset are given in Table 4 (Lines 1 to 3). 
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translated to algorithm specific QC tests. The QC tests consisted of 
different band and band-ratio thresholds. These thresholds are repre
sented by linear lines (hereafter “boundary lines”) which are defined 
with slope and intercept coefficients (hereafter, “threshold co
efficients”). The determination of these threshold coefficients was based 
on the CCRR-MERMAID dataset. This dataset was divided into two 
equally large, but randomly selected subsets for the determination of the 
threshold coefficients on one side and their validation on the other side. 
The dataset division was repeated 501 times to ensure the robustness of 
the results. This number of repetitions has been chosen to ensure that 
most of the splitting combinations are represented while keeping a 
reasonably short processing time and the odd number facilitate the 
extraction of the median boundary lines. For each division the optimal 
threshold coefficients were determined using an objective benefit 
function approach based on the relative percent difference between in 
situ and satellite-based Chl-a for each element in the training dataset. 
From the 501 boundary lines obtained for each division, the line with 
the median position was selected as the final boundary line defining the 
algorithm QC test. 

2.3.2. Model definition 
The Chl-a algorithms under consideration (i.e. OC4, OC5 and NIR- 

RED) usually only apply to specific optical water types. Lee and Hu 
(2006) provided criteria for the determination of case 1 waters based on 
ρw with the following principles: (1) ρw can provide proxies for CDOM 
absorption, concentration of Chl-a and SPM and (2) CDOM absorption 

and SPM concentrations are each a function of the Chl-a concentration. 
For these waters, the Chl-a concentration can be approximated with the 
green – blue band ratio (ρw560/ρw490, named R53 hereafter), the SPM 
concentration with the reflectance at 560 nm (ρw560, named R5 here
after) and CDOM absorption is inversely related to the band ratio 
ρw412/ρw443 (named R12 hereafter). In case 1 waters, R12 and R5 are 
functions of R53. The average case 1 water is defined by the relationship 
between R12 and R53 and between R5 and R53. Considering all pixels of 
the global ocean, Lee and Hu (2006) proposed models of R12 and R5 as 
3-degree polynomial functions of R53. Pixels deviating by more than 
10% from the average model were considered as case 2 waters. Most of 
the case 2 pixels could be explained by high CDOM compared to Chl-a 
with points situated below the − 10% limit of R12 predicted from R53 
and/or by high SPM compared to Chl-a concentration with points situ
ated above the +10% limit of R5 predicted from R53 (Lee and Hu, 
2006). 

To determine for which conditions of high SPM and CDOM the OC4 
and OC5 algorithms can provide reliable Chl-a estimates, we adopted a 
similar approach to Lee and Hu (2006) and constrained the application 
of OC4 and OC5 algorithms to restrictive conditions on R12 and 
log10(R5) as function of R53. Then, OC4 and OC5 algorithms apply if 
R12 is higher than a certain threshold defined by a boundary line and if 
log10(R5) is lower than another boundary line. Hence, two boundary 
lines have to be defined. These lines are function of R53 and represent 
the increase with Chl-a of CDOM and SPM content in case 1 waters. The 
logarithmic transformation was used on the reflectance (i.e. log10(R5)), 

Fig. 3. Flow chart showing the general methodology used to define all QC tests including the validation on an independent data set.  
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but not on reflectance ratios, to make the data distribution more ho
moscedastic. QC tests for the OC4 and OC5 algorithms are defined ac
cording to the following equations: 

Main QC tests OC4

⎧
⎪⎪⎨

⎪⎪⎩

R12 ≥ LR12OC4 (R53)
with LR12OC4 (R53) = iR12OC4 + sR12OC4 R53

log10(R5) ≤ LlogR5OC4 (R53)
with LlogR5OC4 = ilogR5OC4 + slogR5OC4 R53

(3)  

Main QC tests OC5

⎧
⎪⎪⎨

⎪⎪⎩

R12 ≥ LR12OC5 (R53)
with LR12OC5 (R53) = iR12OC4 + sR12OC5 R53

log10(R5) ≤ LlogR5OC5 (R53)
with LlogR5OC5 = ilogR5OC4 + slogR5OC5 R53

(4) 

In Eqs. (3) and (4) parameters i and s are intercept and slope co
efficients of the boundary lines. The calculation of these parameters is 
detailed in Section 3.1. 

The NIR-RED algorithm is based on Chl-a absorption in the red 
spectral band. In clear waters the NIR water reflectance is very low and 
the NIR-red band ratio is strongly affected by radiometric noise and/or 
atmospheric correction errors giving very scattered and erroneous Chl-a 
estimates (see Fig. 2, panel C and Ruddick et al., 2001, Fig. 5). Addi
tionally, in turbid waters with low Chl-a concentrations the impact of 
Chl-a absorption on the red reflectance may not be detectable (Gitelson, 
1992; Ruddick et al., 2001; Gons et al., 2008). Hence, the application 
criteria for the NIR-RED algorithm are based on both the Chl-a con
centration and reflectance in the NIR bands. Since for low to moderate 
Chl-a concentrations, the OC4 algorithm is more reliable than the NIR- 
RED algorithm (compare Fig. 2 panels A and C), CHL_OC4 was used as 
a proxy of Chl-a concentration here. Because the 665 nm band is affected 
by Chl-a absorption, water reflectance at 620 nm (ρw620, R6 hereafter) 
is used as an index for water reflectance in the red. Thus, the main QC 
tests for the NIR-RED algorithm are expressed as: 

Main QC tests NIR − RED
{

CHL OC4 ≥ LChl/NIR RED
R6 ≥ LR6/NIR RED

(5)  

where LChl/NIR_RED and LR6/NIR_RED are constant values representing 
respectively the minimum CHL_OC4 and R6 values to apply the NIR-RED 
algorithm. 

2.3.3. Determination of threshold coefficients 
In order to parameterize and validate the QC tests with two inde

pendent datasets, the initial CCRR-MERMAID dataset consisting of 348 
data points was randomly divided into two datasets of 174 data points, 
named training and validation dataset respectively. Then, using the 
training dataset, threshold coefficients for boundary lines (i.e. LR12_OC4, 
LlogR5_OC4, LR12_OC5, LlogR5_OC5, LChl/NIR_RED and LR6/NIR_RED) were 
determined. 

To obtain optimal and objectives values, a benefit function (BF) was 
defined as: 

BF =
∑

i
yi with

⎧
⎪⎪⎨

⎪⎪⎩

yi = +5 if APDi ≤ 30
yi = +2 if 30 < APDi ≤ 50
yi = − 2 if 50 < APDi ≤ 100

yi = − 5 if APDi > 100

(6)  

where i stands for any points passing QC tests for OC4, OC5 or NIR-RED 
models and APD is the absolute percent difference and is defined as. 

APD = 100
⃒
⃒
⃒
⃒
Chlasat − Chlasitu

Chlasitu

⃒
⃒
⃒
⃒ (7) 

BF increases when the number of low ADP matchups (APD < 50%) 
passing the QC increases and decreases when the number of high ADP 
matchups passing QC (APD > 50%) increases. By attempting to maxi
mize the BF, one identifies the best compromise between including the 
largest number of low APD matchups in the selection while avoiding 
high APD matchups. For each training set, BF was computed for a large 

range of threshold coefficients in order to test all the potential boundary 
lines and retain the best one. The range of threshold coefficients tested is 
given in Table 3 (numbers in brackets) and is motivated in Section 3.1. 
To achieve a robust choice of the best thresholds the random division of 
the whole dataset was repeated 501 times – each of the 501 training sets 
gives the threshold coefficients which optimize the BF and, applied to 
the validation subset, it provides different results for the validation 
metrics. Threshold coefficients come by pairs (slope and intercept) for 
defining OC4 and OC5 boundary lines whereas they are single values 
defining horizontal/vertical boundary lines for the NIR-red algorithm. 
In case of single threshold coefficients, the median is used to define the 
final threshold coefficient value. In case of pairs (i.e. slope and inter
cept), among the 501 boundary lines obtained, the one with the median 
position is selected and its slope and intercept values defined the final 
threshold coefficients. The median position is defined by the position of 
the line for which the area under the curve for R53 ranging between 0.5 
and 2.5 has a median value. 

3. Results 

3.1. QC tests for OC4, OC5 and NIR-RED algorithm 

3.1.1. QC test for OC4 algorithm 
Fig. 4 shows how the distribution of R12, which is a proxy for CDOM, 

is inversely related to R53, a proxy of Chl-a (panel A) and how log10(R5), 
a proxy of SPM, is positively correlated to R53 (panel B). For each point, 
the relative in situ/satellite difference (APD Eq. (7)) is indicated with a 
colour code. The results show that low R12 and high log10(R5) values at 
constant R53 tend to be associated with an overestimation of Chl-a by 
the OC4 algorithm (red and orange points). This result is consistent with 
previous findings (Moore et al., 2009; Dierssen, 2010) which demon
strated an overestimation of Chl-a by the OC4 algorithm in the case of 
high CDOM and/or SPM. Considering the data distribution displayed in 
Fig. 4, it was decided to impose some restrictions on the range of tested 
threshold coefficients (see Table 2 numbers in brackets) when calcu
lating the benefit function BF so that the boundary lines which are tested 
roughly follow the main trend in data distribution. Thus, a negative 
slope is expected for the high CDOM test and a positive slope is expected 
for the high SPM test. In addition, the intercept has been constrained to 
the R12 or log10(R5) range of values corresponding to the points 
showing the lowest R53 signal (in practice the first decile was selected). 
Then, for the high CDOM test (R12 as a function of R53), the benefit 
function was calculated for intercept values ranging between 0.79 and 
1.14 and the slope values between 0 and − 3 by increments of 0.01. For 
the high SPM test (log10(R5) as a function of R53), BF was calculated for 
intercept values ranging between − 2.51 and − 2.15 and slope between 
0 and 5 by increments of 0.01. For 20 iterations out of the 501, boundary 
lines maximizing BF are represented with grey dotted lines on Fig. 4 and 
the final boundary line which is the median of the 501 iterations is 
represented by the solid black line on each panel of Fig. 4. Definitive 
threshold coefficients are given in Table 2. For both tests, the threshold 
lines separate well areas dominated with low percent difference points 
(yellow, green and clear blue points) from the areas with a majority of 
very high percent difference matchups (red points). However, the scat
terplot of R12 as a function of R53 (Fig. 4A) shows that data with a high 
R12 band ratio (R12 > 1.25) give severe underestimations of Chl-a by 
OC4 algorithms (blue points). This is most likely due to a failure of the 
atmospheric correction algorithm or factors such as sun glint affecting 
the quality of remote sensing data as it is expected that the maximum 
R12 (minimum CDOM) is observed in case 1 waters. Hence, data points 
with a R12 band ratio higher than 1.25 were flagged as “possible at
mospheric correction error”. In addition to these previous tests, a limit 
range for Chl-a values was also introduced (Lee and Hu, 2006). Indeed, 
OC4 and OC5 algorithms apply only for oligotrophic and mesotrophic 
waters (Odermatt et al., 2012; Matsushita et al., 2015; Smith et al., 
2018) as these algorithms tend to saturate in eutrophic condition. 
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Saturation is marked by constant CHL_OC4 values when in situ Chl-a 
increases (See Fig. 5aMatsushita et al., 2015). Such a saturation 
pattern is not observed in our dataset probably due to weak represen
tation of eutrophic and hyper-eutrophic waters. However, to take into 
account all water conditions, a supplementary quality control test was 
introduced to verify that CHL_OC4 is lower than 10 mg.m− 3. The 10 mg 
m− 3 was defined according to Smith et al. (2018). Finally, the QC pro
cedure developed for the OC4 (and OC5) algorithm is summarized in the 
flowchart in Fig. 5. 

3.1.2. QC test for OC5 algorithm 
The OC5 quality control test was designed using the same approach 

as for OC4 and the final QC procedure is also displayed in the same 
flowchart as OC4 (Fig. 5). Fig. 6 shows that OC5 performs well for a 
wider range of R12 and R5 at a given R53 compared to OC4. The valid 
(green) points are more scattered and the boundary lines, LR12_OC5 and 
LlogR_OC5, are much less restrictive than for the OC4 algorithm, con
firming that OC5 performs well for a larger range of CDOM and SPM 
values compared to OC4. For very low R12 and high log10(R5), OC5 
tends to overestimate Chl-a motivating the need to also apply a QC test 
on OC5 Chl-a products. 

To maximize the number of pixels processed especially during turbid 
conditions and because of the overall good performance of the OC5 al
gorithm on the present dataset, we propose an optional relaxed 
boundary line for the high SPM OC5 test (orange line in Fig. 6 panel B) 
computed by modifying the original BF (Eq. (6)) to a value of +5 for 

points with APD < 30%, +3 for points with APD between 30 and 50%, 
0 to points with APD between 50 and 100% and − 2 to points with APD 
higher than 100%. The boundary line for the R12 test has not been 
modified as the standard version already accepts most of the dataset. 
The coefficients of the relaxed boundary line as well as the regular 
boundary lines are given in Table 3 and Section 3.2 presents the per
formance of OC5 when applying the relaxed QC. 

3.1.3. QC test for NIR-RED algorithm 
Fig. 7 shows the distribution of ρw620 as a function of CHL_OC4 with 

a colour code indicating the performance of the NIR-RED algorithm for 
each point. For low CHL_OC4 values (CHL_OC4 < 5 mg m− 3) and low 
ρw620 values (ρw620 < 0.002), NIR-RED fails for almost all points with a 
generally strong underestimation (dark blue points). Occasionally a 
strong overestimation (red points) is observed. It is clear that a certain 
threshold for CHL_OC4 and ρw620 is necessary to obtain accurate esti
mates of Chl-a by this algorithm. To determine this threshold BF was 
calculated for LChl/NIR_RED ranging between 0.5 and 50 by increments of 
0.1 and for LR6/NIR_RED ranging between 10− 4 and 10− 2 by increments of 
10− 4 and similarly to OC4 and OC5 protocol, values maximizing BF in 
each of the 501 simulations were retained. In 80% of the simulations 
performed, the thresholds limit LCHL_NIR-red ranged between 7.6 mg m− 3 

and 10.2 mg m− 3 and LR6_NIR-red between 0.0072 and 0.0082. The final 
thresholds defined as the median of the 501 simulations are 8.1 mg m− 3 

and 0.0076 for LCHL_NIR-red and LR6_NIR-red respectively. Finally, an addi
tional check was made to verify that the CHL_NIR-RED is at least higher 

Table 3 
Threshold coefficients for QC test boundary lines. Figures in brackets indicate the minimum and maximum values for which each coefficient has been tested with the 
benefit function.  

Algorithm Boundary line Threshold coefficients  

OC4 LR12OC4
(R53) s = − 0.12 (− 3–0) i = 0.99 (0.79–1.14) Linear regressions depending on R53 

OC4 LlogR5OC4
(R53) s = 0.13 (0–5) i = − 2.26 (− 2.51 to − 2.15) 

OC5 LR12OC5
(R53) s = − 0.62 (− 3–0) i = 0.85 (0.79–1.14) 

OC5 LlogR5OC5
(R53) s = 0.73 (0–5) i = − 2.49 (− 2.51 to − 2.15) 

OC5 RELAXED LlogR5OC5
(R53) s = 0.66 (0–5) i = − 2.16 (− 2.51 to − 2.15) 

NIR-RED LChl/NIR_RED 8.1 (0.5–50) Constant values 
NIR-RED LR6/NIR_RED 0.0076 (0.0070–0.0085)  

Fig. 4. R12 as a function of R53 (panel A) and log10(R5) as a function of R53 (panel B). The colour of dots refers to the percent difference (PD) between Chl-a from 
OC4 algorithm and in situ measurements. The grey lines show 20 examples of boundary lines (LR12_OC4 in panel A and LlogR5_OC4 in panel B) generated in the 
subdivision-training-validation phase with 501 repetitions (see Section 2.3.3 for details). The thick black lines show final boundary lines (coefficients are given in 
Table 2). In panel A, the dashed blue line shows also the upper limit for R12 > 1.25 (suspect atmospheric correction). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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than 3 mg m− 3, considered here to be the detection limit for this algo
rithm (Gons et al., 2002). The different steps constituting the NIR-RED 
quality control are summarized in Fig. 8. 

3.2. Performances of quality control tests 

3.2.1. Performances of the OC4, OC5 and NIR-RED algorithms without 
quality control 

The performances of the OC4, OC5 and NIR-RED algorithms were 
initially tested using the whole CCRR-MERMAID matchup dataset 
without application of quality controls (Fig. 2, Table 4). The results 
show that without QC the OC5 algorithm performs best with a median 
absolute percent difference of 39% and a slight overestimation (median 
ratio = 1.17). Most of the points were situated close to the 1:1 line and 
the RMSD was 2.36 mg m− 3. The OC4 algorithm clearly tends to over
estimate Chl-a concentration as most of the points were above the 1:1 
line and the median ratio is 1.84, resulting in a MAPD of 84.5%, which is 
significantly greater than in case 1 waters (i.e. 35%, Bailey and Werdell, 
2006), with a rather scattered distribution (RMSD = 5.53 mg m− 3). 
These results confirmed the previously observed tendency of the OC4 
algorithm to overestimate Chl-a concentration in coastal waters (Til
stone et al., 2017) and as expected, the OC5 algorithm tends to correct 
this overestimation. The performance of the NIR-RED algorithm con
firms expected patterns (Ruddick et al., 2001; Gons et al., 2008; Smith 
et al., 2018) with strongly scattered and erroneous Chl-a estimates for 
low to moderate Chl-a values (Chl-a < 10 mg m− 3). In fact, only high in 

situ Chl-a values have satellite estimates near the 1:1 line. As it is well 
known that Chl-a algorithms based on NIR-RED band ratio are only 
designed for eutrophic waters, the lower limit (Chl-a = 3 mg m− 3) that is 
recommended to consider when using NIR-RED algorithm (Gons et al., 
2002) is drawn on Fig. 2 panels C and F (grey dotted lines) and used for 
calculation of validation statistics (Table 4). Although this limit allows 
to eliminate all negative and low estimates, it also shows that without a 
priori information on a study area the elimination only of CHL_NIR less 
than 3 mg m− 3 can still led to very high overestimation errors (Fig. 2C; 
Table 4). 

The moderate to bad performances of the OC5, OC4 and NIR-RED 
algorithms on the whole coastal dataset demonstrate the importance 
of defining quality control tests for each of these algorithms and for 
preventing use of their outputs when not appropriate. 

3.2.2. Performances of the OC4, OC5 and NIR-RED algorithms after 
application of quality control 

Fig. 9 shows the distribution of each performance metric when 
applied to the validation dataset (50% of the whole CCRR-MERMAID 
dataset) before (blue boxplots) and after applying the QC (yellow box
plots) obtained for the 501 simulations. For the OC4 and NIR-RED al
gorithms, the boxplot comparison shows a clear improvement of all 
metrics after QC. Results for the OC5 algorithm also show a positive 
evolution as application of QC reduces the positive bias (MR is reduced), 
as well as the uncertainty (reduced RMSD) and the median percent 
difference. Only r2, the coefficient of determination of the linear 

Fig. 5. Flow chart showing the different steps driving to the decision of application of the OC4 or OC5 algorithms. As QC steps are identical for OC4 and OC5 
algorithms, only one chart is provided, the expression “OCx” in the chart can be replaced by either “OC4” or “OC5”. 
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regression between in situ and satellite measurements, as well as the 
slope and the intercept of the linear regression are not significantly 
improved when computed from QC positive data points only. This effect 
can be explained by the fact that the Chl-a range is slightly reduced (all 
points with CHL_OC5 > 10 mg m− 3 are eliminated). As expected OC4 
and NIR-RED quality controls are the most drastic as they retained only 
20% and 13% of dataset respectively. This result is easily explained by 
the low occurrences of case 1 and hyper-eutrophic conditions in coastal 
waters in general and hence in the CCRR-MERMAID dataset. On the 

contrary, the OC5 algorithm is better adapted to moderately turbid 
waters characterizing most of the coastal waters and applies after QC to 
64% of the dataset. In addition, 50 additional points (13% of the dataset) 
can be added if relaxed OC5 QC is applied. For these extra points, Chl-a 
derived from OC5 is generally overestimated (MR = 1.5) and MAPD 
increases to 57% which might remain acceptable for certain applica
tions. Table 4 indicates performance of the final QC when applied to the 
full CCRR-MERMAID dataset in comparison to the absence of QC and 
Fig. 10 (panels A, B and C) show for each algorithm which datapoints 
have been pass QC tests (red dots). These graphs show that after QC a 
majority of dots are in the − 50%/+50% percent difference which is 
positive. However, some “good datapoints” don’t pass QC, suggesting 
the limits of the present QC tests. This could be explained by natural 
variability, uncertainty of in situ measurements or error in the retrieval 
of water leaving reflectance. Looking at statistical metrics (Table 4), the 
overall positive impact of QC tests observed with the training/validation 
exercise is confirmed (Fig. 9) and metrics show almost unbiased Chl-a 
estimations when QC is applied (MR varies between 0.9 and 1.17), 
MAPD is reduced to the 30–34% range and RMSD which can be 
considered as a measure of uncertainty is about 1 mg m− 3 for OC4 and 
OC5 algorithms and 5 mg.m− 3 for the NIR-RED algorithm which is 
adapted to the high Chl-a values processed by NIR-RED algorithm. 

Fig. 11 shows how after QC tests the OC4, OC5 and NIR-RED algo
rithms are geographically distributed in the north hemisphere. Results 
show that no algorithm is restricted to a specific region. OC5 the most 
widespread algorithm is applied along California coast, in the Gulf of 
Mexico, in Mediterranean and Black Sea, along Atlantic European coast 
from Spain to Denmark as well as the North Sea and Baltic sea. As ex
pected, OC4 is mostly used in the clear oligotrophic waters of the 
Mediterranean Sea, Californian coast and South Portugal coast and NIR- 
RED algorithm mostly applied in very coastal regions of the North Sea, 
French Atlantic coast, North East American coast. The method of Chl-a 
measurement (i.e. HPLC, fluorometry or spectrophotometry) seems to 
be independent of the selected algorithm. These results tend to confirm 
that the developed QC tests are based on optical water types rather than 
strong regional specificities or inconsistencies between sub-datasets that 
made the CCRR-MERMAID database. 

Fig. 6. R12 as a function of R53 (panel A) and log(R5) as a function of R53 (panel B). Colour of dots refers to the percent difference (PD) between Chl-a from OC5 
algorithm and in situ measurements. Grey lines show 20 examples of limit curves (LR12_OC5 panel A and LlogR5_OC5 panel B) produced in the subdivision-training- 
validation phase out of 501 repetitions (see Section 2.3.3 for details). The thick black lines show final boundary lines (coefficients are given in Table 2). In panel 
A, the dashed blue line shows also the upper limit for R12 > 1.25 (suspect atmospheric correction). The orange dotted line in panel B represent the boundary line in 
case of use of the relaxed version of the OC5 algorithm. This additional boundary line has been calculated by modifying the benefit function (see Section 3.1.2 for 
details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. ρw620 as a function of CHL_OC4. Colour of dots refers to the percent 
difference (PD) between Chl-a from NIR-RED algorithm and in situ measure
ments. Grey lines show 20 examples of boundary lines for CHL_OC4 (vertical 
lines) and ρw620 (horizontal lines) computed during the division-training- 
validation phase. Thick black dashed lines show the final boundary lines. 
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3.2.3. Merged algorithm 
After application of QC, 70% of the dataset (242 data points) can be 

processed by at least one of the OC4, OC5 and NIR-RED algorithms and 
this number increases up to 83% (290 data points) if the relaxed version 
of the OC5 QC is applied. Although each algorithm performs better in 
specific water types, some data points can pass two different algorithms 
QC. In fact, all points (69 points in the CCRR-MERMAID dataset) which 
pass QC for OC4 also pass QC for OC5. Additionally, 14 points passed the 
QC for both OC5 and NIR-RED and no point passed the QC for all three 
algorithms (i.e. OC4, OC5 and NIR-RED). To create a merged product, 
these specific points were naïvely treated by averaging over the two 
valid algorithms. Although many much more complex methods have 
been used to merge Chl-a algorithms (Gons et al., 2008; Hieronymi et al., 
2017; Smith et al., 2018), we chose to use simple averages because (1) 
the main scope of this paper is to provide independent QC tests for a 

series of Chl-a algorithms and (2) our present dataset was insufficient for 
testing more sophisticated merging methods. This task of algorithm 
merging is further discussed in Section 4.2. The performance of the final 
merged algorithm after QC is presented on Table 4 (lines 7 and 8) and 
Fig. 10 (panel D). The standard merged algorithm has a median absolute 
percent difference of 30.4% and the points are well aligned along the 1:1 
line (see Fig. 10 and Table 3; r2 of the linear regression = 77%). 68% of 
the data points are within the plus or minus 50% APD range. The ma
jority of points out of this range present an overestimation of the in situ 
Chl-a measurements. When OC5 standard QC is replaced by the relaxed 
version, performance is only slightly reduced with a median absolute 
percent difference of 33.8% and a slight overestimation (MR = 1.16). 
Finally, whatever the version of the merged algorithm, the performance 
is comparable to that obtained in case 1 waters (O’Reilly and Werdell, 
2019). 

Fig. 8. Flow chart showing the different steps driving to a decision of application of the NIR-RED algorithm.  

Table 4 
Performances of the OC4, OC5 and NIR-RED algorithms when they are tested against the whole dataset before and after applying QC tests (referred with the “QC” 
mention). “merged” and “merged / OC5 extended” refers to the multi-algorithm merged products described in Section 3.2.3. “N” indicates the number of matchups. 
This number is reduced when QC tests are applied and for NIR-RED algorithm where only matchups with CHL_RED higher than 3 mg / m− 3 are selected.   

N MR MAPD slope intercept RMSD r2 pvalue 

OC4 348 1.84 84.5% 1.46 1.47 5.53 0.53 >2.2 10− 16 

OC5 348 1.17 39.1% 0.85 0.59 2.36 0.69 >2.2 10− 16 

NIR-RED1 77 1.43 53% − 2.7 56.6 95.4 0.04 0.094 
OC4 QC 69 1.17 34.7% 1.21 0.10 0.85 0.78 >2.2 10− 16 

OC5 QC 222 1.07 30.5% 0.56 1.03 1.59 0.55 >2.2 10− 16 

NIR-RED QC 46 0.92 30.5% 1.06 − 0.94 4.90 0.71 2.9 10− 8 

Merged algorithm 244 1.08 30.4% 0.96 0.25 2.37 0.77 >2.2 10− 16 

Merged / OC5 relaxed 292 1.16 33.8% 0.95 0.34 2.24 0.76 >2.2 10− 16  

1 Only datapoints with a NIR-RED Chl-a estimation higher than 3 mg m− 3 were considered following the recommendation of Gons et al. (2002). 
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3.3. Application to satellite data 

3.3.1. Application to MERIS data 
Four almost cloud-free images of the North-Western European wa

ters were selected from the MERIS MEGS8 RR Level 2 archive to illus
trate application of the QC tests. The QC test for each Chl-a algorithm 
and the proposed algorithm merging approach were applied to each 
image in order to generate final Chl-a maps (Figs. 12 and 13). The results 
show that the OC5 algorithm is used in most regions and for most times 
of the year with a few exceptions. Due to high turbidity, the image of 
2006-03-06 shows that Chl-a concentration can be processed only if the 
relaxed condition for the OC5 algorithm is applied. In addition, some 
areas flagged as “high SPM” with the OC5 algorithm cannot be processed 
by any of the three Chl-a algorithms presented here. These areas 
generally correspond to very turbid zones visible on the RGB true colour 
image (see Fig. S1 / Supplementary material). In the image of 2004-05- 
24, a large offshore area along the French Atlantic coast (46◦N, 4◦W) 
was also flagged as “No algorithm” surrounding by “OC5 relaxed”. This 
spot which occurs during the spring bloom season was identified as a 
coccolithophorid bloom from the RGB image (see Fig. S1). Coccolitho
phorids have calcified scales (coccoliths) causing very high scattering, 
affecting standard Chl-a algorithms and explaining the flag “high SPM” 
returned by the OC5 QC test. OC4 was mostly applied in the images of 
2007-08-11 and 2005-09-19 offshore of the French Atlantic coast 
(around 46◦N/5◦W). In this season, the main rivers have low discharge 
and offshore Atlantic waters are expected to be close to case 1 waters. 
The NIR-RED algorithm was applied to some nearshore areas and river 

estuaries and plumes. The Thames Estuary (52◦N/1◦E), the Humber 
Estuary (53.5◦N/0◦E) and the Severn Estuary (52◦N/3◦W) show large 
NIR-RED algorithm areas in the 2006-03-06 image. NIR-RED algorithm 
also applies is Belgian coastal waters and the Dutch Wadden Sea (52◦N/ 
3◦E and 53◦N/5◦E respectively) in images 2004-05-23, 2007-08-11 and 
2005-09-19. For the selected images Fig. 13 shows that Chl-a ranges 
between 0.5 and more than 8 mg m− 3 with highest values along the 
coast between 51◦N and 54◦N. In the English Channel (50◦N/3◦W) and 
the central North Sea (52◦N/3◦E), Chl-a is highest in the 2004-05-23 and 
2007-08-11 images with values reaching 3 mg m− 3 in the English 
Channel and more than 7 mg m− 3 in the North Sea. 

3.3.2. Application to OLCI data 
A first application of the algorithm QC and merging approach 

applied to OLCI-A data is presented in Fig. 13 for an image acquired on 
2017-06-18. L1 reduced resolution data were processed to level 2 with 
the POLYMER atmospheric correction processor (Steinmetz et al., 
2011). This atmospheric correction algorithm is designed for coastal 
waters and has shown good results for OLCI data when compared to 
AERONET-OC data (Zibordi et al., 2009) located in the North Sea 
(Cardoso Dos Santos et al., 2019). Although a future calibration of OLCI 
CHL_OC5 is required, OC5 look-up tables published for MERIS were 
applied to OLCI data, which has very similar spectral bands. The spectral 
similarity between MERIS and OLCI sensors was tested on a large 
number of hyperspectral in situ reflectance spectra measured in coastal 
waters and contrary to observations reported by Wang et al. (2020) 
when comparing OLCI and VIIRS spectral band, no band shift was 

Fig. 9. Box-plots comparing the performances of the OC4 (top panels), OC5 (middle panels) and NIR-RED (bottom panels) algorithms on the initial validation dataset 
(blue box-plots, 50% of the whole CCRR-MERMAID dataset randomly defined in the division-training-validation phase) to the subset of points having passed the QC 
(yellow box-plots). In the case of the NIR-RED algorithm before QC (blue boxplots), statistics were calculated for datapoints with a NIR-RED Chl-a value higher than 
3 mg m− 3 following Gons et al. (2002). By this way, negative values are removed. The red dotted lines represent for each metric its ideal values in case of a perfect 
algorithm. Note that the y-axis scales differ for some metrics between algorithms. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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observed between MERIS and OLCI (Table S1, supplementary material). 
Fig. 14 shows a large region application of the OC5 algorithm with some 
areas offshore of the French and UK coasts where the OC4 algorithm is 
also valid. Along the coast, the OC5 algorithm is accepted in its relaxed 
version due to higher turbidity. In some offshore areas of the northern 
North Sea (58◦N/2◦W) and west of England (51◦N/5.5◦W) only the 
relaxed version of OC5 algorithm is accepted. RGB image (Fig. S2 / 
supplementary material) indicates that these areas correspond to Coc
colithophorid blooms. Finally, the NIR-RED algorithm is selected in the 
Wadden Sea north of the Netherlands (53◦N/5◦E). The Chl-a map shows 
values ranging between 0.15 and 8 mg m− 3, with, similarly to the MERIS 
images, highest Chl-a value along the coast close to estuaries and higher 
Chl-a values in the southern North Sea (52◦N/3◦E) than in the English 
Chanel (49◦N/5◦W). The results presented here need to be validated 
against in situ measurements, which are not available yet, but as a first 

observation they are consistent with MERIS results and suggest that the 
present methodology should be easily applicable to OLCI and hence 
ensure reliable Chl-a data over the next decades. 

4. Discussion 

4.1. Discussion on methodology 

We propose QC tests based on the relative percent difference be
tween in situ and satellite estimates to prevent use of three different Chl- 
a algorithms outside their conditions of validity and to prevent the 
production of erroneous remote sensing Chl-a products in coastal wa
ters. The QC tests have been designed here on the basis of MERIS/in situ 
matchups for coastal waters. In contrast to the simulated datasets 
generated from radiative transfer models (Doerffer and Schiller, 2007; 

Fig. 10. In situ Chl-a observations as a function of satellite Chl-a estimations. In panels A to C, red dots represent datapoints which pass the final OC4, OC5 and 
NIR_RED QC respectively, whereas greys points didn’t pass QC. Panel D shows In situ Chl-a observations as a function of satellite Chl-a estimations after application 
of QC tests and merging methodology presented in this paper. Colour code indicates for each point which Chl-a algorithm has been selected. 292 points (83% of the 
full MERMAID-CCRR dataset) are represented here. The validation metrics are provided in Table 4 lines 7 and 8 for standard merged algorithm and extending version 
respectively. In each panel, dotted lines represent the ±50% error interval. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Nechad et al., 2015; Hieronymi et al., 2017) which are often used for 
algorithm testing, the CCRR-MERMAID dataset used here is based on 
MERIS water reflectance. This choice of dataset solves any application 
transfer issue which may arise from algorithms developed based on 
synthetic datasets because of possible bias in the representation of op
tical processes in the radiative transfer models. Nonetheless, as is 
generally the case for in situ/satellite matchup datasets, the CCRR- 
MERMAID dataset presents geographic limitation. Indeed, the CCRR/ 
MERMAID dataset is dominated by the North Sea and European Atlantic 
coast with respectively 38% and 24% of data points whereas the other 
regions are also represented (Californian coast, 22% of data points; 
Mediterranean Sea, 12.5% of data points and North America east coast, 
2%). However, the over-representation of North European waters in the 
dataset shouldn’t be an issue for global application, as North European 
waters cover a large range of optical water conditions (Hieronymi et al., 
2017Fig. 6; Mélin and Vantrepotte, 2015) with the presence of very 
turbid, absorbing or eutrophic waters. Regarding the OC5 algorithm, 
although it has been parameterized from a regional dataset (Gohin et al., 
2002) located in the North European waters and there might be concerns 
about extrapolation to other regions, OC5 has also been successfully 
validated and/or applied in many other regions such as the Bay of 
Bengal and Arabian Sea (Tilstone et al., 2011); the Southern Bay of 
Biscay (Novoa et al., 2012; the Mediterranean Sea (Druon et al., 2004; 
Fraysse et al., 2014) or the Gulf of Gabes (Katlane et al., 2012). OC5 only 
failed to retrieve Chl-a concentration in the extremely turbid waters of 
the Rio de la Plata in Argentina (Camiolo et al., 2016) but this result 
supports the QC tests presented in this paper which indicate that for 
extremely turbid conditions the OC5 algorithm cannot be used. 

Indeed, while the OC5 algorithm is by far the best performing al
gorithm in most coastal waters, there is value in using additional algo
rithms because in certain specific conditions OC5 would result in 
erroneous estimates with a significant overestimation of Chl-a 
(extremely turbid waters, Camiolo et al., 2016) or a significant under
estimation of Chl-a (hyper-eutrophic water, Tilstone et al., 2017). For 
certain applications like eutrophication monitoring such errors could 
have critical consequences as it is very important to assess hyper- 
eutrophic regions well even if they only represent a small number of 
pixels. Then, whatever the algorithm, it is important to determine a 
domain of validity and to propose alternative algorithms when possible. 

The huge number of Chl-a algorithms developed for case 2 waters 
(Odermatt et al., 2012; Neil et al., 2019), were dramatically reduced for 
study here three algorithms based on the following criteria. First, as 

explained in Section 2.3.1., an a priori knowledge about the conditions 
of application and limits of the algorithm was needed. Following this 
criterion, algorithms such as neural networks (i.e. Doerffer and Schiller, 
2007; Hieronymi et al., 2017) were screened out. Next, only algorithms 
with a potential for global application were retained and finally, to avoid 
too much complexity, only one algorithm was selected in a same group 
of algorithms (i.e. algorithms based on the same theory and applicable to 
the same type of waters such as blue-green band ratio algorithms or NIR- 
red band ratio algorithms). However, results for additional algorithms in 
the OC4 and NIR-RED categories are discussed hereafter. 

OC4 has been selected for its very strong popularity (O’Reilly et al., 
1998) and accessibility compared to OC5 which is based on LUTs and 
might be less easy to compute for some users although OC5-Chl-a 
products are distributed by the Copernicus Marine Environment Moni
toring Service (CMEMS, http://marine.copernicus.eu/). Recently, a new 
algorithm called “OC6” has been published by O’Reilly and Werdell 
(2019). This algorithm, dedicated to clear waters, is derived from OC4 
but uses two additional bands: 412 nm and 665 nm which could give 
better results in coastal waters. However, a first test has shown that after 
applying a dedicated QC similar to the QC developed for OC4 and OC5, 
OC6 algorithm performance was not improved (see Fig. S3/supple
mentary materials). Based on these results we decided not to further 
analyse OC6 in this study, although it may be relevant to revisit OC6 at a 
later stage. The NIR-RED Gons (1999) algorithm has been selected for its 
complementarity with OC5 and OC4 in hyper-eutrophic waters (Gons 
et al., 2008; Smith et al., 2018) and its semi-analytical basis. However, 
there is a large range of NIR-RED algorithms (Dall’Olmo et al., 2005; 
Gitelson et al., 2007; Moses et al., 2009; Le et al., 2009; Gilerson et al. 
92010; Gurlin et al., 2011), that are all adapted to turbid eutrophic 
waters. To complete the present analysis, 2-bands and 3-bands semi- 
analytical algorithms presented by Gilerson et al. (2010) were also 
tested. Whereas the 2-band Gilerson et al. (2010) algorithm is very 
similar to the Gons (1999) algorithm as they both use the reflectance 
band ratio 709 nm over 665 nm, the 3-band Gilerson et al. (2010) al
gorithm is based on a different structure which was designed to perform 
better in the case of non negligible absorption due to non algal particles 
and CDOM (Dall’Olmo et al., 2005). Contrary to Gons (1999) algorithm, 
Gilerson et al. (2010) algorithms account for variations with Chl-a of the 
phytoplankton specific Chl-a absorption coefficient (Bricaud et al., 
1998). The same procedure as the one applied to NIR-RED algorithm, 
was applied to the Gilerson et al. (2010) 2-band and 3-band algorithms. 
Final boundary lines and performances statistics obtained after 

Fig. 11. Geographic distribution of CCRR-MERMAID data in the north hemisphere (north hemisphere contains a large majority of the CCRR-MERMAID database, see 
Fig. 1). The Colour code indicates for each data point which algorithm have been selected by QC tests. Symbol shape indicates the method of measurement of in situ 
Chl-a (cross: HPLC, circle: fluorometry, triangle: spectrophotometry). 
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Fig. 12. Results for the Chl-a switching algorithm methodology developed in this paper and applied to 4 MERIS images processed from ODESA (http://www. 
odesa-info.eu/info/) with MEGS8.1 version. Land is shown in grey. No reflectance data are available for the white areas (clouds, sunglint, atmospheric correc
tion failure, outside swath, etc.). Colour indicates which algorithm(s) pass QC. The corresponding RGB images are available in supplementary materials (Fig. S1). 
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Fig. 13. Merged Chl-a maps derived using the switching algorithm approach and applied to the same images as shown in Fig. 12. White areas are where input 
reflectance data was missing or no Chl-a algorithm passed QC. Corresponding RGB image is available in supplementary materials (Fig. S1). 
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application of dedicated QC are presented in Table 5. Results show that 
the 2-band Gilerson et al. (2010) algorithm is the one which allows to 
accept the most datapoints (54) with the less restrictive boundary lines 
although the performances are slightly degraded compared to Gons et al. 
(2005) and Gilerson et al., 2010 3-band algorithms. Gilerson et al. 
(2010) 2-band algorithm and NIR-RED algorithm (Gons et al., 2005) 
which are both based on the same reflectance ratio show very similar 
results and an end-user according to its preference could use either one. 
Gilerson et al. (2010) 3-bands algorithm shows very restrictive QC 
which reduces the interest of this algorithm in this context (i.e. coastal 
waters and application of QC). 

Finally, it is noted that the present QC are designed for coastal waters 
and are not optimal for ultra-oligotrophic case 1 waters (i.e. Chl-a <
0.25 mg m− 3). For case 1 waters we would recommend the users to 
simply use the OC4 algorithm, or to apply the colour index (CI) approach 
(Hu et al., 2012) as it has already been implemented in several satellite 
Chl-a products (i.e. CMEMS products: Volpe et al., 2019, Globcolour 
products: Garnesson et al., 2019; NASA products: https://oceancolor.gs 
fc.nasa.gov/atbd/chlor_a/). 

4.2. Quality control tests versus merged algorithms 

In this study, we present an approach based on quality control tests 
for OC4, OC5 and NIR-RED algorithms on a pixel-by-pixel basis. Indeed, 
contrary to many multi-algorithm approaches previously developed 
(Gons et al., 2008; Kahru and Mitchell, 2010; Hieronymi et al., 2017; 
Smith et al., 2018), our first objective was not to create a merged al
gorithm but to provide to future users a simple way to ensure that Chl-a 
values calculated by OC4, OC5 and NIR-RED algorithms are reliable. 
Hence, the QC tests proposed here are independent of each other and can 
be used on their own. However, as OC4, OC5 and the NIR-RED algo
rithms perform better in different water types, it makes sense to combine 
them to process satellite images. A simple combination method based on 
averages has been presented in the Section 3.2.2 and applied to MERIS 
and OLCI images (Section 3.3). Although results showed coherent maps, 
the QC may produce discontinuities in Chl-a concentration when 
switching between two algorithms and creates white areas where no 
algorithm applies. To fill white areas, it is possible to relax the benefit 
function as it was done for OC5 while increasing uncertainty or to 
develop specific algorithms for optical waters that do not pass QC 

Fig. 14. Application of the Chl-a algorithm methodology developed in this paper to OLCI reduced resolution image data from 2017 to 06-18. The left panel shows 
algorithm selection and the right panel shows the resulting merged Chl-a map. The OLCI image has been processed from level 1 with the POLYMER atmospheric 
correction (Steinmetz et al., 2011). Corresponding RGB image is available in supplementary materials (Fig. S2). 

Table 5 
Performances and threshold coefficients for QC tests of three chl-a algorithms based on red-edge reflectance. The Gons et al. (2005) algorithm is the NIR-RED algorithm 
studied in this paper (Section 3), performance statistics and QC limits have been copied from Tables 3 and 4 to facilitate comparison.  

Algorithm Threshold coeffcients Validation statistics after QC 

Reference LChl/NIR_RED LR6/NIR_RED N MR MPD slope int. RMSD r2 

Gons et al., 2005 8.1 mg m− 3 0.0076 46 0.92 30.5% 1.06 − 0.94 4.90 0.71 
Gilerson et al., 2010 (Eq. 17.2, 2-band) 6.9 mg m− 3 0.0065 54 1.23 33.9% 1.26 0.23 5.35 0.73 
Gilerson et al., 2010 (Eq. 19.2, 3-band) 14.6 mg m− 3 0.0086 14 1.10 29.9% 1.16 − 1.37 7.3 0.73  
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conditions for OC4, OC5 and NIR-RED. However, it is important to 
recognise that the ocean colour satellite measurement technique simply 
cannot be used for Chl-a when phytoplankton does not significantly 
affect the water reflectance. Then, in some cases white areas are un
avoidable with current satellite sensor technology. 

Transition between algorithms have been addressed in previous 
studies with the utilization of weighting approaches to merge different 
Chl-a algorithms (Gons et al., 2008; Hieronymi et al., 2017; Smith et al., 
2018; Neil et al., 2019). For each pixel, a set of weights defines how the 
different Chl-a algorithms are combined to determine an optimized Chl- 
a product. These weights are generally defined according to optical 
properties such as Chl-a (Smith et al., 2018) or the full reflectance 
spectra (Hieronymi et al., 2017; Neil et al., 2019). Such an approach has 
been tested in our dataset without success as it requires a stronger 
dataset with more data points and larger SPM, CDOM and Chl-a gradi
ents. In the future, a refinement of the coarse weights (0,0.5,1) proposed 
here could be developed. 

The QC tests presented in this paper were designed to maintain a 
relatively low uncertainty on the subset of data points where they apply. 
Their design was based on the relative difference between in situ and 
satellite estimates, which contrary to other statistical index such as 
RMSD allows to keep in situ Chl-a measurements as a reference. By 
creating the benefit function (Eq. (6)) we arbitrarily decide to retain 
data points with absolute percent difference less than 50% (positive 
score) and reject data points with more than 50% absolute percent dif
ference (negative score). This limit has been chosen by analogy with 
oceanic water Chl-a applications (IOCCG report 18, 2019) and, in 
comparison to the average uncertainty measure in case 1 waters (35%, 
Hu et al., 2012; O’Reilly and Werdell, 2019). However, modification of 
this limit doesn’t change dramatically the results as shown in Fig. S4 
(supplementary material), as only LlogR5OC4 and LlogR5OC5 are slightly 
more restrictive when point selection becomes stricter. This shows that 
after a certain level it becomes difficult to keep reducing uncertainty by 
selecting best water type only. Indeed, other sources of uncertainty such 
as radiometric noise or uncertainty in atmospheric correction also 
impact Chl-a retrieval. Another approach avoiding not processed areas 
would be to provide a pixel-based uncertainty map (Moore et al., 2009; 
Hieronymi et al., 2017) allowing the user to set their own acceptable 
level of uncertainty. Although that would be more flexible and better fit 
to any type of application, producing high quality uncertainty estimates 
which vary with local water properties is still challenging and not sys
tematically provided with Chl-a satellite products (IOCCG report 18, 
2019). The QC tests presented here allow to easily identify reliable Chl-a 
pixels and ensure high quality Chl-a estimates in a robust but simple 
way. 

4.3. Potential application for eutrophication monitoring 

Eutrophication is the enrichment of water by nutrients causing an 
exponential development of primary producers (i.e. micro-algae and 
macro-algae). This environmental disturbance modifies the ecosystem 
balance and affects the quality of the waterbody (OSPAR, 2017). The 
eutrophication status is established by monitoring of nutrients and 
chlorophyll-a concentration as a proxy for phytoplankton biomass 
(Reinart and Kutser, 2006; Harvey et al., 2015). To ensure a good quality 
of marine waters, some national or multi-national policies requires a 
careful monitoring of coastal waters. For example, in the European 
Union, the objective of the Marine Strategy Framework Directive 
(MSFD) to reach a ‘good environmental status’ (GES) by 2020 (Gohin 
et al., 2008; Gohin et al., 2019; Gohin et al., 2020) is a key driver for 
monitoring the coastal and offshore waters in Europe. While in situ data 
acquisition is still considered as the main monitoring tool, the European 
Commission highlighted the need for greater coherence with related EU 
legislations (Water Framework Directive and Habitats and Birds Direc
tive) and for more coherent and coordinated approaches within and 
between marine regions and sub-regions (European Commission, 2014). 

During recent years there has been a growing tendency to use optical 
remote sensing as a supporting tool to achieve the monitoring re
quirements because Chl-a satellite data combine cost-effective data 
collection with a much improved spatial and temporal coverage 
compared to in situ measurements. The satellite data also facilitates 
transnational spatial coherence which for MFSD monitoring avoids 
discrepancies between EU countries due to different in situ methodol
ogies and protocols. The reliability of Chl-a estimates and the accurate 
assessment of uncertainty, which is important to users, is addressed by 
the methodology presented in this study. To test the relevance of this 
methodology in the framework of the MFSD eutrophication assessment, 
QC tests for OC4, OC5 and NIR-RED algorithms were applied in a North 
Sea wide eutrophication assessment and the merged Chl-a product was 
evaluated by a comparison analysis with in situ datasets for all assess
ment areas in the greater North Sea. The comparison of the yearly mean 
and P90 CHL products yielded a median difference of 35.19% and 
39.05% (Van der Zande et al., 2019) validating the present methodology 
for eutrophication assessment in European waters. 

For future applications, it has been shown that the direct application 
of the present methodology on OLCI data is straight forward because of 
the good match between OLCI and MERIS spectral bands. In addition, 
although a validation with in situ OLCI matchup is needed, the appli
cation of the present methodology on OLCI data (Fig. 14) shows 
coherent results. Regarding other optical sensors, there is an interest for 
coastal water monitoring to define QC tests for high resolution sensors 
such as Sentinel 2 – MSI or Landsat – 8, OLI. In that case, some adap
tations are needed to account for spectral resolution of these sensors: (1) 
to use the CCRR-MERMAID database, band-shifts coefficients are 
needed, (2) some variables used in QC tests will need to be modified if 
the MERIS band doesn’t exist in the high resolution sensor and (3) some 
Chl-a algorithms will have to be abandoned (i.e. OC5, NIR-RED with 
Landsat8-OLI) or adapted (OC4 to OC3) when spectral bands are 
missing. 

5. Conclusion 

Satellite data from ocean colour sensors (e.g., MERIS, Sentinel-3) can 
provide spatially coherent data for Chl-a. In coastal water, there is a high 
demand of reliable Chl-a images from end-users working for ecosystem 
management, fish and shell farming or eutrophication monitoring. 
However, because of the optical complexity of coastal waters as well as 
their high spatial and temporal variability, retrieving accurate Chl-a 
concentration remains challenging. In particular, if the study area is 
large or presents unknown or unpredictable water properties, the se
lection of the best Chl-a algorithm becomes very difficult. To help 
remote sensing users retrieving accurate Chl-a concentration, we pre
sented QC tests for three popular Chl-a algorithms: OC4 (O’Reilly et al., 
1998); OC5 (Gohin et al., 2002) and NIR-RED (Gons, 1999). These QC 
tests are built from a newly developed methodology directly based on 
the relative difference between Chl-a in situ measurements and simul
taneous MERIS water reflectance. The simplicity of these tests which 
only require water reflectance data and provides a binary mask (i.e. Chl- 
a estimation from this algorithm is reliable or not) makes them easily 
accessible to the remote sensing user community. In addition, the 
combined utilization of these QC tests with the switching methodology 
allows to ensure a good coverage with 83% of our dataset processed. 
Although QC tests were designed from MERIS data and would need 
further validation with OLCI data, a comparison of MERIS and OLCI-A 
applications has shown very consistent patterns suggesting that pre
sent QC tests are also suitable to OLCI data. Thus, we expect that this 
methodology combined with OLCI data will help provide reliable 
monitoring of Chl-a in coastal waters for the coming decades, as needed 
for applications such as eutrophication management. 
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• David A. Siegel, UC Santa Barbara, Santa Barbara, USA  
• Catherine Belin, IFREMER, Brest, France 

Three reviewers are acknowledged for very careful reading of the 
original text and many useful comments. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2020.112237. 

References 

Bailey, S., Werdell, P., 2006. A multi-sensor approach for the on-orbit validation of ocean 
color satellite data products. Remote Sens. Environ. 102 (1–2), 12–23. https://doi. 
org/10.1016/j.rse.2006.01.015. 

Barker, K., Mazeran, C., Lerebourg, C., Bouvet, M., Antoine, D., Ondrusek, M., 
Zibordi, G., Lavender, S., 2008. Mermaid: the MERIS matchup in-situ database. In: 
Proceedings of the 2nd (A) ATSR and MERIS Workshop, Frascati, Italy. 

Bricaud, A., Morel, A., 1987. Atmospheric corrections and interpretation of marine 
radiances in CZCS imagery: use of a reflectance model. Oceanol. Acta 7 (special 
issue), 33–50. 

Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light 
absorption by suspended particles with chlorophyll a concentration in oceanic (case 
1) waters: analysis and implications for bio-optical models. J. Geophys. Res. 103 
(C13), 31033–31044. 

Camiolo, M.D., Cozzolino, E., Simionato, C.G., Hozbor, M.C., Lasta, C.Á., 2016. 
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