
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

Efficient, Dependable Storage of Human Genome Sequencing Data

“Documento Definitivo”

Doutoramento em Informática

Especialidade de Engenharia Informática

Vinicius Vielmo Cogo

Tese orientada por:

Prof. Doutor Alysson Neves Bessani

Documento especialmente elaborado para a obtenção do grau de doutor

2020

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

Efficient, Dependable Storage of Human Genome Sequencing Data

Doutoramento em Informática

Especialidade de Engenharia Informática

Vinicius Vielmo Cogo

Tese orientada por:
Prof. Doutor Alysson Neves Bessani

Júri:
Presidente:

• Doutor Nuno Fuentecilla Maia Ferreira Neves, Professor Catedrático e Presidente do
Departamento de Informática da Faculdade de Ciências da Universidade de Lisboa.

Vogais:

• Doutor Jim Dowling, Associate Professor da School of Engineering and Computer
Science da KTH Royal Institute of Technology;

• Doutor José Orlando Roque Nascimento Pereira, Professor Auxiliar com Agregação
da Escola de Engenharia da Universidade do Minho;

• Doutor Alysson Neves Bessani, Professor Associado da Faculdade de Ciências da
Universidade de Lisboa (Orientador);

• Doutor André Osório e Cruz de Azerêdo Falcão, Professor Auxiliar da Faculdade de
Ciências da Universidade de Lisboa;

• Doutor Bernardo Luís da Silva Ferreira, Professor Auxiliar da Faculdade de Ciências
da Universidade de Lisboa.

Documento especialmente elaborado para a obtenção do grau de doutor

Este trabalho foi financiado pela Fundação para a Ciência e a Tecnologia (FCT, Portugal),
através da unidade de investigação LASIGE (UIDB/00408/2020 e UIDP/00408/2020) e do

projecto IRCoC (PTDC/EEI-SCR/6970/2014), e pela Comissão Europeia, através dos
projectos BiobankCloud (FP7-ICT-317871), SUPERCLOUD (H2020-ICT-643964) e

DiSIEM (H2020-IA-700692).

2020

Abstract

The understanding of human genome impacts several areas of human life. Data from

human genomes is massive because there are millions of samples to be sequenced, and each

sequenced human genome may size hundreds of gigabytes. Human genomes are critical

because they are extremely valuable to research and may provide hints on individuals’ health

status, identify their donors, or reveal information about donors’ relatives. Their size and

criticality, plus the amount of data being produced by medical and life-sciences institutions,

require systems to scale while being secure, dependable, auditable, and affordable. Current

storage infrastructures are too expensive to ignore cost efficiency in storing human genomes,

and they lack the proper knowledge and mechanisms to protect the privacy of sample donors.

This thesis proposes an efficient storage system for human genomes that medical and life-

sciences institutions may trust and afford. It enhances traditional storage ecosystems

with privacy-aware, data-reduction, and auditability techniques to enable the efficient,

dependable use of multi-tenant infrastructures to store human genomes. Contributions

from this thesis include (1) a study on the privacy-sensitivity of human genomes; (2) to

detect genomes’ privacy-sensitive portions systematically; (3) specialised data reduction

algorithms for sequencing data; (4) an independent auditability scheme for secure dispersed

storage; and (5) a complete storage pipeline that obtains reasonable privacy protection,

security, and dependability guarantees at modest costs (e.g., less than $1/Genome/Year) by

integrating the proposed mechanisms with appropriate storage configurations.

Keywords: Data Storage; Genomic Data; Privacy; Deduplication; Auditability

i

Resumo

A compreensão do genoma humano impacta várias áreas da vida. Os dados oriundos

do genoma humano são enormes pois existem milhões de amostras a espera de serem

sequenciadas e cada genoma humano sequenciado pode ocupar centenas de gigabytes de

espaço de armazenamento. Os genomas humanos são críticos porque são extremamente

valiosos para a investigação e porque podem fornecer informações delicadas sobre o estado

de saúde dos indivíduos, identificar os seus dadores ou até mesmo revelar informações sobre

os parentes destes. O tamanho e a criticidade destes genomas, para além da quantidade de

dados produzidos por instituições médicas e de ciências da vida, exigem que os sistemas

informáticos sejam escaláveis, ao mesmo tempo que sejam seguros, confiáveis, auditáveis e

com custos acessíveis. As infraestruturas de armazenamento existentes são tão caras que

não nos permitem ignorar a eficiência de custos no armazenamento de genomas humanos,

assim como em geral estas não possuem o conhecimento e os mecanismos adequados para

proteger a privacidade dos dadores de amostras biológicas. Esta tese propõe um sistema

de armazenamento de genomas humanos eficiente, seguro e auditável para instituições

médicas e de ciências da vida. Ele aprimora os ecossistemas de armazenamento tradicionais

com técnicas de privacidade, redução do tamanho dos dados e auditabilidade a fim de

permitir o uso eficiente e confiável de infraestruturas públicas de computação em nuvem

para armazenar genomas humanos. As contribuições desta tese incluem (1) um estudo

sobre a sensibilidade à privacidade dos genomas humanos; (2) um método para detetar

sistematicamente as porções dos genomas que são sensíveis à privacidade; (3) algoritmos

iii

de redução do tamanho de dados, especializados para dados de genomas sequenciados;

(4) um esquema de auditoria independente para armazenamento disperso e seguro de dados;

e (5) um fluxo de armazenamento completo que obtém garantias razoáveis de proteção,

segurança e confiabilidade a custos modestos (por exemplo, menos de $1/Genoma/Ano),

integrando os mecanismos propostos a configurações de armazenamento apropriadas.

Palavras-chave: Armazenamento de Dados; Dados Genómicos; Privacidade; Dedupli-

cação; Auditoria

iv

Resumo Alargado

A compreensão do genoma humano [243] impacta várias áreas da vida, como por exemplo

as áreas médicas, jurídicas, sociais e históricas [144, 148]. Os genomas humanos são

críticos porque a disponibilização de extensos conjuntos de amostras aos investigadores

acelera o progresso em muitas áreas que aumentaram a nossa conscientização sobre a saúde

e a nossa expectativa de vida [154, 251]. No entanto, a criticidade dos genomas verifica-se

também porque eles podem fornecer informações sobre o estado de saúde dos indivíduos

com níveis consideráveis de confiança e podem identificar de maneira exclusiva os seus

proprietários ou revelar informações sobre os parentes dos mesmos [20, 191].

Simultaneamente, é difícil armazenar em larga escala os dados do sequenciamento

inteiro do genoma porque os conjuntos de dados produzidos neste método são enormes.

Primeiro, o advento do Next Generation Sequencing (NGS) [223] reduziu exponencial-

mente os custos do sequenciamento de ADN nos últimos anos, o que está aumentando

consideravelmente a quantidade de dados a serem geridos e armazenados [181] Atualmente,

o sequenciamento de todo o genoma de um indivíduo custa menos de $1000 [142, 253],

e espera-se que os preços continuem a cair [44, 253]. Segundo, os repositórios de dados

biológicos (por exemplo, os laboratórios de investigação, hospitais e biobancos) foram

inicialmente responsáveis pelo armazenamento de milhares a milhões de amostras físicas e

biológicas. No entanto, eles estão sob pressão para armazenar também os dados genômicos

resultantes da sequenciação destas amostras. Terceiro, centenas de gigabytes de dados

são gerados a partir de cada célula humana sequenciada (consulte a Seção 2.2 para obter

v

mais detalhes). Quarto, a medicina personalizada tem usado dados genómicos para levar

decisões médicas ao nível individual, impulsionando o uso de procedimentos e tratamentos

específicos para cada paciente [124, 148], o que também pode fazer com que os indivíduos

tenham as suas células sequenciadas várias vezes durante a sua vida. Em quinto lugar,

estudos modernos visam correlacionar milhares a milhões de amostras biológicas ou mesmo

populações inteiras (por exemplo, o projeto FarGen [101, 147]), em vez de fazê-lo com

apenas alguns poucos indivíduos.

O tamanho dos problemas que os repositórios de genomas estão a enfrentar pode ser

ilustrado, por exemplo, pelos altos custos para criar e manter uma infraestrutura privada para

armazenar e processar centenas de petabytes de dados advindos de um milhão de genomas

sequenciados. Em 2012, Haussler et al. [127] estimaram que seriam necessários aproxi-

madamente $65M no primeiro ano e $35M em cada ano subsequente para preparar dois

data centers fisicamente independentes que suportem pelo menos 125PB cada. Este custo

foi dividido em $30M como despesas de capital inicial (CAPEX), $25M em despesas opera-

cionais (OPEX) por ano e outros $10M por ano para atualizar completamente a plataforma

a cada três anos [127]. As principais alternativas para o alto custo das soluções de armazena-

mento incluem o uso de infraestruturas mais baratas e a redução do tamanho dos dados.

Mesmo iniciativas existentes (por exemplo, [127, 255]) exigem investimentos substanciais

para manter conjuntos de dados tão grandes e expandir a sua capacidade, o que sobrecarrega

as organizações e faz com que estas iniciativas possam ser interrompidas [50].

Em termos de eficiência de custo, a computação em nuvem pública é a alternativa

econômica mais prominente às infraestruturas privadas, pois fornece escalabilidade pratica-

mente infinita em um modelo de pagamento conforme o uso. Ela permite a implantação

imediata de grandes sistemas, fornece elasticidade rápida e não requer manutenção ou atu-

alização de hardware por parte dos utilizadores. Além disso, a variedade atual de serviços

geridos pela nuvem (centrados em dados) reduz também a necessidade de manutenção de

serviços na perspectiva do cliente. O custo para armazenar 125PB de dados em nuvens públi-

cas é, por exemplo, $6 milhões por ano no Amazon Glacier (ou seja, $0,004/GB/mês [12]

vi

para o arquivamento de dados e armazenamento de longo prazo) ou $31,5 milhões por ano

no Amazon S3 padrão (ou seja, $0,021/GB/mês [13]).

Infelizmente, muitas instituições médicas e de ciências da vida ainda estão reticentes

em adotar serviços de nuvem pública por vários motivos. Primeiro, apesar de sistemas de

bioinformática estarem cada vez mais integrados com as nuvens públicas [190], ainda existe

uma lacuna a ser transposta por investigadores que muitas vezes não são especialistas em

computação [17, 228]. Segundo, há preocupações em confiar dados críticos em serviços

controlados externamente, os quais ocasionalmente sofrem de indisponibilidade e incidentes

de segurança [42, 58, 84]. Terceiro, existem porções de dados genómicos que são mais

sensíveis à privacidade do que outras, e não há método para detectá-las automaticamente.

Quarto, a grande sensibilidade à privacidade de algumas partes dos dados genómicos não

permite confiar em nenhuma entidade de terceiros (por exemplo, um provedor de nuvem

pública). Quinto, o grande tamanho dos dados exige que mesmo as soluções baseadas na

nuvem considerem técnicas adicionais de redução de custos de armazenamento. Finalmente,

os controladores de dados confidenciais requerem meios de auditar o acesso aos dados para

detectar, analisar e sancionar abusos.

Em termos de redução do tamanho dos dados, a compactação e deduplicação são as

principais técnicas que permitem economia de custo. O primeiro substitui os dados por

uma representação menor que a original [218]. De forma semelhante, o segundo substitui

dados redundantes por apontadores para uma única cópia dos mesmos [202]. Técnicas de

compactação e deduplicação de dados genéricas são ineficientes em dados genómicos [116]

(consulte a Secção 4.3) e, portanto, algoritmos específicos devem ser usados [23, 87, 248].

Algoritmos baseados em compressão referencial são os mais adequados para comprimir

genomas humanos [38, 105, 151, 213]. No entanto, eles alcançam os seus melhores

resultados somente quando o genoma está em um formato de ADN contíguo (por exemplo,

veja as diferentes representações de dados do genoma na Secção 2.2). Os dados brutos de

sequenciamento são mais difíceis de compactar ou deduplicar, o que deixa oportunidades

em aberto para explorarmos novas soluções. Além disso, muitas implementações existentes

usam técnicas com perdas para alcançar os seus melhores resultados, o que significa

vii

que elas melhoram os ganhos de armazenamento reduzindo a utilidade dos dados [105].

Os algoritmos de deduplicação específicos são candidatos a substituir a necessidade de

mecanismos com perdas na compactação. Até onde sabemos, não existe uma solução de

deduplicação especializada para este tipo de dados.

Finalmente, a ampla prevalência de violações de dados amplia a importância da auditoria

dos sistemas de armazenamento. Por exemplo, saber exatamente quem acedeu a um item

de dados (por exemplo, um genoma humano) é um recurso que aumenta significativamente

a confiança dos utilizadores em uma solução de armazenamento. Soluções simples que

criptografam e armazenam todo o genoma em um único repositório podem facilmente

suportar esse recurso, fornecendo aos auditores todos os registos de acesso do sistema.

No entanto, este tipo de solução requer confiança na entidade que controla o repositório

e incorre em um único ponto de falha no sistema. Os sistemas de armazenamento seguro

(por exemplo, [28, 183]) geralmente dividem e convertem os dados originais em blocos

codificados e armazenam cada bloco em um repositório diferente. A leitura de dados em um

sistema como este requer acesso a vários repositórios para obter blocos distintos suficientes

para recuperar os dados originais. Da mesma forma, os auditores precisam receber registos

de acesso de vários repositórios e correlaciona-los antes de poder definir quem acedeu qual

item de dados. De acordo com o nosso conhecimento, não há estudo sobre os requisitos

teóricos exigidos pela auditoria para proteger os sistemas de armazenamento.

Em resumo, os sistemas de armazenamento para genomas humanos devem enfrentar

três desafios principais para se tornarem eficientes: levar em consideração a privacidade ao

armazenar os dados em infraestruturas externas, manter o alto desempenho dos sistemas

e a utilidade dos dados ao reduzir o tamanho dos ficheiros e fornecer meios para os

controladores de dados verificarem quem efetivamente leu os seus dados em sistemas de

armazenamento seguro.

Esta tese propõe um sistema de armazenamento de genomas humanos eficiente, seguro

e auditável para instituições médicas e de ciências da vida. Ele aprimora os ecossistemas de

armazenamento tradicionais com técnicas de privacidade, redução do tamanho dos dados e

viii

auditabilidade a fim de permitir o uso eficiente e confiável de infraestruturas públicas de

computação em nuvem para armazenar genomas humanos. O sistema de armazenamento

proposto nesta tese é um fluxo de armazenamento composto por quatro fases internas:

DETECÇÃO, REDUÇÃO, ARMAZENAMENTO e GESTÃO. Este sistema recebe os dados de

sequenciadores de amostras e as preferências de compartilhamento de dados de dadores

de amostras. A etapa de DETECÇÃO identifica e separa as porções sensíveis à privacidade

de genomas humanos das porções ditas não sensíveis (a primeira contribuição desta tese).

A etapa de REDUÇÃO reduz o tamanho dos dados empregando deduplicação baseada

em similaridade e codificação delta especializada para dados sequenciados (a segunda

contribuição). A etapa de ARMAZENAMENTO não é uma contribuição direta desta tese, mas

armazena os dados reduzidos em configurações apropriadas de acordo com a sensibilidade

à privacidade das porções dos genomas. A etapa de GESTÃO contém dois componentes

internos responsáveis por controlar o acesso aos dados com base nas preferências dos

dadores (não é uma contribuição direta desta tese) e por fornecer meios de auditabilidade

sobre quem acedeu aos dados (a terceira contribuição desta tese).

As contribuições desta tese constituem-se de:

(1) Um estudo sobre a sensibilidade à privacidade dos genomas humanos;

(2) Um novo método que detecta sistematicamente os segmentos de ADN sensíveis à

privacidade vindos diretamente de um fluxo de entrada, usando como referência

uma base de dados de conhecimento de sequências conhecidas de nucleótidos e

aminoácidos considerados sensíveis à privacidade. A integração deste método de

detecção com técnicas de segurança comuns fornece uma solução robusta e eficiente

que reconhece a privacidade, que neutraliza ameaças relacionadas a ataques recente-

mente publicados à privacidade do genoma, com base em repetições curtas, genes

relacionados a doenças e variações genômicas.

(3) Um novo método, chamado GenoDedup, para integrar uma deduplicação eficiente

baseada em similaridade e uma codificação delta especializada para dados de sequen-

ciamento de genoma. O objetivo específico do GenoDedup é equilibrar a economia

ix

de espaço e o desempenho das leituras, aumentando os ganhos de redução de da-

dos e restaurando os dados mais rapidamente do que os compressores genéricos

usados na prática, enquanto obtém ganhos de redução próximos aos de ferramentas

especializadas.

(4) Um estudo de emulações de armazenamento auditáveis, que fornecem a capacidade

de um auditor descobrir as leituras executadas anteriormente em registos emulados.

Ele define com precisão os registos auditáveis, as suas propriedades e estabelece

limites estreitos e resultados de impossibilidade para as emulações de armazenamento

auditáveis em cenários com objetos de armazenamento faltosos.

(5) A integração das contribuições anteriores em um fluxo de dados destinado a permitir

o armazenamento eficiente e confiável de genomas humanos em núvens públicas.

Este fluxo permite obter garantias razoáveis de proteção de privacidade, segurança e

confiabilidade a custos modestos (menos de $1/Genoma/Ano) usando configurações

de armazenamento apropriadas.

Finalmente, esta tese pressupõe que os dados de seqüenciamento obtidos a partir

de genomas humanos são críticos e massivos, o que impede que as infraestruturas de

armazenamento existentes ignorem a segurança e a relação custo-benefício. Resumindo

todas as contribuições mencionadas anteriormente, a hipótese desta tese é:

Aprimorar os ecossistemas de armazenamento tradicionais com técnicas de privacidade,

redução do tamanho dos dados e auditoria permite o uso eficiente e confiável de

infraestruturas públicas na nuvem para armazenar genomas humanos.

Palavras-chave: Armazenamento de Dados; Dados Genómicos; Privacidade; Dedupli-

cação; Auditoria

x

Acknowledgements

I render my sincerest gratitude to every single person that has been part of this journey.

Your example, love, and encouragement were determinant for me to reach this milestone.

To my advisor, Alysson Bessani for his immense support, guidance, and friendship. His

rigour, ambition, and competitiveness will keep guiding many aspects of my career and

life.

To my family for their unconditional support and encouragement. To my parents and

their companions (Sandra, Marco, Juliana, and Luis) and my siblings (Vitor, Vitória, Mateus,

João Pedro, and Maria Luisa) for being always present in my life and for enabling me to

grab so many opportunities and follow my dreams. To Vanessa Lucas for boarding into

my life in such an important moment, for supporting me and walking by my side full of

kindness, positiveness, and love every day. To my parents-in-law, grandparents, uncles, and

cousins for motivating me to be a better person and professional as they are.

To LASIGE and DI-FCUL for their culture of research excellence, openness, and

collaboration. To the coordinators and directors for their availability and management,

Luis Carriço, Paulo Veríssimo, Nuno Neves, Vasco Vasconcelos, Antónia Lopes, and Luis

Correia. To co-authors of the thesis-related publications for their insights and dedication, in

special to Francisco Couto, Paulo Veríssimo, João Paulo, Nuno Neves, Ricardo Mendes,

and Tiago Oliveira. To my colleagues of the lab and PhD, for their companionship during all

these years. To Mônica, Rudra, Giuliana, João A., Bruno Vavala, André, Patrícia, Miguel,

xi

Fernando Alves, Adriano, Telma, Eduardo V., Eduardo A., Luis Brandão, Max, Fernando

Ramos, Diego Kreutz, Antonio Casimiro, Ibéria, Márcia, Soraia, Nuno, Diana, Sofia, Joana,

Jośe C., Diogo L., Cajó, Bruno Valente, João Sousa, Henrique M., Cogumbreiro, Wilson,

Alan, Marcel, Rui Caldeira, Túlio, and Pedro Costa. Many of them became close friends

for life. To the administrative staff Sandra C., Pedro G., Alexandra E., Carla C., Márcio D.,

and Diogo F. To my previous advisors Andrea Charão and Marcelo Pasin, to INF-UFSM,

PET-UFSM, LSC-UFSM, and all my professors.

To my friends for their constant encouragement and friendship. To Leticia for being an

important part of this path, to Ana H., Teresa, Simão, Morgana, Maiara, Emanuel, Cristiane,

Marcírio, Cristiane, Adriana, Rui, Janete, and Hugo Dias. To my friends from Brazil, Hugo,

Francine, Harnye, Etiane, Barin, Leandro P., Márcia P., Daianne, Rissetti, Conrado, Mega,

and Eduardo C. To my friends from ACEFL, Elda, Odete, Renet, Camila, Daniel, Patrícia,

Teresa, and Dinis. To my friends from Nazaré and Constância (CP), from the soccer and

padel.

From the bottom of my heart, thank you all!

xii

Funding

The work from this thesis was partially supported by the Fundação para a Ciência e

a Tecnologia (FCT, Portugal), through the LASIGE research unit (UIDB/00408/2020

and UIDP/00408/2020) and the IRCoC project (PTDC/EEI-SCR/6970/2014), and by

the European Commission, through the BiobankCloud (FP7-ICT-317871), the SUPER-

CLOUD (H2020-ICT-643964), and the DiSIEM (H2020-IA-700692) projects.

xiii

Contents

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Main Goal and Context . 4

1.2 Contributions . 6

1.3 Thesis Hypothesis . 9

1.4 Structure of the Thesis . 9

2 Background and Related Work 11

2.1 A Brief Background on Human Genomes 11

2.2 Genome SEQUENCING . 14

2.3 Storage of Genomic Data . 16

2.4 Security and Dependability in Storage 17

2.5 Privacy-Aware Storage Techniques . 18

2.6 Data-Reduction Techniques . 21

2.7 Storage Auditability . 23

2.8 Discussion . 24

3 DETECTION of Privacy-Sensitive Portions in Human Genomes 27

3.1 The Detection Method . 31

xv

3.1.1 Overview . 31

3.1.2 Privacy-Sensitive Human Genomic Data 32

3.1.3 Implementation . 39

3.2 Experimental Evaluation . 41

3.2.1 Experimental Setup . 41

3.2.2 Privacy-Sensitivity of Human Genomes 43

3.2.3 Space Efficiency . 44

3.2.4 Throughput Performance . 44

3.3 Completeness of the Method . 47

3.4 Final Remarks . 50

4 Sequencing Data REDUCTION with Similarity-based Deduplication and

Delta-Encoding 53

4.1 Anatomy of a FASTQ Entry . 56

4.1.1 Comment Lines . 56

4.1.2 DNA . 56

4.1.3 Quality Scores (QS) . 57

4.2 Sequencing Data Compression . 59

4.3 Human Genome Deduplication . 64

4.3.1 Identity-based Deduplication . 65

4.3.2 Similarity-based Deduplication 68

4.4 GenoDedup . 70

4.4.1 Overview . 70

4.4.2 Offline Phase . 73

4.4.3 Optimisations of the Online Phase 73

4.5 Evaluation . 78

4.5.1 Encoding Gains . 79

4.5.2 Performance . 80

4.5.3 Large End-to-End Workload . 84

4.6 Discussion . 86

xvi

4.6.1 Other Data Representations . 86

4.6.2 Paired-end Sequencing . 87

4.6.3 Other Species . 88

4.6.4 Other Sequencing Machines . 88

4.6.5 Other Sequence Lengths . 89

4.6.6 Reordering FASTQ entries . 89

4.7 Final Remarks . 90

5 AUDITABILITY of Effective Reads in Register Emulations 91

5.1 Preliminaries . 93

5.2 Auditable Register Emulations . 97

5.3 Preliminary Results . 99

5.4 Resilience Lower Bounds . 101

5.5 Audit Algorithm . 104

5.6 Alternative Models for the Algorithm . 106

5.6.1 Signed Read Requests . 107

5.6.2 Total Order . 109

5.6.3 Non-fast Reads . 110

5.7 Final Remarks . 112

6 An End-to-End Storage Pipeline for Human Genomes 113

6.1 The Pipeline . 114

6.1.1 SEQUENCING . 115

6.1.2 DETECTION . 115

6.1.3 REDUCTION . 116

6.1.4 STORAGE . 118

6.1.5 MANAGEMENT . 120

6.2 Feasibility Discussion . 122

6.3 Final Remarks . 125

7 Conclusion 127

xvii

7.1 Final Remarks . 127

7.2 Future Work . 129

Bibliography 131

xviii

List of Figures

1.1 Main players of the storage ecosystem for human genomes, their interactions,

and an overview of the enhanced storage pipeline proposed in this thesis. . . 5

2.1 Biological diagram—from human beings to proteins. 12

2.2 Genome sequencing overview, some subsequent workflows, and a FASTQ entry. 15

3.1 An overview of the method for detecting privacy-sensitive genomic data. . . 29

3.2 Percentage of privacy-sensitive sequences in entire human genomes consider-

ing different detector knowledge databases. 30

3.3 Creating the blacklist sequences for the method based on short tandem repeats. 35

3.4 Percentage of privacy-sensitive reads for different false-positive rates and

knowledge datasets. 43

3.5 Bloom filter size for different false-positive rates and knowledge datasets. . 45

3.6 Throughput of our detection method considering different false-positive rates

(single-core). 46

3.7 Throughput of our detection method considering multiple threads (with 0.1%

false-positive rate). 47

4.1 Using modular arithmetic to convert normal deltas into circular deltas. . . . 58

4.2 Overview of the architecture of GenoDedup. 71

4.3 Average encoding size of deduplicated QS sequences (in bits) and its reduction

ratio. 80

xix

4.4 Average throughput of reads. 82

4.5 Average throughput of writes. 83

5.1 A configuration with a providing set Ppr1,v of an effective read and an auditing

quorum A. 100

5.2 A configuration with two providing sets and an auditing quorum A. 103

6.1 Overview of our pipeline intended to enable the efficient, dependable storage

human genomes in public clouds. 114

6.2 Estimated annual cost (in $) to store a human genome (s = 300GB) consider-

ing different configurations and reduction ratios (r). 124

xx

List of Tables

3.1 The different privacy-sensitive datasets considered in this study. 42

4.1 Compression tools, versions, and parameters used in our comparisons. . . . 59

4.2 The genome datasets used in this chapter. 60

4.3 Genomes and compression tools: compression ratio, throughput, and version. 61

4.4 Compressed size of the selected genomes per tool. 62

4.5 Compression throughput per tool. 63

4.6 Decompression throughput per tool. 63

4.7 Comparison of the compression ratio and write and read throughput with

competitors. 86

5.1 Threshold t and number of blocks τ per model and audit property. 107

6.1 Cloud storage pricing (in $/GB/Month) as in June, 2019. 123

xxi

1Introduction

The understanding of human genome [243] impacts several areas of human life, such as

medical, legal, social, and historical ones [144, 148]. Human genomes are critical because

they provide extensive sample collections enabling researchers to accelerate breakthroughs

in many areas that are increasing our health awareness and life expectancy [93, 154, 251].

However, genomes’ criticality stands also because they may provide hints on individuals’

health status with considerable confidence levels and can uniquely identify their owners or

reveal information about donors’ relatives [20, 21, 191].

Simultaneously, data from whole-genome sequencing (WGS) is difficult to store at

scale because its datasets are massive [230]. First, the advent of the Next-Generation

Sequencing (NGS) [223] reduced the costs of DNA sequencing exponentially in recent

years, which has considerably increased the amount of data to be stored and managed [55,

181, 230]. Sequencing the whole genome of an individual costs less than $1000 [142, 253]

in general, but prices are expected to continue falling [44, 211, 253]. Second, biological

data repositories (e.g., research institutes, hospitals, and biobanks) were initially responsible

for stocking thousands to millions of physical, biological samples. However, they have

been under pressure to store also the resulting digitised genomic data. Third, hundreds

of gigabytes of data are generated from each sequenced human cell (see Section 2.2 for

more details). Fourth, personalised medicine has been using genomic data to bring medical

decisions to the individual level propelling the use of specific procedures and treatments

1

for each patient [124, 148], which also may cause individuals to have their cells sequenced

multiple times during their lifespan. Fifth, modern studies aim to correlate thousands to

millions of biological samples or even whole populations (e.g., FarGen project [101, 147]),

instead of doing so with only a few individuals.

The size of the problem genome repositories are facing can be illustrated, for instance,

by the high costs to create and maintain a private infrastructure to store and process hundreds

of petabytes of data from a million sequenced genomes. In 2012, Haussler et al. [127]

estimated that approximately $65M would be required in the first year and $35M in every

subsequent year to prepare two physically independent data centres for at least 125PB each.

This cost was divided in $30M as the initial capital expenses (CAPEX), $25M in operational

expenses (OPEX) per year, and other $10M per year to completely upgrade the platform

every three years [127]. The main alternatives to the high cost of storage solutions include

using cheaper infrastructures and reducing the data size. Even existent initiatives (e.g., [127,

255]) require substantial investments for maintaining such large datasets and scaling out

their capacity, which burden organisations and cause them to be discontinued [50].

In terms of cost-efficiency, public cloud computing is the most prominent economic

alternative to private infrastructures since it provides virtually infinite scalability in a pay-

as-you-go model. It allows the immediate deployment of large systems, provides fast

elasticity, and requires no hardware maintenance or upgrade from users. Additionally,

the current variety of (data-centric) cloud-managed services reduce also the need for

service maintenance from the client perspective. The cost to store 125PB of data in public

clouds is, for instance, $6M per year in Amazon Glacier (i.e., $0.004/GB/Month [12] for

data archival and long-term storage) or $31.5M per year in standard Amazon S3 (i.e.,

$0.021/GB/Month [13]).

Unfortunately, many medical and life-sciences institutions are still reticent in adopting

public cloud services for several reasons. First, despite the fact that bioinformatics systems

are becoming increasingly integrated with the cloud [190], there is still a gap researchers

that are non-computer experts need to transpose to run their workflows on the cloud

2 Chapter 1: Introduction

seamlessly [17, 228]. Second, there are concerns in trusting critical data to externally-

controlled services that occasionally suffer from unavailability and security incidents [42,

58, 84]. Third, there are portions of genomic data that are more privacy-sensitive than

others, and there is no method to detect them automatically. Fourth, the higher privacy-

sensitivity of some portions of genomic data disallows trusting any single third-party entity

(e.g., a public cloud provider). Fifth, the large data size requires that even cloud-based

solutions must consider additional cost-effective techniques to reduce storage costs. Finally,

controllers of sensitive data require means of auditing data access to detect, analyse, and

sanction misuses.

In terms of reducing the size of data, compression and deduplication are the main

techniques enabling cost efficiency. The former replaces data by a representation smaller

than the original one [218]. Similarly, the latter replaces redundant data by pointers to a

single copy of it [202]. Standard compression and deduplication techniques are inefficient in

genomic data [116] (see Sections 4.2 and 4.3.1), and thus application-based algorithms must

be used [23, 87, 248]. Algorithms based on referential compression are the most adequate

to compress human genomes [38, 105, 151, 213]. However, they reach their best results

only when the genome is in a contiguous DNA format (e.g., see the different genome data

representations in Section 2.2). Raw sequencing data is harder to compress or deduplicate,

which leaves open opportunities to explore novel solutions. Additionally, many existent

implementations use lossy techniques to reach their best results, which means they improve

the storage gains by reducing data utility [105, 196]. Application-specific deduplication

algorithms are a candidate to replace the need for lossy mechanisms in compression. To the

best of our knowledge, there is no such a deduplication solution specialised for this type of

data.

Finally, the widespread prevalence of data breaches amplifies the importance of auditing

storage systems. For instance, being able to know exactly who has accessed a data item

(e.g., a human genome) is a feature that significantly increases the trust of users in a storage

solution. Simple solutions that encrypt and store the whole genome in a single repository

can easily support this feature by providing to auditors all access records from the system.

3

However, this type of solution requires trust in the entity that controls the repository and

incurs a single point of failure to the system. Secure storage systems (e.g., [28, 183]) usually

split and convert the original data into coded blocks and store each block in a different

repository. Reading data from a system like this requires accessing multiple repositories

to obtain enough distinct blocks to recover the original data. Similarly, auditors need to

receive access records from several repositories and merge them before being able to define

who has accessed which data item. To the best of our knowledge, there is no study on the

theoretical requirements auditability incurs to secure storage systems.

In summary, storage systems for whole human genomes must address three main

challenges to become efficient and dependable: be privacy-aware when storing data in

external infrastructures, keep systems’ high performance and data utility when reducing the

data size, and provide means to data controllers verify who has effectively read their data

from secure storage systems.

1.1 Main Goal and Context

This thesis proposes an efficient, secure, auditable storage system for whole human

genomes for medical and life-sciences institutions. It enhances traditional storage ecosys-

tems with privacy-aware, data-reduction, and auditability techniques to enable the efficient

use of multi-tenant public infrastructures to store human genomes. We start by placing our

system proposal within the genomic research and clinical ecosystems. The upper part of

Figure 1.1 depicts the main players and their interactions.

Initially, sample donors (1) donate biological material (i.e., physical samples) to research

or clinical analyses and (2) inform their preferences for data sharing (if any). Sample

managers receive, manipulate, and store these biological specimens on their facilities (e.g.,

using cryopreservation [80]) and (3) forward portions of these samples to sequencing.

Sample sequencers are trusted entities that (3) receive parts of the physical, biological

samples, sequence them, (4) send the sequenced data to storage, and securely discard

4 Chapter 1: Introduction

Hospitals/Biobanks

Sample
Sequencing

DNA Privacy
Detector

Non-Sensitive

Privacy-
Sensitive

Auditability

Access
Control

Similarity-based

Deduplication

SEQUENCING DETECTION STORAGE MANAGEMENT REDUCTION

FASTQ
entries

Metadata
Chapter 3 Chapter 4

Chapter 5

Data
Storage

Sample
Manager

Attacker

Sample
Donor

Data
Consumer

1

2

5

6

3

4

7

Auditor

Sample
Sequencing

2

4

1

3

7 5 6

Single-Cloud
Storage

Multi-Cloud
Storage

Section 2.2

Figure 1.1: Main players of the storage ecosystem for human genomes, their interactions, and an
overview of the enhanced storage pipeline proposed in this thesis.

the biological samples and the resulting data from their facilities. Data consumers are

entities that (5) consume data from the storage system according to donors’ preferences and

other permission rules. Attackers are also entities, indistinguishable from data consumers,

that (6) consume data from the storage system, but they do not necessarily respect all

access rules. Data storage is the storage system proposed in this thesis. It provides the

necessary scalability, performance, security, dependability, and cost-efficiency to store

data from human genomes. Although the data storage belongs to biobanks’ or hospitals’

administrative domains, data does not necessarily reside in local private infrastructures (e.g.,

it can be stored in external public clouds). Finally, auditors are entities, controlled either by

the data managers or by trusted third-party entities, that (7) request the records and logs

(i.e., metadata only) evidencing who has accessed which portions of the stored data.

Our work focuses specifically on the data storage component, which efficiently stores

and provides human genomic data. The lower part of Figure 1.1 zooms into this component.

1.1 Main Goal and Context 5

Numbers there represent the same interactions from the upper part of this figure. In the next

section, we introduce the internal components of our data storage system and describe the

thesis’ contributions.

1.2 Contributions

The data storage component from Figure 1.1 is a storage pipeline composed of four

internal phases: DETECTION, REDUCTION, STORAGE, and MANAGEMENT. This compo-

nent receives data from sample sequencers (i.e., Interaction 4, in an external phase called

SEQUENCING) and data sharing preferences from sample donors (i.e., Interaction 2, in the

MANAGEMENT phase). The DETECTION step identifies and separates the privacy-sensitive

portions of human genomes from the non-sensitive ones (the first contribution from this

thesis). The REDUCTION step reduces the data size by employing similarity-based dedupli-

cation and delta-encoding specialised for sequencing data (the second contribution). The

STORAGE step is not a direct contribution from this thesis, but it stores the reduced data in

appropriate configurations according to the privacy-sensitivity of the genomes’ portions.

The MANAGEMENT step contains two internal components responsible for controlling the

data access based on donors’ preferences (it is not a direct contribution from this thesis) and

for providing auditability means on who has effectively read data (the third contribution

from this thesis).

This thesis results from specific tasks distributed across four research projects (Biobank-

Cloud, SUPERCLOUD, DiSIEM, and IRCoC) conducted in the Large-Scale Informatics

Systems Laboratory (LASIGE) in the Faculty of Sciences (Ciências) of the University

of Lisbon (ULisboa). In the following, we introduce each of the three mentioned main

contributions (they are also described in detail as individual chapters later), an integrated

storage pipeline (the fourth contribution of this thesis), and other minor contributions related

to the mentioned projects and topics of interest.

6 Chapter 1: Introduction

C1—Detection

The first contribution of this thesis is the proposal of a novel method that systematically

detects privacy-sensitive DNA segments coming directly from an input stream, using

as reference a knowledge database of known privacy-sensitive nucleic and amino acid

sequences. Integrating this detection method with standard security techniques provides a

robust, efficient privacy-aware solution that neutralises threats related to many published

attacks on genome privacy based on short tandem repeats, disease-related genes, and

genomic variations.

This method was developed during the BiobankCloud project and composes the DETEC-

TION phase in the pipeline presented in the lower part of Figure 1.1. This contribution is

detailed in Chapter 3, and it has directly resulted in two main publications [70, 71].

C2—Reduction

The second contribution of this thesis is the proposal of GenoDedup, which is the first

method to integrate efficient similarity-based deduplication and specialised delta-encoding

for genome sequencing data. The specific goal of GenoDedup is to balance space savings

and restore performance by increasing data reduction gains and restoring data faster than

the generic compressors used in practice, while approaching the reduction gains to the ones

from specialised tools.

This solution composes the REDUCTION phase in the pipeline presented in the lower

part of Figure 1.1 and was developed during the SUPERCLOUD project. This contribution

is detailed in Chapter 4, and it has resulted in a journal publication [72].

C3—Auditability

The third contribution of this thesis is the proposal of auditable storage emulations,

which provide the capability for an auditor to discover the previously executed reads in

1.2 Contributions 7

emulated registers. It precisely defines auditable registers, their properties, and establishes

tight bounds and impossibility results for auditable storage emulations in the presence of

faulty storage objects.

This work was developed during the DiSIEM and IRCoC projects and composes the

Auditability component of the MANAGEMENT phase in the pipeline presented in the lower

part of Figure 1.1. This contribution is detailed in Chapter 5, and it has directly resulted in

a preprint article to be submitted [69].

C4—Pipeline

The fourth and last contribution of this thesis is the integration of the previous contri-

butions into an end-to-end composite pipeline intended to enable the efficient, dependable

cloud-based storage of human genomes. It allows one to obtain reasonable privacy protec-

tion, security, and dependability guarantees at modest costs (less than $1/Genome/Year)

using appropriate storage configurations.

We describe how data flows from one component to the other and present a feasibility

evaluation of the pipeline in Chapter 6. A review of existent data integration initiatives

for human genomes was conducted during the BiobankCloud project and published in

an article [66]. The feasibility of the storage pipeline was evaluated during the DiSIEM

and IRCoC projects, but it relates to all previously mentioned projects and contributions.

Additionally, it has resulted in a workshop publication [68].

Other contributions

This thesis touches several areas of computer science, and its works have resulted in

some secondary contributions, collaborations, and publications. Although related to the

previous contributions, these works are presented here as additional achievements because

they are not at the core of this thesis.

8 Chapter 1: Introduction

For instance, Contribution C1 was also presented during a PhD students session [63].

Works related to Contribution C4 were also presented as posters [64, 65]. Works related to

Contributions C2 and C4 have been part of Deliverables D1.4 [171], D2.2 [30], D4.1 [29],

D4.2 [31], and D4.3 [33] of the BiobankCloud project.

Some works, related to the Contribution C4, were co-authored by the candidate during

his PhD period. For instance, the paper entitled “CHARON: A Secure Cloud-of-Clouds

System for Storing and Sharing Big Data” [183] proposed a multi-cloud storage system

for storing and sharing big data. The PhD candidate has contributed in the requirement

specification to store human genomes, some design and motivation discussions, writing,

and the evaluation of the system (more specifically in the development of the FS-Biobench

macro benchmark [67]. CHARON is used in this thesis as a black box component providing

all the identified requirements for the STORAGE phase of our pipeline. Previously, the

paper entitled “BiobankCloud: a Platform for the Secure Storage, Sharing, and Process-

ing of Large Biomedical Data Sets” [32] described the whole integrated platform of the

BiobankCloud project, which also has CHARON [183] as an internal component. Finally,

the candidate also collaborated in other two works related to Contribution C2 [10, 11].

1.3 Thesis Hypothesis

This thesis assumes that sequencing data obtained from human genomes are critical

and massive, which prevents existing storage infrastructures from ignoring security and

cost-efficiency. Summing up all previously introduced contributions, the hypothesis of this

thesis is:

Enhancing the traditional storage ecosystem with privacy-aware, data-reduction,

and auditability techniques enables the efficient, dependable storage

of sequencing data from human genomes.

1.3 Thesis Hypothesis 9

1.4 Structure of the Thesis
The remaining of this document is divided into six chapters.

Chapter 2. This chapter introduces several concepts and processes that are important for

the remaining chapters of the thesis. Additionally, it presents general related works that

compose the state-of-the-art in the topics of interest for this document. Some chapters can

contain additional related works that are specific to the contribution being presented.

Chapter 3. This chapter describes a high-throughput method to detect the privacy-sensitive

portions of human genomes, which is the first contribution of this thesis. This method

allows one to separate these portions from the non-sensitive ones and treat them differently

in the complete storage pipeline.

Chapter 4. This chapter presents a comparison of several tools for compressing sequencing

data, as well as proposes and evaluates a similarity-based deduplication and delta encoding

algorithm specialised for human genomic sequencing data.

Chapter 5. This chapter discusses the formal requirements and impossibility results, as

well as proves the lower bounds of auditability in secure storage systems that use information

dispersal across multiple repositories.

Chapter 6. This chapter presents the complete storage pipeline that integrates the contri-

butions from Chapters 3–5 and evaluates its feasibility.

Chapter 7. This chapter concludes the thesis by remarking the main contributions and

presenting possible future works deriving from this thesis.

10 Chapter 1: Introduction

2Background and
Related Work
This chapter presents the background and state-of-the-art in the research areas relevant

to this thesis. It describes the context and related work on storage of genomic data and

introduces mechanisms for privacy protection, data reduction, and auditability. More

specifically, Section 2.1 contains a brief overview on human genomes; Section 2.2 describes

the genome sequencing process and its files; Section 2.3 provides an overview of the existent

initiatives for integrating genomic data from multiple data storages; Section 2.4 discusses

the security and dependability aspects of data storage; Section 2.5 reviews privacy-aware

storage techniques; Section 2.6 compares data reduction techniques; Section 2.7 overviews

existent techniques for storage auditability; and Section 2.8 discusses the opportunities

identified as open problems in the literature.

2.1 A Brief Background on Human Genomes
This section introduces several biology concepts that are important for this thesis. Their

definitions were collected and adapted from introductory documents in this field (e.g., [78,

164, 200, 239]). Figure 2.1 depicts the relations between these concepts descending from

human beings to DNA, RNA, genes, and proteins.

The body of a human being is composed of trillions of cells of many types (e.g., stem,

bone, blood, muscle). Each of our cells contains a nucleus, which characterises humans

11

Humans

Cells

Nucleus

Chromosomes

DNA

Proteins

Genes

Amino Acids

Nucleobases

A T

G C

RNA

A U

G C

Coding

Exons

Non-coding

Introns

trillions 1
46

23 pairs

1 molecule 3.2B

2%

98%

transcription 3 bp = 1 aa dozens to

millions

≥1

Genes

Figure 2.1: Biological diagram—from human beings to proteins.

as eukaryotic organisms. The nucleus of a human cell contains most of the individual’s

genetic material. Only a small part of this hereditary material is located in the mitochondria,

outside the nucleus.

Cells can also be classified into haploid and diploid types, where the former contains

only one complete set of chromosomes and are used in reproduction (i.e., gamete/ovum

and sperm), and the latter comprises two sets and are somatic cells. A diploid human cell

contains 46 chromosomes organised in 23 pairs, where 22 of these pairs are composed of

autosomes (i.e., body chromosomes that are similar in males and females) plus a pair of

allosomes (sex chromosomes)—XX for women or XY for men. A human chromosome

is composed of a DNA (DeoxyriboNucleic Acid) molecule and histones (i.e., packaging

proteins). The DNA molecule is composed of two chains of nucleotides that form the

spiral ladder known as the double helix. The size of a human genome in a haploid cell is

equivalent to approximately 3.2 billion nucleotides, which is the sum of all nucleotides

of one chain from each human chromosome. This 3.2B number appears again in several

sections of this document to describe the size of a human genome and help to measure the

file size in several data representations.

12 Chapter 2: Background and Related Work

A nucleotide is composed of a chemical base, a sugar, and a phosphate molecule. A

chemical base or a nucleobase is a chemical compound that is represented as one of the

basic four letters of DNA—“A” for adenine, “C” for cytosine, “G” for guanine, and “T” for

thymine. Nucleobases pair with each other (i.e., A with T and C with G) to form base pairs

(i.e., bp) bonding together the two nucleotide chains of the DNA.

The human genome contains several intercalated regions that can be classified into

two groups: the coding and the non-coding regions. The former regions are the genome

portions that have some known functional outcome (e.g., proteins). The latter ones are

regions that contain structural DNA or DNA whose function is yet unknown. Less than 2%

of a human genome is considered coding regions (or exons), while the remaining more 98%

are non-coding regions (or introns).

Genes are functional units made up of DNA that can be transcribed to RNA (RiboNucleic

Acid). RNA is a single strand also composed of a chain of nucleobases, where every thymine

(“T”) from the DNA is replaced by uracil (“U”). Alleles are similar forms of genes with

small differences in their sequences, which make one unique or may have an impact, for

instance, in being more prone to develop a disease. Messenger RNA (mRNA) is the type

of RNA that carries the needed information for making proteins, from the nucleus to the

cytoplasm. In the cytoplasm, mRNA interacts with the ribosome to translate a codon (i.e.,

three bases) into an amino acid (aa). In humans, there are twenty amino acids that can be

used as building blocks for proteins.

Another RNA type, known as transfer RNA (tRNA), assembles the protein, one amino

acid at a time until it finds a codon that does not code for any amino acid (i.e., a “stop”

codon). Gene regulation is an essential process because it determines which genes will

be expressed (i.e., turned on) or repressed (i.e., turned off) in each cell. Finally, proteins

are molecules that do most of the work in cells and contribute to determining the structure,

function, and regulation of tissues and organs.

2.1 A Brief Background on Human Genomes 13

2.2 Genome Sequencing

Data from human genomes has three main representations: sequencing, aligned, and

assembled data. Sequencing data is the most critical representation in genomics because it

contains the purest version of genomic data and is unbiased from subsequent processing

steps [61]. Sequencing machines digitise genomes by translating the chemical compounds

from biological samples to digital information. Next-Generation Sequencing (NGS) [223]

is the name given to the machines that sequence genomes at a high-throughput [172].

However, NGS machines do not provide the whole human genome in a single contiguous

DNA sequence. They generate millions of small DNA reads, which are small pieces of

DNA containing sequences with hundreds to thousands of nucleobases each. Additionally,

every nucleotide from a human genome is sequenced many times and appear in several

complimentary reads (e.g., 30–45×) to improve the sequencing accuracy. Data obtained

from sequencing genomes is stored in the FASTQ text format [61], which is usually written

once and read many times later for processing. FASTQ is the standard format in both cold

and hot storage systems for genomic sequencing data [61].

A FASTQ file contains many entries with four lines each—similar to the one presented at

the top right corner of Figure 2.2. The first line is a comment about the entry starting with a

“@” character. The second line contains the DNA sequence interpreted by the machine—e.g.,

A for adenine, C for cytosine, G for guanine, and T for thymine. The third line is another

comment that starts with a “+” character to determine the end of the DNA sequence, and can

optionally be followed by the same content as the first one. The fourth line contains quality

scores (QS), which measure the machine’s confidence for each sequenced nucleobase.

The second (DNA) and fourth (QS) lines have the same length since one QS is attributed

for each sequenced nucleobase. This length is configurable and may vary from file to file,

but it is usually constant within the same file. We provide additional specific details about

FASTQ entries in Section 4.1, where we enlist their aspects that influence data reduction

the most.

14 Chapter 2: Background and Related Work

DEDUPLICATION

SEQUENCING

ASSEMBLY ALIGNMENT

Sample

Sample
Donor

Data
Sequencer

FA
ST

Q

FA
ST

A

>Comment
DNA

SA
M

En

tr
y

2
9

6

Position
DNA
QS
Comment

En
tr

y
5

3
7

Position
DNA
QS
Comment

…

R
EF

ER
EN

C
E >Comment

DNA

O
U

TP
U

T

Pointer Diffs

Pointer Diffs

Pointer Diffs

Pointer Diffs

…

FASTQ ENTRY

En
tr

y
2

9
6

 @SRR618666.296 H…

GGCAAACTAACTAGTA…

+SRR618666.296 H…

CC@FFFFFHHHH?FFG…

En
tr

y
2

9
6

@Comment
DNA
+Comment
QS

En
tr

y
5

3
7

@Comment
DNA
+Comment
QS

…

Dedupe
Index

Dedupe
Index

Figure 2.2: Genome sequencing overview, some subsequent workflows, and a FASTQ entry.

The alignment process maps each NGS read in a publicly available reference genome.

The resulting data is usually stored in the SAM/BAM format [166], which contains one entry

per read. Each aligned SAM/BAM entry is composed of the most probable chromosome

and position where the sequence appears in the reference genome, a set of information

describing the alignment run, the DNA sequence, the quality scores, and some optional

user-defined tags about the alignment process. A drawback of storing aligned data is the

fact that current alignment algorithms weight quality scores differently or are limited in

terms of accuracy, which may lead to different alignment results [223]. This variance biases

subsequent workflow steps and consequently may influence research conclusions. Thus, the

SAM/BAM format is not the best alternative to store raw genomic data.

The assembly process forms the contiguous sequence of a genome by aligning and

merging all sequenced reads. The assembled result is stored generally in the FASTA

format [205], which contains only comment lines (started by the “>” character) and long

sequences (e.g., the DNA of an entire chromosome). Similarly to the alignment process,

the assembly of a genome may be influenced by the chosen algorithm. Additionally, the

assembly process uses and then discards the quality scores, which prevents the use of

FASTA files to store raw genomic data.

2.2 Genome Sequencing 15

Although this thesis favours sequencing data from human genomes due to the potential

impact of this data, the methods proposed in this document are generic enough to be adapted

to sequencing data from other species, data representations (e.g., aligned data), and file for-

mats (e.g., SAM). A discussion on other datasets and on why this work favours sequencing

data rather than aligned or assembled representations is available in Section 4.6.

2.3 Storage of Genomic Data

Biological data repositories started by collecting and providing small public DNA

sequences and related data to improve the scientific knowledge in genomics. However, they

were isolated from each other and often overlapped. Their integration evolved over the years,

and several paradigm changes took place. For instance, biological data repositories became

responsible for storing whole genomes instead of only small sequences. Another example is

biobanks, which are repositories that store biological, physical samples originally (e.g., in

cryopreservation facilities [80]) and are also becoming responsible for storing sequencing

data about these samples.

We surveyed a series of initiatives that integrate biological data repositories in an ar-

ticle [66], as well as detailed how do they manage data and identified their strengths and

weaknesses. The analysed initiatives are the International Nucleotide Sequence Database

Collaboration (INSDC) [60, 145], the UK Biobank [197, 237], the Biobanking and Biomolec-

ular Research Infrastructure (BBMRI) [25, 26], ELIXIR [77, 95], the GenomEUtwin [170,

187], and the COMMIT project [74]. Additionally, we compared them to several cloud-based

solutions existent at the time (e.g., DNAnexus [90], BaseSpace [141], and Galaxy [106]).

All compared initiatives employ either the data warehouse or the mediator approach

for data integration [182]. All in all, some interesting trends were observable through the

analysis of these systems. An integrated system for attributing accessioning numbers is

critical, but at this point, it appears there was no evolved protection against duplicate entries,

sequences, or individuals. All systems make their datasets available through web portals,

16 Chapter 2: Background and Related Work

that can be either freely accessible (e.g., if the data is public) or implement authentication

and access control mechanisms to give access to specific datasets only to authorised users.

All mediator-based systems devise dependability mechanisms only in the endpoints (in-

site). INSDC replicates all data in three globally distributed replicas, while UK Biobank uses

two facilities to store only physical samples. Cloud-based solutions rely on the transparent

replication and recovery mechanisms offered by the Amazon Web Services (AWS). All

presented cloud-based solutions focus on approaching computation to where data is located,

which can bring performance improvements since datasets upload, download, and even

normalisation can be avoided.

2.4 Security and Dependability in Storage
Platforms that trust on a single external storage service (e.g., a public cloud provider)

have the same strengths (e.g., transparent replication) and drawbacks (e.g., vendor lock-in)

as the properties provided by the resources they use. Several storage solutions have been

proposing the use of multiple infrastructures instead of a single one to increase the security

and dependability guarantees of the system. Examples include libraries [3, 24, 28], file

synchronisation services [54, 125, 233], and file systems [34, 183]. All these solutions

employ several security and dependability techniques, such as data replication, encryption,

and secret sharing [161].

Replicating all data across multiple clouds incurs in space and cost overheads pro-

portional to the number of infrastructures where data is replicated. However, solutions

employing erasure codes (e.g., CHARON [183]) reduce such space overheads since they

store parity blocks instead of copies of the whole dataset.

Privacy perception of storing data in a single multi-tenant infrastructure is considered

low even when data resides encrypted because attackers need to compromise only a single

facility to obtain all data (still encrypted). Replicating all data in multiple sites worsen

the privacy perception, being considered very low, because the attack surface is increased

2.4 Security and Dependability in Storage 17

proportionally to the number of used infrastructures since every site stores all data. The

privacy perception of distributing coded data blocks among repositories is high because no

single site stores the whole datasets, and thus attackers must compromise more facilities to

obtain enough data blocks (still encrypted) to recover the original data.

The platform-as-a-service proposed during the BiobankCloud project allows biobanks

to use private clouds and extrapolate their capacity by securely storing data in a cloud-

of-clouds [28, 183]. The BiobankCloud PaaS is the first solution for biological data that

uses multiple clouds to store private data in these multi-tenant infrastructures securely. It

integrates the data warehouse and mediator-based integration models, as well as provides

data and function shipping to its users. Additionally, the platform can lookup and fetch

data from other biobanks automatically on execution time (i.e., a mediator). It is secure and

reliable because data is encrypted before its transfer and no single public cloud stores the

whole dataset due to a secret sharing scheme used in this platform.

CHARON [183] is the only multi-site storage system that supports data as big as hu-

man genomes mainly because it splits data into small blocks (e.g., 16MB each), but also

because it employs optimisations such as, prefetching, caching, and background writes.

Additionally, it supports storing different data in diverse locations—private repositories,

single public clouds, or multiple clouds. Portions of the BiobankCloud PaaS were converted

into spinoffs: HopsWorks [192] processes data-intensive workflows in private repositories

and it was transferred to Logical Clocks [173], whereas CHARON [183] was transferred to

Vawlt [241].

2.5 Privacy-Aware Storage Techniques

Balancing privacy and utility is one of the main challenges in designing privacy-aware

storage and sharing systems for genomic data [242]. On the one hand, open-access initiatives

focus on sharing data indistinguishably, rely on improved laws and donor consents, and

18 Chapter 2: Background and Related Work

disregard privacy protection. On the other hand, privacy protection often limits access to

data through encryption and restrictive access control.

Privacy and data sharing are not mutually exclusive. Properly discussing and defending

privacy encourages the responsible data sharing and extends donors’ engagement and trust

in researches. Other publications corroborate with the ideas that clearly informing donors

about the privacy risks of their choices does not affect negatively their willingness in

donating samples [155] and that there is a need for balancing data access and privacy in

genomics [242].

For instance, solutions for photo sharing (e.g., social networks like Facebook) have

already faced several privacy-related conflicts and policy changes, and life sciences can

learn from them. We published a paper [71] that makes an analogy between the privacy

aspects of sharing photos and sharing genomes, which contributes to clarifying the privacy

risks in the latter. It promotes the accessibility and sharing of human genomes, while

advocates their responsible management considering the privacy of sample donors. This

comparison is reasonable since sequenced genomes and modern photos are digitised records

of real lives. Both contain private information that may compromise people’s privacy, and

most of the times, their highest value is only achieved when shared with others.

The human genome is privacy-sensitive because it contains personal information and

researchers need to access extensive collections of genomes to accelerate medical break-

throughs. The ethical appeal for disclosure stimulates altruistic individuals to donate

biological samples for medical and genomic research. However, this point of view must

coexist with the ethical discussion on the risks to donors’ privacy and encourage the devel-

opment of secure models to share genomic data [8]. We defined an analogy by comparing

the similarities and features of the processes of sharing photos and sharing genomes, which

is based on the following aspects:

• Some portions of data are more privacy-sensitive than others.

• One’s data may affect the privacy of others.

2.5 Privacy-Aware Storage Techniques 19

• Systematically detecting the privacy-sensitive portions of data is feasible.

• After classifying the portions, decide how to share them.

• The impact of data sharing is unpredictable.

Several privacy protection techniques have been explored in the context of genomic

data [20, 191]. Three of the most prominent are de-anonymisation, differential privacy,

and fully homomorphic encryption. The first method removes every annotation and meta-

data that may contain personally identifiable information (e.g., names and identification

numbers). However, the effectiveness of this technique is limited since human genomic data

can be used together with publicly-available information to re-identify their donors [118].

The second states that data resulting from studies must provide no hint on the participants

or their individual contribution to the final result [92, 150]. The third studies encryption

schemes that allow processing the encrypted data without requiring its decryption [109,

189]. The last two areas are evolving rapidly, but they still lack acceptable performance in

practice, limit the utility and accessibility of data, or depend on configurations parameters

that are ambiguous.

Additionally, trusted execution environment (TEE) provides an isolated execution space

where encrypted data can be securely decrypted and processed, as well as its results are

encrypted and can have its integrity and authentication validated [216]. This area is also

promising and its utility will improve with the increase in its memory capacity. Nonetheless,

recent studies (e.g., [115]) have been trying to integrate them with other techniques (e.g.,

multi-party computation and blockchain) to compose complete storage and processing

solutions for genomic data.

Detecting privacy-sensitive genomic data as soon as it is generated is a long-term

ambition from the research and clinical communities [97, 114]. Other works on privacy-

preserving genome processing have advocated the partitioning of genomic data, but they

assume this is done manually [19] or by a tool that is out of their scope and would be

implemented by someone else [153].

20 Chapter 2: Background and Related Work

Sedic [153] is a privacy-aware platform that modifies the Apache Hadoop MapReduce

to work in a hybrid cloud environment. They compute all privacy-sensitive data in a

private cloud or cluster and the non-sensitive portion in public infrastructure. However,

they forward the burden of labelling sensitive data to the user-side and do not propose any

solution on how to do that in genomic data.

In another work [19], the authors propose a privacy-preserving method to process

mapped short reads in a scenario of personalised medicine. They encrypt all genomic

data before storing it, mask a few genomic variations based on donor’s preferences, and

limit the access of medical units to portions of these aligned short reads. There are at least

three main issues of their approach. First, they do not provide an automatic selection of

the genomic variations that will be masked. Manually marking parts of the genomic data

as private may lead to mistakes and misguided decisions that may cause leaks on already

known privacy-sensitive genomic data. Second, they suggest the selection of only a few

variations to be masked, while this protection is insufficient to preserve the donor’s privacy

completely [169]. Third, their masking mechanism roughly filters out the selected genomic

variations, which makes several medical analyses impractical.

Portions of human genomic data are considered privacy-sensitive when they disclose

non-consented personal information about an individual. By analysing many privacy

attacks [118, 132, 191, 195, 224, 250] one can identify attackers’ main goals and the threats

they exploit. First, attackers’ methods can be divided into two categories depending on

their primary goal: obtaining the identity of genome donors [118]; or donors’ sensitive

personal information (e.g., health-related data) [132, 195, 224, 250]. Second, attacks can be

divided into three categories regarding the threats they exploit: short tandem repeats [118],

disease-related genes [195]; or genomic variations [132, 224, 250]. The studied attacks

use only public data (including genomic sequences), but they can also be applied to any

sequence obtained from private or external infrastructures.

2.5 Privacy-Aware Storage Techniques 21

2.6 Data-Reduction Techniques
Cost efficiency impacts the feasibility of storing datasets as big as collections of human

genomes. Furthermore, storage solutions must benchmark their cost efficiency to not

become a burden for institutions [50] and to make dependability and security affordable.

In this section, we describe the most used data reduction techniques to increase the cost

efficiency of storage solutions. Data reduction is comprised mostly of compression and

deduplication, but erasure codes are an additional technique of interest to reduce the

overhead of data that must be replicated or dispersed.

Data compression. This technique reduces the size of data by finding information that

can be stored in a representation smaller than the original one. Standard compression

techniques are inefficient in genomic data due to the specificity of this data [116] (see

Sections 4.1 and 4.2). There are several proposals of application-specific algorithms for

genomic data [23, 87, 248].

Referential compression is the state-of-the-art approach for highly similar genomes

(e.g., humans have at least 99.9% of genetic similarity [243]) since it generates an output

file containing only the differences between two input sequences (a to-be-compressed and a

reference sequence) [248]. This technique, supported by Huffman and delta encodings [218],

achieves high compression ratios (up to 1000×) when reducing the size of contiguous

assembled sequences in the FASTA format [11, 86, 247]. However, sequencing data from

human genomes (i.e., the FASTQ format) is more complex than its assembled version

(i.e., FASTA) and requires additional preprocessing (e.g., [76, 119, 246]) and compression

techniques.

Many algorithms favour maximising compression ratio, which usually comes with

penalties in (de)compression speed [177]. This decision is justifiable when data is intended

to be archived. However, the decompression speed becomes a bottleneck in cases where

compressed data is read from remote storage systems and needs to be decompressed and

read several times. This issue justifies why many real-world solutions (e.g., 1000 Genomes

22 Chapter 2: Background and Related Work

Project [96]) prefer generic compression algorithms that decompress fast (e.g., GZIP [88])

rather than those that only compress more.

Section 4.2 contains a detailed comparative evaluation of several generic and specialised

compression tools, namely: GZIP [88], pigz [4], BSC [113], ZPAQ [178], SeqDB [133],

DSRC2 [213], Quip [151], FQZcomp [38], FaStore [214], and SPRING [49]. From this

analysis, it is possible to verify that there is an opportunity in exploring data deduplication

to leverage inter-file similarities in sequencing genomic data while achieving a better restore

performance than the one from compression.

Data deduplication. This method reduces the storage requirements by eliminating unre-

lated redundant data [202]. It roughly consists in: finding copies of identical data, storing it

once, and replacing all data copies by pointers to that single instance.

FASTQ files contain unaligned entries, and each one of them is composed of unique

blocks that include the identifiers of donors and the identifiers of every FASTQ entry (see

Figure 2.2). This uniqueness from the entry identifiers makes standard identity-based

deduplication inefficient in reducing the size of genomic data. Section 4.3 discusses in more

detail why identity-based deduplication fails to reduce the size of files for human genomes

and identify similarity-based deduplication and delta-encoding as an opportunity to reduce

the size of FASTQ files. To the best of our knowledge, there is no deduplication solution

targeting specifically this type of data.

Erasure codes. Erasure codes are a broadly used technique to make data replication

affordable [207, 209]. While standard backup and redundancy techniques replicate whole

datasets in several storage locations, erasure codes require the additional storage of only a

few parity blocks. This approach results in reduced storage and network requirements [252]

and incurs in overheads smaller than the doubling or tripling the size of data in replication.

2.6 Data-Reduction Techniques 23

2.7 Storage Auditability

Security, dependability, and privacy protection are preventive measures, while ac-

countability and auditability act as deterrent measures—and complement preventive ones.

Auditability and accountability are features employed to increase users’ trust in the system.

Auditability ensures events are “loggable” while accountability ensures that events deemed

important are logged and not missed [157].

Accountability ensures all actors and actions performed on the data have been “ac-

counted for”, i.e., persistently recorded as evidence. It focuses on making systems’ com-

ponents accountable in a way their actions become non-repudiable [122, 257]. Works in

the accountability literature have discussed generic scenarios for networked systems [123],

described the necessary cryptographic building blocks [122, 257], or how pieces of evidence

should be stored and protected [123].

Auditability is the relative ease of auditing a system or an environment. Storage systems

must maintain logs and features that enable the efficient auditing of processes within

it. In private infrastructures, one may provide auditability using existent solutions [18,

110] or implementing custom ones [43]. In single public clouds, users must trust in

specific solutions from providers willing to make auditability easier (e.g., AWS provides the

CloudTrail tool [14]). External trusted entities supervise public clouds, and providers try to

comply with proposed standards and regulations [59]. Thus, public clouds have to provide

accountability.

Several auditing schemes were proposed to verify the integrity of data stored in multi-

tenant external infrastructures [159, 208]. They mainly focus on cryptographic techniques to

produce retrievability proofs without the need to fetch all data from the system (e.g., [152])

or on providing public integrity verification (e.g., [249]). However, to the best of our

knowledge, there is no previous work on auditing who has effectively read data in a

dispersed storage.

24 Chapter 2: Background and Related Work

Several other works have explored the space complexity of fault-tolerant register em-

ulations (e.g., [5, 47, 51, 52]), including disintegrated storage [27] (e.g., [15, 28, 227]).

However, none of these works focuses on the requirements for auditing read accesses in a

storage system despite the existence of faulty storage objects.

2.8 Discussion

This thesis intends to enhance traditional storage ecosystems with privacy-aware, data-

reduction, and auditability techniques to enable the efficient use of existent infrastructures

to store human genomes. In this section, we summarise the open problems presented in this

chapter and emphasise the opportunities arising from them.

The privacy protection open problem incites making storage systems aware of the

privacy-sensitivity of each data portion and protecting it appropriately. Complementing the

ideas from previous works [19, 153], there is an opportunity to detect and label privacy-

sensitive genomic data automatically. It should use all the knowledge currently available

about these sequences and be insusceptible to false negatives. Furthermore, the utility of

data must be protected by allowing users to improve the security and control over the privacy-

sensitive portion of genomes rather than throwing it away. Thus, the privacy protection

open problem can be addressed by modelling and implementing a privacy-detector with

the closest to complete knowledge on the privacy of genomic data as possible now, and

redirecting the different data portions to the proper data flows.

The cost-efficiency open problem motivates the design and development of application-

based algorithms to compress and deduplicate human genomic data. Algorithms should

focus mostly on FASTQ files because otherwise a researcher that fetches aligned or assem-

bled data from several repositories would obtain data processed with different algorithms

and parameters and would have to reprocess all samples to normalise datasets. Additionally,

they should focus more on lossless compression due to the completeness-related reasons

2.8 Discussion 25

previously mentioned [39]. The compression must be at least faster than sequencing ma-

chines since it is supposed to be done once on the repository side, and should be parallelised

to be even faster. The decompression step must be fast and must use very few resources

because it is supposed to be done several times on the client-side.

For the data deduplication, there is an opportunity to develop an application-based

algorithm that parses compressed FASTQ files properly and deduplicate the internal com-

ponents of FASTQ entries. The most efficient erasure codes techniques for storage must be

considered in a storage system for genomic data when storing it in multiple infrastructures.

Erasure codes reduce the overhead of storage redundancy but do not reduce the original

size of data—which would be achieved with data compression and deduplication. This

thesis uses CHARON [183] as a black-box solution for the STORAGE phase of our pipeline

because it supports all the required interactions with storage infrastructures and provides

drivers to many diverse data repositories, including a cloud-of-clouds.

The open problem of auditing data access in dispersed storage is an opportunity that

remains unexplored in the literature. Additionally, the differentiated portions of data belong

to a single file semantically. The interfaces must consider auditability over a complete

genome file, or separately for a single portion of it (e.g., only the privacy-sensitive portion).

In the case of multiple-site storage (e.g., a cloud-of-clouds), several blocks belong to the

same file and must be transparently considered as a single file. Deduplication can increase

even more the complexity for accounting data accesses. Thus, any storage system for

genomic data must be aware of all these challenges.

The next three chapters address each one of the open challenges presented in this chapter.

Additionally, Chapter 6 integrates all of them in a complete storage pipeline that enables the

efficient, dependable storage of sequencing data from human genomes in public clouds.

26 Chapter 2: Background and Related Work

3Detection of
Privacy-Sensitive
Portions in
Human Genomes
A human genome can uniquely identify its owner and reveal information about him and

his relatives, even for some past and future generations [20, 191]. Additionally, portions

of biological data may provide hints on an individual’s health status with high confidence

levels. Many studies identified attacks to individuals’ privacy based on genomic data

and other publicly-available information [118, 132, 195, 250]. They have the objective

of non-consented disclosure of personal information of individuals from their genomic

data, and it can be divided into two classes: threats leading to re-identify donors of

anonymised DNA sequences, based on genetic genealogy profiling [118]; and threats

leading to the inference of private and sensitive information (e.g., victim’s health status)

from (re-)identified DNA sequences, based on disease-related genes [195] and genomic

variations [132, 250]. These attacks must be efficiently addressed to avoid a rollback on

the trend to share DNA sequences, which would hurt genomic studies, or even harden

regulations governing genomic data protection [40].

27

Detecting privacy-sensitive genomic data as soon as it is generated is a long-term

ambition from the research and clinical communities [97, 114]. Previous works on privacy-

preserving genome processing have advocated the partitioning of genomic data, but assume

this must be done manually [19] or by a tool out of their scope [153]. To the best of our

knowledge, our work is the first to provide a comprehensive privacy-aware detection method

that enables users to implement such partitioning automatically. This chapter proposes a

privacy-sensitivity detection scheme composed of:

• algorithmic solutions to retrieve privacy-sensitive nucleic and amino acid sequences

automatically, with parametric and evolving sensitivity;

• a privacy-sensitivity detection architecture to systematically recognise privacy-sensitive

genomic data from the source (e.g., sequencing machines).

Conceptually, the detector has a clear mission: given a DNA segment of predefined size s,

detect whether this segment may contain known privacy-sensitive information or not (see

Figure 3.1). It does so based on a database of published signatures or patterns of privacy-

sensitive nucleic and amino acid sequences (a knowledge database). Although conceptually

simple, this approach meets at least two feasibility challenges:

(i) Accuracy: how to automatically classify DNA segments as privacy-sensitive or

non-sensitive with high sensitivity and specificity?

(ii) Performance: how to implement a scalable detection solution that supports the

high-throughput of modern sequencing machines?

The output from our solution is divided into two subsets: one with the privacy-sensitive

portion of input data and the other containing the non-sensitive part. We initially foresee

the following scenarios where our detector can be employed, but others may arise in the

future:

28 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

Sensitive and

Non-sensitive

Knowledge

Database

DNA-Privacy

Detector

Data Input
(NGS reads)

STR VAR Gene

Privacy-

sensitive

Non-sensitive

Figure 3.1: An overview of the method for detecting privacy-sensitive genomic data.

• Data segregation: one may store and analyse privacy-sensitive data in local, private

infrastructure, while he/she may use external, multi-tenant infrastructures (e.g., public

clouds) to work with the non-sensitive data.

• Data outsourcing: one may store the whole dataset in an external, multi-tenant

infrastructure—if he/she applies strong, expensive security premises in the expectedly

smaller privacy-sensitive portion, and applies more affordable security techniques

in the non-sensitive portion. Additionally, homomorphic encryption [109, 189] or

trusted execution environments [216] can be used in the smaller privacy-sensitive

portion to compute it securely in the external facility (e.g., [240]).

• Data masking: One may filter out one of the portions. For example, filtering out the

larger non-sensitive portion allows users to store and process only the smaller privacy-

sensitive portion, which is enough for several important analyses (e.g., personalised

medicine).

Note the method proposed here addresses the challenge of systematically detecting

privacy-sensitive DNA sequences, whereas what should be done with the two output subsets

is independent of our work and can have different implementations according to each use

case.

29

0%

50%

100%

10%

25%

75%
P

e
rc

e
n
ta

g
e
 o

f
S

e
n
s
it
iv

e
 R

e
a
d
s

11.3%
sensitive

88.7%
non-sensitive

0%

12%

11%

5%

Y-STR (0.16%)

All-Gene (0.33%)

All-STR (1.2%)

All-VAR (10.6%)

All-Together (11.3%)

10%

1%

Figure 3.2: Percentage of privacy-sensitive sequences in entire human genomes considering differ-
ent detector knowledge databases. The most complete dataset (All-Together) lead to
the detection of only 11.3% of the sequences as privacy-sensitive.

As a proof of concept of the accuracy and completeness of our approach, we have built

a knowledge database from known short tandem repeats (small repeated strings), disease-

related genes, and genomic variations currently available in public databases. Using all this

information and being conservative about what can be considered private, only 11.3% of

the sequences of a human genome are detected as privacy-sensitive (see Figure 3.2).

The originality of our work is in adapting existent enterprise privacy-preserving solu-

tions and intrusion detection techniques to the genomics area and combining them with

different known privacy-sensitive information to protect individuals. By identifying the

privacy-sensitive sequences using our solution and protecting them, one neutralises the

existent threats of re-identifying individuals [118] and of inferring private information about

them [132, 195, 250]. Moreover, by using the large body of knowledge about the privacy

sensitivity of human genomes available today, it was possible to create a complete privacy

detector. Despite this completeness, the detector knowledge database can be automatically

30 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

updated to address future attacks as new privacy-sensitive sequences are identified, making

it generic and evolvable [71]. It does not become outdated since public databases can be

automatically tracked for updates as they evolve. From the performance viewpoint, we also

show that our system can withstand the evolution of NGS and scale-out.

The remainder of this chapter is organised as follows. In Section 3.1, we describe

our privacy-sensitive detection mechanism, its internal methods to construct a knowledge

database, and the implementation details. Section 3.2 evaluates and shows the efficiency

of the proposed method, Section 3.3 discusses the completeness of the used knowledge

databases, and Section 3.4 presents the final remarks of this chapter.

3.1 The Detection Method
The detection of privacy-sensitive genomic sequences is important both for research

and clinical communities. This section presents a mechanism to systematically detect

privacy-sensitive genomic sequences and its internal methods for creating a knowledge

database with this type of sequences.

3.1.1 Overview

This chapter proposes to enhance the NGS production cycle with a mechanism called

DNA-Privacy Detector, which, taking short DNA sequences as input, automatically decides

which ones represent privacy-sensitive information. An overview of our detector architecture

appears in Figure 3.1.

The detector decides based on a database of published signatures or patterns of privacy-

sensitive nucleic and amino acid sequences (a knowledge database), and forwards input

DNA sequences alternatively to the privacy-sensitive output or the non-sensitive one.

The knowledge is defined by statistical heuristics and previous data about a context or

a population. Obtaining the privacy-sensitive sequences is not trivial since biological

databases provide unharmonised formats and interfaces. Additionally, one needs to add all

3.1 The Detection Method 31

combinations of size s from a sequence to the database, including all their known DNA

flanking sequences and mutations (as explained in the next section). The obtained sequences

are considered privacy-sensitive and must never be sent to the non-sensitive output stream.

Similarly to the signature lists of computer intrusion detection systems (IDSs) [81], the

knowledge database can be updated as new patterns are discovered.

Our mechanism can analyse input datasets at any time, but the most powerful and

effective configuration would be when input sequences come directly from NGS machines

as they are generated. The detector can also be integrated into the NGS machine to

automatically detect privacy-sensitive sequences and add a marker with this information in

the comment line of a FASTQ entry (the NGS read) [61].

3.1.2 Privacy-Sensitive Human Genomic Data

Portions of human genomic data are considered privacy-sensitive when they disclose

non-consented personal information about an individual. We analysed many privacy at-

tacks [118, 132, 195, 250] to obtain the attackers’ main goals and the threats they exploit.

First, attackers’ methods can be divided into two categories depending on their main goal:

obtaining the identity of genome donors [118]; or donors’ sensitive personal informa-

tion (e.g., health-related data) [132, 195, 250]. Second, attacks can be divided into three

categories regarding the threats they exploit: short tandem repeats [118], disease-related

genes [195]; or genomic variations [132, 250]. The studied attacks use only public data

(including genomic sequences). However, they can also be applied to any sequence obtained

from private or external infrastructures.

The next three subsections introduce the threats, describe how they are exploited by

attackers, and explain how our detection method, with the proper security techniques,

prevents them from succeeding. We opted for a very conservative approach in our solution

since it stores small sequences of size s in the knowledge database instead of single

nucleotides, and detect them as privacy-sensitive sequences independently from their

32 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

positions in the genome. Configuring the size s and using sequence alignment may interfere

on the conservativeness and accuracy of the method.

3.1.2.1 Short Tandem Repeats

Short tandem repeats (STRs) are small repeated strings comprised of A, C, G, and T

characters. For instance, the STR called DYS392 is represented by [TAT]n, and an individual

who contains a sequence like cgacTATTATTATTATcgca in his DNA will score 4 for DYS392

in his profile. Genetic genealogy profiles are employed in forensic identification, paternity

tests, missing people investigations, among others. A profile from paternal lineage is a set

of counters of how many times each selected short tandem repeat from the Y chromosome

(Y-STR) appears in an individual’s DNA.

In the United States, a core set of thirteen STR markers are being used to generate

a nationwide database for forensic identification [45], called FBI Combined DNA Index

System (CODIS). Other countries and organisations such as EU, UK, DE, and Interpol

also selected their sets of core STR markers to identify individuals. There are registers

of several known STRs available in public databases, such as the STRBase [215] and the

TRDB [107]. These databases have thousands of registered STRs, many more than those

few core STRs. Since STRs can also contain mutations, the respective databases must store

all known variations.

Attack. Gymrek et al. [118] described an attack that re-identifies participants of the 1000

Genomes project [96] in early 2013. The attack was based on two facts: surnames are

paternally inherited in most human societies; and so are Y-STRs in male individuals [156].

It had two goals: obtain the surname of individuals and triangulate their identity. For

surname inference, they profiled Y-STRs of individuals, queried them in public recreational

genealogy databases, and obtained a list of possible surnames for the profiles in question.

Each query contained registers of about thirty known Y-STRs in this case. Authors queried

the Y-STR profiles in the YSearch [108] and the SMGF [226] databases, and recovered the

3.1 The Detection Method 33

correct surname in 12% of cases (with 82% of confidence). For triangulating identities,

authors combined the obtained surnames with age and state, which were considered public

information that did not need to be suppressed in anonymisation processes. A query on

the US census by year of birth and state results in 60,000 US males in 50% of cases.

Aggregating the surname to the query shrinks the result to only twelve males on average.

Each surname inference breached the privacy of nearly sixteen individuals. Although the

result of 12% appears to be unimpressive, it means that from the 1,092 participants of 1000

Genomes project, 131 of them will never recover their privacy, nearly 2,100 participant’s

relatives had their privacy breached [118], and the disclosed data will continue available for

their descendants.

Solution. One can protect genomic data against this attack with our approach by registering

information in the knowledge database about all known Y-STRs, detecting privacy-sensitive

sequences containing them, and segregating them from the non-sensitive output stream. We

aggregate the following information for each known Y-STR:

1. The STR regular expression, e.g., [TAT]n for DYS392.

2. The minimum and the maximum number of repetitions observed so far, e.g., 6-17 for

DYS392.

3. All known mutations of the STR [100].

4. All observed left and right flanking sequences, which are commonly found either

before or after the STR. For instance, 5’-TAGAGGCAGTCATCGCAGTG-3’ is a

primer sequence observed before DYS392 and

5’-AAGGAATGGGATTGGTAGGTC-3’ after it.

Figure 3.3 presents the entire process of generating the privacy-sensitive entries for the

knowledge database from the obtained information about each Y-STR. Since an STR is a

repetition of a small string, a sequence can start with each different letter from that small

string. For example, in the case of DYS392, one has three possibilities for base sequences,

34 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

Flanking Left
(incl. Primers)

AAAGCCAAGAAGGAAAACAAA

TAGAGGCAGTCATCGCAGTG
…

Base Sequences

TATTATTATT
 ATTATTATTA
 TTATTATTAT

TATTACTATT
 ATTACTATTA
 TTACTATTAT

Flanking Right
(incl. Primers)

GACCTACCAATCCCATTCCTT

AAGGAATGGGATTGGTAGGTC
… LF

BS

M*BS

RF

T A G A G G C A G T C A T C G C A G T G T A T T A T T A T T A A G G A A T G G G A T T G G T A G G T C

3) Creating privacy-sensitive (PS) sequences from each position in the long sequence (LS)

T A G A G G C A G T
 A G A G G C A G T C
 G A G G C A G T C A
 . . .
 C A T C G C A G T G
 A T C G C A G T G T
 T C G C A G T G T A
 . . .
 T A T T A T T A T T
 A T T A T T A T T A
 T T A T T A T T A A
 . . .
 A A G G A A T G G G
 A G G A A T G G G A
 G G A A T G G G A T
 . . .
 G A T T G G T A G G
 A T T G G T A G G T
 T T G G T A G G T C

1) Creating the long sequences

2) Sliding the window with size s through each long sequence (LS)

Figure 3.3: Creating the blacklist sequences for the method based on short tandem repeats.

with strings starting with TAT, ATT, or TTA. Considering sequences with s = 10 base

pairs, any read with this size matching this entry entirely should be only TATTATTATT,

ATTATTATTA, or TTATTATTAT, which are called base sequences (BS). For each known

mutation (M), one has to create the respective base sequences, i.e., three for each mutation

of DYS392. Left and right flanking sequences (resp. LF and RF) are concatenated with each

base sequence (BS), creating all possible combinations, which are called long sequences

(LS). Each long sequence is composed of a LF, a BS, and a RF and gives place to small

sequences of size s (the size of our entries) created by sliding a window of the same size,

which are called privacy-sensitive sequences (PS).

3.1 The Detection Method 35

While attacks based on paternal lineage use only Y-STRs, a hypothetical attack em-

ploying forensic identification methods may use STRs from all chromosomes, for example,

when comparing the victim’s genome from her blood sample to a database with identi-

fied genomes. Thus, one can also register STRs from all chromosomes in the detector’s

knowledge by using the same algorithm as for Y-STRs.

3.1.2.2 Disease-Related Genes

Some portions of a genome, called exons, are translated to RNA and later to amino acid

sequences, which finally encode proteins (see Section 2.1). Proteins provide the functional

elements of a biological system, which can have an essential role in many human diseases.

The presence or absence of specific gene mutations may be indicative of the predisposition

to or actual contraction of certain diseases. Masking disease-related genes is thus a viable

approach to protect the privacy of individuals that had their genomes (re-)identified. This

solution focuses mainly on protecting individuals’ privacy when they have DNA sequences

leaked by unauthorised disclosure (for example, through the first attack [118]) to preclude

attackers from obtaining extra information about individuals, namely their health status.

This method is very important in cases where sample donors consent to analyse or store

their genome in external infrastructures, but wish to mask or apply stronger protection

on information about some specific diseases. One real example is Dr. Jim Watson’s case.

He is a co-discoverer of the double-helix structure of DNA and his complete genome was

sequenced and published in 2008 [254]. However, Dr. Watson requested the retraction of

all information about the APOE, a gene associated to the Alzheimer disease, before the

public release of his genome.

Attack. The adversaries, after obtaining an identified genome or portions of it, may learn

additional information about the victim’s health by using the presence or absence of specific

disease-related genes in it. The attack process resembles existent direct-to-consumer

health-related genetic profiling [111], which informs about an individual’s probabilities

36 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

of contracting a disease or any other gene-related information. These tests do not provide

diagnosis, but in the wrong hands, they still may cause harm to a victim’s reputation or

otherwise disadvantage her.

Solution. Detecting all known disease-related genes is a possible solution after obtaining

the complete list of these genes and their sequences. There are dedicated databases that

correlate genes and diseases (e.g., GeneCards [217]). These databases allow users to retrieve

the names of all currently studied genes, or the few genes related to some specific disease.

Again, the detector is capable of handling datasets obtained from any set of genes

present on any database. We use the GeneCards database [217] only as a proof-of-concept.

From the estimate of existing 20k–25k human genes (the exact number is not yet know [56]),

the GeneCards database contained the name and data about disease correlation of 19,231

genes at the time of this study. A more conservative approach might detect all known human

genes as privacy-sensitive independent if they were already correlated to a disease or not.

For example, one may use the OMIM database [198] to get the sequences of all known

human genes (approximately 23k). In this work, we retrieve the genes from GeneCards,

obtain their accession numbers, and retrieve their sequences from UniProt [238]. For each

gene sequence, one must break it into smaller sequences of size
s
3

(e.g., ten amino acids)

and insert them into the knowledge database.

Masking disease-related genes is sensitive to imputation methods based on linkage

disequilibrium between genomic variations. In 2009, Nyholt et al. [195] described the

method that allowed them to recover Dr. Watson’s masked APOE status. They respected

Dr. Watson’s request for APOE anonymity in the public manuscript. Still, the main goal of

the authors was to highlight the challenges concerning the privacy and the complexities of

informed consents. Note the next method is based on genomic variations, the very same

information type used in Nyholt et al. [195], and thus one will be able to prevent also that

attack from succeeding.

3.1 The Detection Method 37

3.1.2.3 Genomic Variations

Humans are 99.9% genetically similar to one another. However, small portions of the

remaining 0.1% can uniquely identify whom a DNA belongs to [20, 243]. There are

numerous studies about genomic variations present on individuals. Allele-frequency analy-

sis [235] roughly identifies how common or rare the sequence variants of an individual are,

in comparison to a specific population. Genome-wide association studies (GWAS) correlate

several traits with these genetic variants common in a population [130].

Attack. In 2009, Wang et al. [250] showed that it is possible to acquire knowledge about

targeted individuals from statistical results publicly released by GWAS studies. More

precisely, the attacker is assumed to have a physical sample of the victim (e.g., blood)

and genotyped as few as a couple of hundreds of her variations, for example, single

nucleotide polymorphisms (SNPs). Then, the attacker goes on to determine the victim’s

presence in the GWAS’ case group, which indicates her contraction of a disease. This result

extended another work [132], published one year before, which shows a similar attack to

other conventional techniques employed in genetic studies (e.g., microarrays). Another

study [169] states that obtaining 30 to 80 statistically independent SNP positions is enough

to identify a single person uniquely Finally, the study from Nyholt [195] described a genetic

imputation method based on linkage disequilibrium between genomic variations, which

allowed them to infer a masked gene of a genome by interpreting neighbouring variations

present on it.

Solution. Detecting all known genomic variations of an individual is a feasible approach

to prevent such attacks. The knowledge of all genomic variations (e.g., SNPs, indels,

substitutions) within a population is as complete as the allele frequency (AF) analysis

performed in this population. A file in the Variation Call Format (VCF) contains a table

with all variations resulting from the AF analysis and the occurrence of them on each

individual from the studied population.

38 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

We employed the AF analysis of 1000 Genomes project [235], since it is one of the most

important AF studies freely available on the internet. It contains 39.7 million variations

of 1,092 individuals from 14 populations. We employed it as a considerable use case,

though it still does not cover 100% of variations of all those samples [235]—there are

several extremely rare mutations that are yet to be documented. However, our methodology

is generic and evolvable: the detector is again not limited to this specific dataset since it

supports any other AF analysis of any population, independent of coverage of variations.

Additionally, our framework could be regularly used in biobanks and hospitals, which could

create AF analyses of their private sample collections and use the resulting data to generate

knowledge for the detector. It is important to remark that the more complete the sample

collection and AF analysis, the better privacy protection our solution provides.

The knowledge construction in this algorithm starts with obtaining a VCF file. For each

genomic variation present in this file, one extracts some data fields about it, for example, the

chromosome and position in which it appears, as well as the reference and variation alleles.

After extracting this information, one searches the chromosome position in the reference

genome used by the AF study and concatenate the s−1 left flanking nucleotides with the

variation allele and the s−1 right flanking neighbours. Finally, one adds each sequence of

s base pairs to the knowledge database, executing a process similar to the sliding window

from the bottom part of Figure 3.3.

Detecting and protecting all known genomic variations with this method also neutralises

attacks by genetic imputation using those variations neighbouring the masked genes [195],

as Dr. Watson’s case, allowing the safe use of the previous method: detecting disease-related

genes.

3.1.3 Implementation

After obtaining the knowledge database of nucleic and amino acid sequences for the

privacy-sensitivity detector, a second challenge that needs to be addressed is how to imple-

ment this component efficiently and effectively. The technical challenge is three-fold:

3.1 The Detection Method 39

• Questions such as “Is GCTAGCTAGCTAGCGGGGCCCTAGCTAGCT privacy-sensitive?”

cannot be immediately answered as there is no available data label or pattern to detect

privacy-sensitive DNA sequences, which differs genomic data from enterprise data

(e.g., SocialSecurityNumber = 123-45-6789).

• Obtaining the privacy-sensitive sequences is not trivial, and one also needs to lookup

large amounts of data—including DNA flanking regions and all combinations of

size s from a sequence.

• Useful solutions in the genomics area must support the high throughput of NGS

machines and scale-out while searching input sequences in the whole database (i.e.,

tens of GBs).

Several data structures can address the mentioned challenges, and Bloom filters [36]

presented the best results. Thus, our solution uses a Bloom filter data structure to store the

knowledge database of privacy-sensitive sequences. Bloom filters (BF) are space-efficient

probabilistic data structures that can be used to represent sets compactly. In a nutshell,

when performing lookups, BFs return false if an entry definitely does not belong to the

set or true if it probably belongs to the set. Notice that false-positives do not affect the

detector’s effectiveness (its privacy guarantees), only its efficiency (wrongly classifying a

sequence as privacy-sensitive overloads the respective output stream, versus the cheaper

and more available non-sensitive).

Our knowledge database may contain both nucleic sequences (i.e., consisting of As,

Cs, Gs, and Ts) and amino acid sequences (i.e., composed of letters from the IUPAC

nomenclature [89]), but lookups in the detector receive only DNA sequences of size s as

input (30 nucleotides in our case). One first searches the original DNA sequence, and if it is

not found in the Bloom filter, then he translates the 30-bp sequence to the correspondent ten

amino acids sequence and lookup again, returning the respective result. If the knowledge

contains only DNA sequences, then one only does the first lookup and return. If the

knowledge contains only amino acid sequences, then one directly translates each received

DNA sequence to the correspondent amino acid sequence, lookups, and returns.

40 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

An interesting aspect of our Bloom filter implementation is that, due to the large

number of entries in the knowledge database, it will be using an unconventionally big

Bloom filter, sizing several gigabytes. We chose and improved a BF implementation called

Java-LongFastBloomFilter [174], which is a bigger and faster Java solution than most BF

implementations. Bigger because it uses numbers of long type (64-bits) to index the bit

set of BFs, while others still use numbers of int type (32-bits). This implementation is

faster for two reasons. One, it uses a 64-bit Murmur hash, which is one of the fastest

non-cryptographic hash functions with a good random distribution of regular keys. Two,

it has an algorithmic optimisation that allows reducing (by configuration) the number of

hash keys needed to index an entry by increasing the BF size up to a configurable size (in

terms of percentages). We modified two aspects from the mentioned BF implementation:

we made the add and contain methods thread-safe and added an argument in the constructor

to configure the value considered on the performance optimisation.

The source code of our implementation is available under the Apache License (v2.0) in

GitHub [62] together with additional descriptions for reproducibility on the steps performed

to obtain the privacy-sensitive datasets to the knowledge database. Additionally, we may

provide the complete datasets (more than 60GB) used in this chapter upon request.

3.2 Experimental Evaluation

This section presents results showing that the proposed detection method is efficient in

terms of privacy-sensitivity of genomes, memory space required for our Bloom filter, and

throughput performance.

3.2.1 Experimental Setup

The implementations of the previously described methods, henceforward referred as

STR-, Gene-, and VAR-based, generate different datasets of sequences. The STR-based

method generates two datasets containing sequences of 30 nucleic acids each, namely:

3.2 Experimental Evaluation 41

Dataset Method Acid type Entry size Entries Text file size
Y-STR STR-based Nucleic 30 0.5 M 15MB
All-STR STR-based Nucleic 30 22 M 660MB
All-Gene Gene-based Amino 10 8.7 M 87MB
All-VAR VAR-based Nucleic 30 1,147 M 34.4GB
All-Together All Both 10 and 30 1,178 M 35.1GB

Table 3.1: The different privacy-sensitive datasets considered in this study. Our partitioning
method uses them as a knowledge database to decide if a DNA segment is privacy-
sensitive or not. For each dataset, we present the approach used to obtain it, the
acid type, size and number of entries, and the dataset size when using a text-based
representation.

the Y-STR and All-STR, which contain short tandem repeats from Y chromosome and all

chromosomes respectively. The Gene-based method contains one dataset (All-Gene) of

sequences composed of ten amino acids each, where all published disease-related genes

are added to the knowledge database. The VAR-based method generates one dataset (All-

VAR) of sequences also composed of 30 nucleic acids each, where it contains all genomic

variations available in the AF analysis of 1000 Genomes project [235]. Table 3.1 contains

the number of entries from each dataset to the privacy-sensitivity detector, and the respective

size as a text-based input file with one entry per line (considering one byte per character,

e.g., UTF-8).

The knowledge data is a set of small sequence entries comprised of 30 base pairs or

ten amino acids each. The number of entries in Table 3.1 can be directly translated to the

amount of storage space needed for them. For example, if each base pair requires one byte

to be stored, the Y-STR dataset would require 1× 30× 0.5× 106 bytes, or 15MB. The

Gene-based would require 1× 10× 8.7× 106 bytes, or 87MB. The All-Together would

require 1× (30×1169+10×8.7)×106 bytes, or 35.1GB.

We have randomly selected ten donors identifiers from the 1000 Genomes project, which

compose the input data to our experiments. The resulting donors were those identified by

the numbers NA19788, HG00173, NA20810, HG00339, HG00619, NA20339, HG00475,

HG01390, NA19449, and NA12546. We describe the steps performed to obtain the entire

42 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

genome sequences from these donors in the detector’s GitHub page. Each input genome of

3GB is the contiguous genomic sequence in the FASTA format, which is the resulting data

from assembling a 30× coverage sequencing data (e.g., FASTQ files with 180GB).

Our experimental environment is one physical machine that runs all components of our

system architecture. This machine is a Dell PowerEdge R410 server, equipped with two

Intel Xeon E5520 (quad-core, HT, 2.27Ghz), 32GB of RAM, and a hard disk with 146GB

(15k RPM). The operating system is an Ubuntu Server Lucid Lynx (10.04 LTS, 64-bits),

running with a kernel 2.6.32-21-server, and the Java version is the 1.7.0_25 (64-bits).

3.2.2 Privacy-Sensitivity of Human Genomes

Our first analysis calculates how much of an assembled genome is considered privacy-

sensitive for each knowledge dataset and false-positive rate. We picked the ten mentioned

genomes to execute the test, where each genome was split in approximately 103 million

sequences of 30-bp each, the equivalent to 3GB. Figure 3.4 shows the average percentages

of privacy-sensitive entries from these genomes for different false-positive rates in our

Bloom filter.

There is a minimal percentage of privacy-sensitive reads that is independent of the false-

positive rate of the Bloom filter, which is in the similar results from probabilities 10−6 (i.e.,

0.0001%) to 10−3 (i.e., 0.1%). It means that one needs to enforce strong security premises

in at least 0.16% (4.8MB—without compression) of each assembled genome if using the Y-

STR knowledge database, and in at least 11.3% (345MB) if the All-Together dataset is used

instead. Segregating 11.3% of each human genome to the privacy-sensitive portion leads to

the reduction of almost 90% of data that must be maintained under strong security premises.

Due to the high similarity in human genome sequences (more than 99.9%), increasing

the number of input samples will not affect the obtained privacy-sensitive percentage

significantly.

3.2 Experimental Evaluation 43

0.1%

0.25%

0.5%

1%

2.5%

5%

10%

20%

40%

0.0001% 0.001% 0.01% 0.1% 1% 10%

P
e
rc

e
n
ta

g
e
 o

f
S

e
n
s
it
iv

e
 R

e
a
d
s

Bloom Filter False Positive Rate

Y-STR
All-Gene
All-STR

All-VAR
All-Together

Figure 3.4: Percentage of privacy-sensitive reads for different false-positive rates and knowledge
datasets. Both axes are in logarithmic scale.

3.2.3 Space Efficiency

This second analysis estimates the size of the knowledge database in main memory

when using the different datasets from Table 3.1. Since our solution uses a Bloom filter,

theoretically, the filter size depends only on the expected number of entries and the expected

false-positive rate [36]. The expected number of entries is a constant for each configura-

tion/dataset (from All-Together to Y-STR), which appears in Table 3.1. The false-positive

rate can be defined by the system administrator to fit the Bloom filter size in the server’s

memory capacity. Figure 3.5 presents the resulting database size (in megabytes) based on

these two properties.

The Bloom filter size using input from STR- or Gene-based methods is 50- to 130-fold

smaller than the size if using the VAR-based method. The largest size corresponds to the

use of the largest dataset (All-Together) and a false-positive rate of 10−6 (one in a million),

which leads to a data structure as big as 5.6GB. This size easily fits on the main memory

of current commodity servers and is 6× smaller than the original size of the entries of this

data structure (35.1GB).

44 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

 1
 2.5

 5

 25
 50

 100

 1000
 2500
 6000

0.0001% 0.001% 0.01% 0.1% 1% 10%

B
lo

o
m

 F
ilt

e
r

S
iz

e
 (

in
 M

B
)

Bloom Filter False Positive Rate

Y-STR
All-Gene
All-STR

All-VAR
All-Together

Figure 3.5: Bloom filter size for different false-positive rates and knowledge datasets. Both axes
are in logarithmic scale.

3.2.4 Throughput Performance

Our final experiment aims at identifying how many base pairs per second our detector

can analyse. Figure 3.6 shows the results considering different false-positive rates in a

single core deployment, whereas Figure 3.7 considers different numbers of threads in our

multi-core system.

As expected, the higher the false-positive rate, the higher the throughput (Figure 3.6).

This relation happens because higher rates lead to smaller Bloom filters, which require

fewer hash operations to test whether or not a sequence belongs to the set. There is a

difference in terms of performance between methods that use knowledge about nucleic

acids and those that use amino acid sequences as entries. This difference occurs because

one needs to translate each 30-bp sequences from the testing genome to 10-aa sequences

when the knowledge database contains entries composed of amino acids.

Notably, even with our largest and most complete dataset (All-Together with a false-

positive probability of 10−6), the detector is still able to analyse more than 13.2 million bp

3.2 Experimental Evaluation 45

13

17

25

50

0.0001% 0.001% 0.01% 0.1% 1% 10%

T
h
ro

u
g
h
p
u
t
(i
n
 m

ill
io

n
s
 o

f
b
p
/s

)

Bloom Filter False Positive Rate

Y-STR
All-STR
All-VAR

All-Gene
All-Together

Figure 3.6: Throughput of our detection method considering different false-positive rates (single-
core). Both axes are in logarithmic scale.

(i.e., 0.44 million operations) per second with a single core. Additionally, the detector

evaluates 60 million bp (i.e., two million operations) per second using the other dataset

of interest (Y-STR). Considering that high-throughput NGS machines produce 0.3 mil-

lion bp/sec [172], our solution works 44× to 200× faster. It means the detector could be

integrated directly into NGS machines with the addition of minimal hardware. In this way,

the machine could generate different FASTQ files containing either privacy- or non-privacy-

sensitive reads, or, just add one character to the comment line of the FASTQ entry with its

privacy sensitivity.

Obtaining higher throughput is possible when parallelising the detection process. Fig-

ure 3.7 shows a scalability test of up to 32 threads in our test machine, which is equipped

with two quad-core processors with hyper-threading, i.e., 16 hardware threads. This scala-

bility test considers a false-positive rate of 0.1% (i.e., 10−3), which we consider to be the

sweet spot of our design since it minimises the BF size at the same time that it maintains

similar percentages of privacy-sensitive reads (see Figures 3.4 and 3.5). The throughput

scales up to 480 million bp per second when testing only nucleic acids, up to 110 million

for amino acids, and up to 66 million bp per second when using a knowledge database with

46 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

 13
 17

 25

 50

 100

 200

 400

 1 2 4 8 16 32

T
h
ro

u
g
h
p
u
t
(i
n
 m

ill
io

n
s
 o

f
b
p
/s

)

Detector Threads

Y-STR
All-STR
All-VAR

All-Gene
All-Together

Figure 3.7: Throughput of our detection method considering multiple threads (with 0.1% false-
positive rate). Both axes are in logarithmic scale.

both acids. This result corresponds to a speedup of up to eight times, which is the number

of cores in use. Our solution works 200× to 1600× faster than current high-throughput

NGS machines (0.3 million bp/sec) [172]. Therefore, the detector is not a bottleneck for

current or near-future machines.

3.3 Completeness of the Method

The severity of threats to the privacy of genomic information will be amplified by the

explosive growth in DNA sequences resulting from NGS, bound to be stored and analysed

in external multi-tenant infrastructures [181]. If little is done, a severe leak may reverse

the public opinion trend to make DNA sequences public or shareable and hinder genomic

studies, or even harden state laws for genomic data protection. Researchers have been

alerting about the inevitability of a significant leak of genome information in the near future,

and that we should start defining the steps that need to be taken to avoid a public outcry

a genome breach might incite [40]. The proposed systematic detection, with the proper

protection of DNA sequences as they are generated, can dramatically reduce the risk of such

3.3 Completeness of the Method 47

leaks. Thus, it is an essential step towards a sound semantic data ecology by improving

privacy protection while enabling adequate mechanisms to promote trusted and secure data

sharing [244].

The approach used in our detection method adapts the blacklisting from passive

knowledge-based intrusion detection systems (IDS) [81], where network message sequences

are continuously filtered by comparison with entries in a database of known attack signa-

tures. Our knowledge database can be considered a blacklist because it stores all known

privacy-sensitive sequences (dangerous in the sense of IDSs) that one wants to prevent from

being sent to the non-sensitive output stream.

The detector’s effectiveness is complete for all “signatures” existent in the database, but

only for them. Sequences made vulnerable by new, previously unknown attacks, will not

be recognised without updating the knowledge database, pretty much like what happens

in IDSs with the notorious zero-day vulnerabilities. In the following, we discuss the risks

and implications of discoveries related to the three knowledge sources employed by our

technique.

New STR Sequences. As discussed before, STR is a prime method to identify individuals

in forensic analysis. Our detector uses the database containing all know STR sequences, but

it might fail to detect a sequence containing a yet to be discovered STR. To understand the

window of vulnerability posed by newly appeared STRs, we analysed the annual evolution

of the number of entries in TRDB [107], the main database for short tandem repeats. From

2003 to 2014, this database evolved from 237k to 238k STRs. This increase means that

in eleven years, the TRDB registered 1k novel STRs, which represent a growth of only

0.42% in its entries. It suggests that finding many novel STRs is unlikely, even with the

explosive growth on the number of whole-genome studies due to the introduction of NGS

methods. Additionally, the genetic genealogy databases employed in the re-identification

attack [118] use a small static set of STRs (i.e., few dozens) to profile individuals. They

probably will not increase the number of profiled STRs since it would require the reanalysis

of all participants. Finally, if an attacker discovers novel STRs, he will be able to harm

48 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

victims only after these databases reanalyse the victim’s DNA or profile victim’s relatives

with the newly identified STRs, which is also unlikely.

New Disease-Related Genes. The main risk of detecting privacy-sensitive sequences using

the disease-related genes knowledge database is that it might not identify genes that were

not yet linked to some disease. As with STRs, we also analysed the annual evolution on the

number of entries in the GeneCards database [217] (the database we used in this chapter

to obtain the known disease-related genes). Our analysis shows an impressive evolution

from 3k disease-related genes in 2005, to more than 19k in 2014, which corresponds to

a growth of 83.3% in nine years (mostly due to NGS). Given that researchers estimate

that humans have 20–25k genes in their genomes [56], we have that there are at most

4–23% of genes to be correlated with diseases yet (and thus are not included in our detector

database). It means that a database such as GeneCards can only grow up to 25k entries.

Additionally, the remaining genes do not determine alone the contraction of a disease, may

have no relation with any disease, or are related to rare diseases that affect very few people.

Finally, assuming discoveries directly translate into novel privacy-sensitive sequences is a

misconception. Most discoveries correlate diseases with already known genes and genomic

variations, not new ones. Our method detects a sequence as privacy-sensitive independently

on how many diseases it is correlated with (i.e., one correlation is enough).

New Rare Genomic Variations. The sequences generated by identifying variations are as

complete as the size and coverage of the population considered in the allele frequency study

over that population. Currently, there are already countries storing and conducting studies

on the genome of its whole population [147]. A detector using a database like this will be

able to detect most (if not all) privacy-sensitive sequences since the VAR-based detection

is by far the method that generates more entries in our detection database (see Table 3.1).

As the size and representativeness of the population on the database increase, the detector

accuracy increases, accounting for the exact frequency of a given variant in a population,

being thus capable of detecting any privacy-sensitive sequence.

3.3 Completeness of the Method 49

These discussions suggest that there is already a large body of knowledge about the

privacy sensitiveness of the human genome. More specifically, it is possible to have a

reasonably complete privacy detector since (1) the rate of discovery of new STRs was

extremely low in the last decade—suggesting we probably know most of them, (2) disease-

related genes are being discovered at an incredible pace—exhausting the maximum number

of human genes, and (3) rare variations can be accurately covered by increasing population

samples in allele frequency studies. This result vouches for the usefulness of an evolvable

tool that can be used together with standard security techniques to dramatically improve

the status quo of the robustness of genomic data repositories, much in the lines of what

intrusion detection has achieved in the protection of IT data servers.

Evolution Module. Our solution is reproducible and evolving: the same database may be

reused with different datasets, and the knowledge database can continually and transparently

be updated as new privacy-sensitive sequences are revealed, without affecting the work-

flow [71]. In essence, a protection ecosystem built in accordance to the principles proposed

here would exhibit similar effectiveness as the continuously updatable industry from the

intrusion detection systems. The knowledge database from the DNA privacy detector can

be automatically updated to address future attacks as new privacy-sensitive sequences

are identified. An evolution module integrated into the system architecture presented in

Figure 1.1 allows the stored datasets to be reanalysed at any moment and attested again

for their privacy-sensitivity. As soon as a new privacy-sensitive sequence is identified, the

datasets are updated, access rules are adapted accordingly, and the access history is logged

for future inquiries. The access control component complements the evolution module by

automatically updating the lists and rules according to the datasets’ version. The auditability

component (Chapter 5) complements the evolution module by allowing the verification of

who has read previous versions of a dataset that was reanalysed because it could contain

previously unknown privacy-sensitive sequences.

50 Chapter 3: Detection of Privacy-Sensitive Portions in Human Genomes

3.4 Final Remarks
This chapter proposed a novel method to systematically detect the privacy-sensitive

DNA portions of human genomes. Data resulting from this chapter (i.e., the DETECTION

phase of our storage pipeline) is divided into two sets: a small privacy-sensitive portion and

a large non-sensitive one. The privacy-sensitive portion of human genomes contains only

11.3% of the NGS reads from each genome, which already contributes to the cost efficiency

of any storage solution by reducing the size of data that requires stronger security and

dependability premises. Both portions are sent to the Reduction phase, which deduplicates

and efficiently encodes this data to make it even more cost-efficient.

3.4 Final Remarks 51

4Sequencing Data
Reduction with
Similarity-based
Deduplication and
Delta-Encoding

Datasets produced in human genomics are massive since its studies compare thousands to

millions of biological samples, where hundreds of gigabytes of data are generated from

each sequenced body cell [181]. This data deluge must be efficiently stored, transferred, and

processed to avoid stagnating medical breakthroughs [203]. Cutting costs in storage space

and achieving a high-throughput in restoring data are paramount for this domain [127]. Our

primary goal in this chapter is to increase data reduction gains and restore it faster than the

generic compressors used in practice (e.g., GZIP [88]), while approaching the reduction

gains to the ones from specialised tools.

As described in Section 2.2, genomic data has three main representations: sequencing,

aligned, and assembled data. Humans have 99.9% of DNA sequence similarity since the

53

assembled genome of any two individuals differ in less than 0.1% [243]. Additionally,

this representation has a public blueprint (i.e., a reference genome) for humans [219]

(e.g., hg38 [188]). It sizes ∼3GB of data from its 3.2 billion contiguous sequence of

nucleobases. Assembled human genomes can be reduced ∼700× from ∼3GB to ∼4.2MB

in 40 seconds [11] by storing only the genome differences to the mentioned blueprint in a

process called referential compression [248]. However, sequencing data is much bigger

than assembled data and has particularities that prevent such compression ratio.

Sequencing data is the most critical representation in genomics because it contains the

purest version of genomic data and is unbiased from subsequent processing steps [61]. On

the contrary, the output from alignment and assembly is imprecise, lossy, and algorithm-

dependent [165]. For instance, using aligned data from multiple sources means they

presumably were aligned with different algorithms and reference genomes. It precludes

subsequent analyses, except if one first converts data back to sequencing data and realigns

it with the same algorithm and reference (see Section 2.2).

The main reasons sequencing data is harder to compress than assembled data are (i) the

randomness on entries’ locality (small data chunks sequenced in no specific order [180]);

and (ii) the lack of a stable reference for quality scores [203] (e.g., a similar blueprint as

the one available for human DNA [188]). Corroborating these observations, specialised

algorithms usually compress sequencing data no more than 7× (see Section 4.2 for details

on FASTQ compression).

Many algorithms favour maximising compression ratio, which usually comes with

penalties in (de)compression speed. This decision is justifiable when data is intended to

be archived. However, the decompression speed becomes a bottleneck in cases where

compressed data is read from remote storage systems and needs to be decompressed and

read several times. This threshold justifies why many real-world solutions (e.g., 1000

Genomes Project [57]) prefer generic compression algorithms that decompress fast (e.g.,

GZIP [88]) rather than those that only compress more.

54 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

Storage of sequencing data is an important, challenging mostly unexplored domain for

the systems community [203]. It presents an excellent opportunity for deduplication and

its assets: leveraging inter-file similarity and achieving high-performance in reading data.

However, traditional identity-based deduplication fails to provide a satisfactory reduction in

the storage requirements of genomes (see Section 4.3.1).

Solutions for similarity-based deduplication commonly cluster similar entries into

buckets and use identity-based deduplication within them [202], or they focus mostly on

the delta-encoding problem [91] while employing inefficient global indexes [256]. In this

chapter, we balance space savings and restore performance by proposing GenoDedup, the

first method that integrates scalable, efficient similarity-based deduplication and specialised

delta-encoding for genome sequencing data.

Novelty in our approach encompasses (i) the proposal (Section 4.3.2) and implementa-

tion (Section 4.4.3.2) of GenoDedup, a similarity-based deduplication solution that inte-

grates scalable, efficient Locality-Sensitive Hashing (LSH) with delta-encoding; and (ii)

specialisations on delta-encoding for genome sequencing data, namely:

• Circular deltas (Section 2.2);

• Delta-Hamming (Section 4.4.3.1);

• A scalable modelling of generic indexes for multiple genomes (Section 4.4.2).

Additionally, we introduce a converged characterisation of aspects from sequencing data

important to deduplication (Section 2.2) and justify why identity-based deduplication

fails on it (Section 4.3.1). Our experimental results (Section 4.5) attest the feasibility of

GenoDedup since it currently achieves 67.8% of the reduction gains of SPRING [49] (i.e.,

the best specialised tool in this metric) and restores data 1.62× faster than SeqDB [133] (i.e.,

the fastest competitor). Additionally, GenoDedup restores data 9.96× faster than SPRING

and compresses files 2.05× more than SeqDB.

55

The remainder of this chapter is organised as follows. Section 4.1 details the different

portions of FASTQ entries, which can be explored to reduce the size of FASTQ file.

Section 4.2 reviews several tools for compressing sequencing data, Section 4.3 discusses

the effectiveness of (identity- and similarity-based) deduplication on human genomes.

Section 4.4 presents the GenoDedup implementation and Section 4.5 evaluates it. Section 4.6

discusses how our solution can work with or be adapted to support other datasets and

methods, and Section 4.7 presents some final remarks of the chapter.

4.1 Anatomy of a FASTQ Entry
As mentioned in Section 2.2, data obtained from sequencing genomes is stored in the

FASTQ text format [61]. A FASTQ file contains many entries with four lines each: a

comment line, the DNA sequence, a second comment line, and the sequence of quality

scores. In this section, we detail each of these portions and enlist their aspects that impact

data reduction the most.

4.1.1 Comment Lines

The first and third lines of each FASTQ entry are comments that start with a “@” character

in the former and a “+” in the latter. These lines usually contain: a sample identifier (e.g.,

SRR618666 in Figure 2.2, the entry identifier (e.g., 296), and some information about the

sequencing run (e.g., HWI-ST483:151:C08KDACXX:7:1101:21215:2070/1). Comments follow

a similar structure through the file, which can be determined if it contains numeric or

alphanumeric fields, and if they are constant, incremental, or variable among entries [35].

4.1.2 DNA

The second line of each FASTQ entry contains the DNA sequence interpreted by the

sequencing machine. This sequence is composed of ` characters, where this length ` can be

configured on each sequencing job. Nucleobases can be represented using different sets

56 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

of characters, where the most commonly used is the {A, C, G, T, N}. It considers the four

nucleobases (i.e., adenine, cytosine, guanine, and thymine) and a special character “N” to

represent any of them when the machine is unsure on the sequenced nucleobase [75].

A contiguous human genome sizes 3.2 billion nucleobases and results in more than

3GB of data in text mode (e.g., UTF-8 encodes each character in 1 byte). However, NGS

machines do not provide the whole genome in a single contiguous DNA sequence [180].

They generate millions of randomly-dispersed reads, which contain small pieces of DNA

sequences with hundreds to thousands of nucleobases each [61].

A configurable sequencing parameter determines the coverage in which a genome

is sequenced. It is equivalent to the average number of different entries in which every

nucleobase position from a genome appears in. Common configurations consider coverage

of 30–45× to increase accuracy. This redundancy results, for instance, in 96 to 144GB of

DNA characters per whole sequenced human genome in the FASTQ format.

4.1.3 Quality Scores (QS)

The fourth line of each FASTQ entry contains the sequence of quality scores asserting

the confidence level for each sequenced nucleobase. Phred quality score [99] is the typical

notation in FASTQ files. QS values usually range from 0 to 93 (the higher, the better) and

are encoded in ASCII (requiring seven bits per QS) [61]. QS roughly occupy the same

storage space as DNA in FASTQ since there is one QS for each nucleobase and standard

text encoding (e.g., UTF-8) use eight bits per character.

Quality score sequences are the most challenging portion of FASTQ entries to compress,

and as such, we concentrate most of our efforts on it. There is no reference sequence for

quality scores [203], but they do have patterns that can boost data reduction [160]. In this

thesis, we take into consideration three of them. The first pattern is that many NGS machines

have limited precision and generate QS only in the range between 0 and 40 [49, 61], which

allows one to describe them using six bits instead of seven. Second, the longer the read

4.1 Anatomy of a FASTQ Entry 57

Normal Delta

0

0 +1 -1

-1

+40

+1

-40

+20

+20

-21 +21

-20

-20

Circular Delta

Normal Delta

-40 +40

-20 +20 …

…

Circular Delta … … … … … …

Circular Delta

Normal Delta

0 0 -1 -20 -21 -40 +1 +20 +21 +40 … … … …

0 0 -1 -20 +1 +20 … …

Figure 4.1: Using modular arithmetic to convert normal deltas into circular deltas.

DNA sequence is, the bigger the uncertainty at the end of the QS sequence [232]. For

instance, a practical implication from this pattern is that, in FASTQ files from Illumina HiSeq

2000 [136] (the most common NGS machine in the world [120]), several QS sequences

finish with a chain of “#” characters—i.e., a low Phred value equivalent to 0.

The third pattern is the fact that subsequent QS tend to vary little from one to the

other [119]. It means that one may replace subsequent QS by a delta value, which results in

the zero value most of the times [160], and convert data to a normal distribution between

−40 and +40.

However, using delta values naively increases the number of bits required to describe a

QS to seven bits again since there are eighty-one options between −40 and +40. With this

in mind, we propose to use modular arithmetic to convert them to circular deltas, which

distributes the mentioned range into a circular array from−20 to +20. Figure 4.1 illustrates

this conversion, where each circular delta can be translated into two different normal delta

values. For instance, the circular delta −1 is equivalent to both −1 and +40 normal deltas.

When solving circular deltas to restore the original QS sequence, the correct alternative can

unambiguously be distinguished because only it results in a valid QS between 0 and 40.

This transformation reduces the QS encoding back to six bits.

58 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

Tool Version Compression Decompression
GZIP [88] 1.6 $F1 -d $F2
pigz [4] 2.3.1 $F1 -d $F2
BSC [113] 3.1.0 e $F1 $F2 d $F2 $F3
ZPAQ [178] 7.15 a $F2 $F1 -m5 -t24 x $F2 -t24 -force
SeqDB [133] 0.2.1 120 120 $F1 $F2 $F2 > $F3
DSRC2 [213] 2.00 c -t24 $F1 $F2 d -t24 $F2 $F3
Quip [151] 1.1.8 $F1 -d $F2
Fqzcomp [38] 4.6 $F1 $F2 -d -X $F2 $F3
FaStore [214] 0.8.0 --lossless --in $F1 --out $F2 --threads 24 --in $F2 --out $F3 --threads 24
SPRING [49] 1.0 -c -i $F1 -o $F2 -t 24 -d -i $F2 -o $F3 -t 24

Table 4.1: Compression tools, versions, and parameters used in our comparisons. $F1 = original
FASTQ, $F2 = compressed file, $F3 = decompressed file.

4.2 Sequencing Data Compression

Before discussing the challenges of deduplicating genomic sequencing data, we dis-

cuss the state-of-the-art on the compression of sequencing data, its limitations, and the

opportunities it leaves open for deduplication. There is a well-known trade-off in data

compression between compression ratio and throughput [177]. We selected ten relevant

compression algorithms that achieve the best results in these properties [38, 85]: GZIP [88],

pigz [4], BSC [113], ZPAQ [178], SeqDB [133], DSRC2 [213], Quip [151], FQZcomp [38],

FaStore [214], and SPRING [49]. We evaluate these tools in our experimental environment,

which is described in Section 4.5. Table 4.1 presents the version of the tool used in our tests

and the arguments passed to compress and decompress data. In this table, $F1 is the path to

the original FASTQ file (usually passed as input to the compressor), $F2 is the path to the

resulting compressed file, and $F3 is the path to the decompressed file (usually different

from $F1 to compare their content hashes later).

Our analyses use five representative FASTQ files of human genomes from the 1000

Genomes Project [57]: SRR400039, SRR618664, SRR618666, SRR618669, and SRR622458.

They are human genomes sequenced with the Illumina HiSeq 2000 platform [136]. To

the best of our knowledge, this machine was the most used NGS machine in sequencing

laboratories around the world when we started this work [120]. Additionally, some of the

selected genomes were also used in other papers on FASTQ compression (e.g., SRR400039

4.2 Sequencing Data Compression 59

Genome Si
ze

(M
B

)

Si
ze

(G
B

)

C
om

m
en

ts

D
N

A

Q
S

E
nt

ri
es

L
en

gt
h

C
ov

er
ag

e
(×

)

SRR400039_1 33712.2 33.7 8.3 12.7 12.7 124331027 101 3.91
SRR618664_1 64619.2 64.8 16.2 24.3 24.3 239715311 100 7.46
SRR618666_1 62342.7 62.3 15.7 23.4 23.4 231285558 100 7.20
SRR618669_1 79617.5 79.6 20.0 29.8 29.8 295256611 100 9.20
SRR622458_1† 23617.7 23.6 4.0 9.8 9.8 96097046 101 3.02
Total 263909.2 264.2 64.2 100 100 986685553 — —

Table 4.2: The genome datasets used in this chapter, their size (in MB and GB), the size (in GB)
of the comment, DNA, and QS portions separately, the number of FASTQ entries, the
length of each DNA and QS sequence within an entry, and the sequencing coverage (in
×). † We used only portions of this file to complete 100GB of DNA and of QS lines in
our experiments.

in Quip’s paper [151]). Only the FASTQ file from the first end of these genomes are

considered in our analyses, but they sum up 265GB of data and result in almost one billion

FASTQ entries.

Table 4.2 provides additional details about the selected datasets. It contains the size of

the selected genomes (in B, MB, and GB), the size (in GB) of the comment, DNA, and

QS portions separately, the number of FASTQ entries, the length of each DNA and QS

sequence within an entry, and the sequencing coverage [138].

Table 4.3 presents these files and the resulting compression ratio and restore throughput

of each algorithm on them. At the end of this section, we present the complete tables

comparing the ten selected tools using the five selected datasets in terms of compressed

size (Table 4.4), compression throughput (Table 4.5), and decompression throughput (Ta-

ble 4.6).

GZIP [88] is a generic compression tool employed in several application domains,

including the storage of human genome sequencing data. For instance, the 1000 Genomes

Project [57] stores their FASTQ files compressed with GZIP. Even recent frameworks for

bioinformatics (e.g., Persona [46]) use GZIP to compress data. The main strength of GZIP

is its decompression/restore throughput, which reaches 41MB/s on average in our files and

60 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

Genome G
Z
IP
⊗

pi
gz
⊗

B
SC
⊗

Z
PA

Q
⊗

Se
qD

B

D
SR

C
2

Q
ui

p

Fq
zc

om
p

Fa
St

or
e

SP
R
IN

G

G
en

oD
ed

up

400039 2.80 2.80 3.99 4.43 2.01 3.88 4.55 4.52 4.69 5.18 4.11
618664 3.01 3.00 4.33 4.84 2.01 4.24 4.98 4.93 N/A 6.04 4.42
618666 2.93 2.93 4.20 4.69 2.00 4.12 4.82 4.78 N/A 5.84 4.35
618669 3.03 3.03 4.36 4.89 2.01 4.29 5.03 4.97 N/A 6.19 4.52
622458† 4.37 4.37 5.83 7.37 1.92 4.21 4.81 5.02 6.17 6.87 3.05
Avg. C.R. 3.22 3.23 4.54 5.24 1,99 4.15 4.84 4.84 5.43 6.02 4.09
Write
(MB/s)

15.5 281.1 159.9 5.3 415.6 1375.9 28.7 60.5 25.5 43.1 0.3?

Read
(MB/s)

41.4 66.1 46.2 1.1 127.9 125.3 3.4 9.6 45.2 20.9 208.2?

Version 1.6 3.1.0 7.15 2.00 0.2.1 1.1.8 4.6 1.0 0.8.0 9.22 0.1

Table 4.3: Genomes and compression tools. Per algorithm: compression ratio (i.e., C.R., the
ratio between the original_size and the compressed_size) on each genome, write and
read throughput (in MB/s), and its version. ⊗ Generic compression algorithm. ? See
Section 4.5 for the complete analysis.

66MB/s in its parallel version (i.e., pigz), while ZPAQ, Quip, and Fqzcomp reach less than

10MB/s and SPRING reaches 20MB/s. FaStore and BSC reach a similar throughput as

GZIP, but DSRC2 and SeqDB are the fastest (specialised) tools to decompress FASTQ files,

reaching a throughput of approximately 125MB/s. We use GZIP and pigz as the baseline

generic tools and SeqDB and DSRC2 as the baseline specialised tools in experiments that

evaluate throughput.

Many specialised tools for FASTQ files focus on maximising compression ratio. For

instance, SPRING [49] is the specialised tool that reaches the best compression ratio in our

files (6.023× on average). It is followed up by FaStore [214] (5.4×) and by the generic

tool ZPAQ (5.2×). We use ZPAQ as the baseline generic tool (together with GZIP and pigz

due to their importance and restore throughput) and SPRING as the baseline specialised

tool in experiments that evaluate FASTQ compression ratio.

We have evaluated other specialised (e.g., G-SQZ [234] and KIC [258]) and generic

compression algorithms (e.g., BZIP2 [221] and LZMA2 [204]). However, they compress

data less than SPRING [49] and restore data slower than pigz and SeqDB [133] in our

4.2 Sequencing Data Compression 61

Genome G
Z
IP

pi
gz

B
SC

Z
PA

Q

Se
qD

B

D
SR

C

Q
ui

p

Fq
zc

om
p

Fa
St

or
e

SP
R
IN

G

G
en

oD
ed

up

400039 12041 12036 8441 7617 16728 8693 7410 7454 7180 6509 8202
618664 21498 21511 14930 13355 32204 15239 12971 13094 N/A 10702 14624
618666 21298 21277 14849 13299 31117 15132 12920 13054 N/A 10674 14318
618669 26304 26302 18253 162958 39580 18572 15833 16025 N/A 12869 17627
622458 5408 5401 4051 3206 12274 5607 4909 4706 3826 3438 7751

Table 4.4: Compressed size of the selected genomes per tool, in MB.

experiments. Additionally, we have evaluated LFQC [194] and discarded its results because

it uses LPAQ8 to compress the quality score sequences and LPAQ8 does not support files

bigger than 2GB.

LZMA2 is an improved multi-threaded version of the generic compressor entitled

Lempel-Ziv-Markov chain algorithm (LZMA), which was implemented in the 7-Zip com-

pressor [204]. We experimented this tool with the FASTQ file of the SRR400039 genome.

However, it has compressed this file 3.26× at a throughput of 1.36MB/s and decompressed

it at 14.1MB/s.

PPM (Prediction by partial matching) is another interesting generic compression algo-

rithm to be considered [185]. It is also one of the possible compression methods used by

7-Zip. We experimented a tool called PPMd with the FASTQ file of the SRR400039 genome,

and it has compressed this file 3.95× at a throughput of 17.1MB/s and decompressed it at

3.86MB/s.

These two tools were discarded from our complete comparison because they are slower

than GZIP and have a lower compression ratio than ZPAQ. Other tools fall in the same

scenario since these do not surpass the performance of GZIP nor compress more than ZPAQ,

namely: BZIP2 [221], G-SQZ [234], and KIC [258]. ZPAQ achieving a better compression

ratio than PPMd is usually justified by the fact that ZPAQ (and similar context mixing

algorithms) use many prediction models from different contexts while PPMd uses a single

one [6].

62 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

Genome G
Z
IP

pi
gz

B
SC

Z
PA

Q

Se
qD

B

D
SR

C

Q
ui

p

Fq
zc

om
p

Fa
St

or
e

SP
R
IN

G

400039 12.80 251.58 161.30 5.42 474.82 636.08 28.89 59.46 14.05 35.30
618664 13.46 255.41 167.84 5.35 425.13 1576.08 28.11 61.25 N/A 41.45
618666 13.55 259.76 133.21 5.30 418.41 1558.57 29.20 61.06 N/A 40.72
618669 13.77 201.56 136.80 5.41 277.41 1421.74 28.40 61.67 N/A 35.93
622458 24.03 437.36 200.15 5.09 481.99 1686.97528.98 59.04 36.96 62.32
Average 15.52 281.14 159.86 5.31 415.55 1375.89 28.72 60.50 25.51 43.14

Table 4.5: Compression throughput (original_size/compression_time) per tool in MB/s.

Genome G
Z
IP

pi
gz

B
SC

Z
PA

Q

Se
qD

B

D
SR

C

Q
ui

p

Fq
zc

om
p

Fa
St

or
e

SP
R
IN

G

400039 44.60 69.57 45.38 1.21 164.01 140.20 3.60 9.85 47.87 22.52
618664 44.60 70.53 43.53 1.11 82.58 75.81 3.29 9.58 N/A 19.49
618666 44.65 69.76 35.69 1.15 92.61 76.04 3.43 9.64 N/A 21.39
618669 38.01 58.58 36.73 1.11 102.28 54.30 3.23 9.56 N/A 18.95
622458 34.89 62.07 69.84 0.69 197.97 280.34 3.60 9.23 42.51 22.18
Average 41.35 66.10 46.23 1.05 127.89 125.34 3.43 9.57 45.19 20.91

Table 4.6: Decompression throughput (compressed_size/decompression_time) per tool in MB/s.

The idea of context mixing brings another tool, called LPAQ8 [176], into the discussion.

LPAQ8 is a slow compressor that reaches the best compression ratio in many benchmarks

and was developed by the same person that developed ZPAQ. Other FASTQ compression

tools (e.g., LFQC [194] and LFastqC [6]) separate the different portions of FASTQ files

(i.e., comments, DNA, and QS) and compress them separately.

Both LFQC [194] and LFastqC [6] use LPAQ8 to compress the quality score sequences,

while for the comments and DNA sequences the former uses ZPAQ and the latter uses

Mfcompress [206]. However, LPAQ8 uses signed integers to track the file length, which

makes it crash if its input files have more than 2GB. As presented in the sixth column of

Table 4.2, all QS portions of our datasets have more than 2GB, which prevents us from

using any tool that employs LPAQ8 for compressing these portions.

Developers from LFQC suggested, in an issue report [193], to replace LPAQ8 by ZPAQ

to compress the QS sequences when they are bigger than 2GB. However, it would make

4.2 Sequencing Data Compression 63

LFQC’s results very similar to the ones from ZPAQ, which vouched for discarding it from

the complete comparison.

Another tool that separates the portions of FASTQ files and uses the Mfcompress [206]

for the DNA sequences is the MZPAQ [94]. As the name suggests, it uses the ZPAQ

algorithm for the QS sequences. Unfortunately, we were not able to find a publicly available

source-code or executable of MZPAQ, which prevents us from adding it to the complete

evaluation. We even considered running its underlying software separately, but Mfcompress

has compressed a human genome only 34.3% more than GZIP [206] and using the ZPAQ

to compress the QS sequences would result in ZPAQ’s low restore throughput, incurring in

the same limitations as the previously mentioned generic tools.

Algorithms that align the DNA data before compressing it (e.g., SlimGene [160]) can

reduce the DNA portion alone up to 20×, but they take considerable time (e.g., 8 hours

per human genome) and consequently reduce the compression throughput. Nonetheless, as

will be described in Section 4.6, the methods presented in this chapter can also work with

aligned data.

Finally, Zhou et al. [260] propose a similarity-based compression algorithm for quality

scores from genome sequencing data. However, they use a non-scalable memetic algorithm

to create a small codebook for each FASTQ file they want to compress and inefficiently

compare each QS sequence to all base chunks in the codebook to calculate the best delta-

encoding. Additionally, we cannot compare the performance of our solution to theirs

empirically because they provide no implementation, but our work surpasses theirs in

several other theoretical aspects, which are detailed in Section 4.4.

4.3 Human Genome Deduplication
Deduplication reduces the storage requirements by eliminating unrelated redundant

data [37, 103]. Additionally, deduplication has two advantages when compared to com-

pression algorithms: it may leverage the inter-file similarities, while most compression

64 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

algorithms consider only intra-file data or use a single generic contiguous reference; and it

usually achieves a better restore performance than compression.

There are many deduplication approaches and systems available [202], and several of

them rely on index data structures to lookup exact copies of data already stored in the

system. This indexing mechanism maps the content of stored chunks to their actual storage

location to efficiently find duplicate instances.

4.3.1 Identity-based Deduplication

In this section, we discuss the strengths and limitations of conventional approaches

for identity-based deduplication and present examples confronting them with FASTQ

files. Given the particularities of FASTQ files (Section 2.2), this discussion is of extreme

importance to clarify and caution the general deduplication community in the search for

efficient solutions to the problem of interest. The discussion that follows encompasses three

identity-based approaches: file deduplication, block deduplication, and application-aware

deduplication.

4.3.1.1 File deduplication

This approach identifies exact copies of the same file by comparing their content hashes

(e.g., SHA-2) and replaces the redundant data with pointers to a single instance [37]. It

is ineffective in genome repositories because these facilities store data mostly from their

unique samples [71] or because even sequencing the same sample results in files with

different content [180].

Example. The 1000 Genomes Project [57] contains half a million files, in which more

than 200k are FASTQ. We downloaded its current directory tree [1] and compared the

content hashes (MD5) of all FASTQ files to obtain the duplicate ratio. These MD5 hashes

are available in the last column of this directory tree, which means one does not need to

4.3 Human Genome Deduplication 65

download all FASTQ files to perform the present comparison. The result indicates that less

than 0.007% of the FASTQ collection is composed of duplicate files, which validates the

low interest for file deduplication in sequencing data.

4.3.1.2 Block deduplication

This approach splits files into fixed- or variable-size blocks, calculates their content hashes,

and compares them to find duplicates. Systems with fixed-size block deduplication com-

monly adopt blocks of 4KiB for historical and compatibility reasons—e.g., this is the size of

virtual memory pages in several computer architectures and of blocks in many filesystems.

For variable-length blocks, the most common algorithms are the Rabin fingerprinting [210]

and the Two-Threshold Two-Divisor (TTTD) [98].

Block deduplication fails to identify copies of FASTQ data chunks because they are

unlikely to happen. Reasons for that include the fact FASTQ files contain the unique

sample and entry identifiers; the DNA sequences contain mutations, transformations, and

are sequenced in no specific order; and the distribution of QS varies from run to run.

Example. We have split three FASTQ files (SRR400039, SRR618664, and SRR618666) into

40 million fixed-size blocks of 4KiB, calculated the MD5 hash of each block, and verified

that there are no duplicates on it. We executed the same experiment with variable-size

chunks using the Rabin fingerprinting [79] (with blocks between 1–8KiB) to generate more

than 23 million hashes, where no duplicates were found.

4.3.1.3 Application-Aware deduplication

A final strategy is to consider the files’ structure and content to increase the chances of

deduplication. One may write each line type of FASTQ entries into different files—each

one containing only (1) the “@” sequencing comments, (2) the DNA sequences, (3) the

66 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

“+” comments, or (4) the quality scores—and deduplicate them separately. Both fixed- and

variable-size block deduplication can be employed in this approach.

Example (Comment lines). Comment lines have an identifiable structure that can be parsed

into fields. For instance, lines from the SRR618666 genome have ten fields each. Five

of them are constant across the whole file, two are incremental numbers, and three are

variable. One may replace the constant and incremental fields by a small encoding at the

beginning of a compressed file. Then, the remaining variable fields can be placed in a file

to be deduplicated separately. In SRR618666, the 231 million lines, with three variable

fields each, can be replaced by pointers to only 48 unique values in the first field, 20k in

the second, and 199k in the third. Bhola et al. [35] compresses comments ∼ 17× with this

approach.

Example (DNA and QS blocks). We separate the lines from the three FASTQ files as

previously mentioned, removed the newline character and performed the block deduplication

previously presented. We split the DNA and the QS files into 4KiB blocks and separately

compared their content hashes, which results in no duplicates. Similarly, executing the

same workflow with Rabin fingerprinting does not find any redundant blocks.

We execute the same block deduplication with the block size as 100 characters in

SRR618664 and SRR618666 (i.e., the sequence length in these files). This approach is the

first to provide a considerable number of duplicates. From the 471 million entries in these

genomes, 44 million DNA lines (9.42%) are exact duplicates, as well as 468 thousand QS

lines (0.01%). However, these values are unsatisfactory since spatial deduplication usually

requires gains of 20–40% to be considered worth the invested cost and time [103].

4.3.1.4 Summary

The three selected FASTQ files used in these examples are enough to illustrate the inef-

ficiency of traditional identity-based deduplication methods, whereas considering more

4.3 Human Genome Deduplication 67

genomes here leads to similar conclusions. Identity-based deduplication provided signif-

icant gains only in comment lines in our analyses. Based on the descriptions from the

present section and the characteristics of FASTQ files, there are excellent opportunities for

similarity-based deduplication, which we discuss in the next section.

4.3.2 Similarity-based Deduplication

Similarity-based deduplication matches resembling objects of any size using similarity

search to deduplicate them [91]. We integrate similarity-based deduplication with delta-

encoding, which stores (1) a pointer to the most similar entry together with (2) the minimal

list of modifications to restore the original object from this entry. This most similar entry is

known as the base chunk [202].

Associating this approach with the application-aware deduplication is intuitively a

promising solution to deduplicate genomes. However, there are at least three challenges

that need to be addressed: (1) choosing a distance metric and encoding, (2) modelling the

deduplication index, and (3) reducing the number of candidate comparisons.

A distance metric is critical as it defines what makes entries similar and determines how

to choose the best deduplication candidates. In this work, we consider three metrics [175]

and present experiments using them in Section 4.5.

• HAMMING: Counts the number of positions with different characters in two strings of

the same size. The resulting list of edit operations is composed of only UNMODIFIED

and SUBSTITUTION operations.

• LEVENSHTEIN: Calculates the minimal number of modifications to convert a string

into another. It considers UNMODIFIED, DELETE, INSERT, and SUBSTITUTION opera-

tions.

• JACCARD: Calculates the ratio between the intersection and the union of N-grams

from the strings.

68 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

The first two metrics return the distance value and a list of edit operations to restore the

original data from the base chunk, whereas the last one provides only the distance.

After choosing the distance metric, one may model the deduplication index based on it.

It is an optimisation process that selects a subset of (real or synthetic) entries and results,

for example, in the smallest distance sum to a known sample of sequences. As previously

mentioned, human DNA sequences have a comprehensive reference (e.g., hg38 [188]) that

can be used to create such index, but there is no such reference for QS sequences [203].

To create the index for quality score sequences, one may resort to optimisation, memetic

(e.g., [260]), or clustering (e.g., K-Means [146]) algorithms to find the best codebooks to

the deduplication task.

Another option is to choose the most frequent sequences from each file empirically.

However, naively creating the index with entries exactly as they appear in FASTQ files is

inefficient due to a combinatorial explosion. Finally, one may initiate the system with an

empty deduplication index and dynamically insert every queried entry that has not found

a similar enough neighbour (i.e., under a predefined threshold). However, the index may

grow indefinitely if the threshold is too hard to achieve, or it will result in low reduction

gains if the threshold is too easy to reach.

After obtaining a deduplication index that achieves satisfactory compression results,

one may decide how to improve the scalability and performance of the system [261]. The

human DNA reference provides nearly 3.2 billion base chunks. As mentioned before, QS

sequences do not have a reference, and thus one may define the limits of the index size

according to capacity of its system. For instance, storing 1 billion entries of 100 characters

each in a simple key-value store, indexed by integers of 32-bits, results in at least 100GB

of data. Keeping all data in main memory in a single node may become a burden, and

thus partitioning data across several nodes [104] or using sparse indexes [168] emerge as

desirable alternatives.

Finally, reducing the number of candidate comparisons is another crucial performance

improvement to the system. One may achieve this goal through other auxiliary data

4.3 Human Genome Deduplication 69

structures such as K-mer tables [259], indexes for Locality-Sensitive Hashing (LSH) [143],

or cluster deduplication [104]. However, these structures may interfere with the recall

of the best deduplication entries, producing suboptimal search results depending on their

configuration. It means that there is a trade-off in improving the performance that may

compromise the deduplication gains.

4.4 GenoDedup

In this section, we describe GenoDedup, which integrates scalable, efficient similarity-

based deduplication and specialised delta-encoding for sequencing data. In Section 4.4.1, we

present the main components of GenoDedup and how data flows among them. Sections 4.4.2

and 4.4.3 detail how we solve the three main challenges from Section 4.3.2.

4.4.1 Overview

The main components of GenoDedup can be seen in Figure 4.2. The similarity-based

deduplication selects the nearest base chunk for each sequence in FASTQ entries using

two auxiliary data structures. The first is a Locality-Sensitive Hashing (LSH) index, which

enables the similarity search when the number of deduplication candidates is too big to

perform optimal searches. Entries are blocks with a variable size similar to the length of

the DNA and QS lines in the FASTQ files used in this work. The second data structure

is a key-value store (KVS) indexing unique entries that are used in optimal similarity

searches and to retrieve the value of deduplication candidates using their content hashes as

keys. A data storage component is used to store the deduplicated files and provide them to

readers. Readers use a restore module, which reads the pointers and delta-encoding from

the deduplicated file and queries the deduplication index of unique entries to restore the

original FASTQ file from it.

An offline setup phase, described in Section 4.4.2 but not shown in Figure 4.2, prepares

the environment where the deduplication will take place. This phase populates the auxiliary

70 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

Client

Write

KVS

Storage

Write

Deduplicated
File

D

Read

Sequencing

Genome
sequencing

Write

Read

FASTQ
entry

FASTQ
File

FASTQ
File

Restore

LSH

Similarity-based
Deduplication

23

26

21 22

28 29

30

F
F

Processor

Disk

Network Le
ge

n
d

Parse

Compress
comments

QS→CD

Calculate
LSH hash

LSH
hash

Candidate
pointers

Query

Parse

Pointers

Candidates

Best
candidate

Edit ops
Delta
encoding

Join Compressed
entry

Compressed
entry

Split

Parse

Pointer

Best
candidate

Edit
ops

CD→QS

Join

Decompress
comments

FASTQ
entry

1

3

2

4

6

7

9

11

15

16 17

19

8 10

18

5 12

20

14

33

24

25 31

32

34

27 13 Query

Figure 4.2: Overview of the architecture of GenoDedup.

data structures (i.e., LSH and KVS) with the previously generated list of deduplication

candidates. For instance, the human reference genome (e.g., hg38) can be loaded to the

LSH and KVS during this phase. At the end of this offline phase, data has been loaded to the

appropriate data structures in a way that the similarity search can be executed efficiently.

Data flow during a deduplication execution is composed of the numbered steps present

in Figure 4.2. Steps 1–21 represent the deduplication process, while steps 22–34 represent

the FASTQ restore process. Squared steps are processor-bounded tasks, circular steps are

disk-bounded, and triangular ones are network-bounded.

When sequencing a genome, (1) NGS machines generate data at 0.3MB/s [172], which

is (2) stored in a disk that supports this throughput. Similarity-based deduplication receives

the sequenced data by (3) reading it from the disk and (4) transferring it through the network

to the deduplication component. Then, (5) each FASTQ entry is parsed into the different

line types, where comments are sent to Step 18 (see below), DNA to Step 7, and QS to

Step 6. QS sequences are (6) converted to circular deltas, and QS and DNA sequences are

used to (7) calculate the hashes that will be used to query the LSH. These hashes are (8)

sent to the LSH component, which will (9) obtain the internal LSH keys from these hashes,

4.4 GenoDedup 71

query them in the respective LSH indexes, and join the lists of pointers to the candidates in

a bigger list, which is (10) returned to the deduplication component.

The deduplication component (11) receives this list of pointers to candidates and (12)

sends it to the KVS to obtain their content. The KVS (13) obtains the candidate value

using each pointer as a key and (14) returns the list of candidates (their content, not the

pointers). The deduplication algorithm (15) calculates the edit distance only (not the edit

operations) between each candidate from the received list and the sequence from the FASTQ

file and keeps track only on the pointer and value of the best candidate (i.e., the one with

the smallest edit distance). After identifying the best candidate, it (16) calculates the edit

operations between the sequence from the FASTQ file and the best candidate and (17)

converts the edit operations to the delta encoding using Huffman codes. In parallel to this

process, the deduplication component (18) compresses the comment lines with an external

algorithm (e.g.,Bhola et al. [35]). In the end, the component (19) joins the deduplicated and

compressed version of the comment, DNA, and QS lines and (20) sends the reduced entry

to a storage component, which (21) writes the entry in a deduplicated file.

When a client intends to read a deduplicated FASTQ file, he (22) reads the file from

the disk and (23) transfers it to the FASTQ restore component. The restore module (24)

converts, both for the DNA and QS sequences, the bytecode to the pointer to the best

candidate, to the first character of the original QS sequence and the delta encoding. For each

sequence (25), the restore module (26) sends the pointer to the KVS, which (27) obtains

the respective value indexed by the pointer as a key and (28) returns the value of the best

candidate to the restore module. The restore module then (29) applies the edit operations

from the delta-encoding to the returned candidate and (30) converts from circular delta QS

to normal QS if it is a QS sequence. Finally, it (31) decompresses the comment lines using

an external algorithm (e.g., Bhola et al. [35]) and (32) joins the restored comment, DNA,

and QS lines. The restored entry is (33) sent to the client, which (34) stores it in a FASTQ

file on disk.

72 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

Steps 12 and 14 can be avoided if the LSH index stores and returns the list of the actual

content of the deduplication candidates instead of their content hashes. These content

hashes are used as pointers to retrieve the candidate content from the KVS index with

unique entries. We opted by LSH storing only the content hashes of candidates because

it makes the size of LSH index smaller and linearly proportional to the number of entries,

independent on the candidate’s size.

4.4.2 Offline Phase

Modelling the group of base chunks that will be inserted in the deduplication index is

paramount to achieve satisfactory reduction gains. As previously mentioned, we suggest

the use of the available human reference genome hg38 [188] as the deduplication index for

DNA sequences. For QS sequences, we resort to representative entries that result in the

smallest sum of distances to a group of real entries, e.g., from the SRR618666 genome.

GenoDedup converts the original input QS sequences to circular delta values (see

Section 2.2) and employs clustering algorithms to distribute them into a predefined number

of clusters. Centroids from the resulting clusters are stored in a file that is loaded to the

deduplication index during an offline setup phase. GenoDedup employs the Bisecting

K-means [229] from Apache Spark, which is a faster and more scalable hierarchical divisive

version of K-means [146]. Additionally, our solution can generate three orders of magnitude

more base chunks than the memetic algorithm from Zhou et al. [260] in useful time. This

scaling-up allows us to create generic deduplication indexes from many genomes instead of

generating one small codebook for each FASTQ file. In this chapter, we deliberately select

specific numbers k of clusters in the form of k = 2i, where i ranges from 0 to 20, four by

four.

At this point of the process, the base chunks that compose the deduplication index have

already been defined and are placed in the proper data structures for the execution of the

online phase.

4.4 GenoDedup 73

4.4.3 Optimisations of the Online Phase

In this section, we describe two optimisations that balance storage space and perfor-

mance in the similarity-based deduplication described in Section 4.4.1. The first one

describes how the distance metric and its encoding are implemented, whereas the second

discusses how do we reduce the number of candidate comparisons.

4.4.3.1 Distance Metric and Encoding

Choosing a distance metric determines what makes entries similar while designing an

optimal encoding provides reduction gains when describing entries as the differences to

previously known sequences. GenoDedup includes all the three string distances (Hamming,

Levenshtein, and Jaccard) mentioned in Section 4.3.2. Our implementation uses the java-

string-similarity library [82], which provides implementations for these distances. We

employ Huffman codes [134] to describe the divergent characters in all metrics. The

Hamming and Levenshtein schemes are used to create the encodings presented in the

following descriptions.

In the Hamming algorithm, the list of edit operations between two strings with the

same size considers only UNMODIFIED and SUBSTITUTION operations. One may encode the

result using 1 bit per edit operation (e.g., 0 for UNMODIFIED or 1 for SUBSTITUTION), plus

the symbol encoding when characters do not match. We employ the mentioned Hamming

encoding with the use of Huffman codes [134] to describe the divergent characters. The

resulting size (in bits) is given by Equation (4.1).

SizeH = M+C0 + `+(S∗huf (•)) (4.1)

The size of the candidate pointer M (in bits) corresponds to M = log2(N), where N is

the expected number of entries in the deduplication index. C0 describes the first character in

74 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

the original sequence, which allows one to initiate a chain of conversions from circular delta

values to the original quality score sequence. In the case of DNA sequences, the C0 element

is unnecessary. It can be a fixed-size value or a Huffman code based on the distribution of

the first character observed from several FASTQ files. ` is the length of the entry sequence,

S is the number of characters that differ from the base chunk, and huf (•) is the function that

returns the size of the Huffman code for each divergent character. The best-case scenario

for the Hamming encoding results in ` bits per sequence, an exact match, which leads to a

compression ratio upper bounded by 8×.

We propose to extend the Hamming algorithm to aggregate subsequent matching

characters—in an encoding dubbed Delta-Hamming—and replace them by a delta number

that informs how many characters should be skipped before finding the next substitution.

For example, applying this comparison algorithm between the strings “ABCDEFGH” and

“AXCDEYZH” results in the following operations: “1X3YZ”, while the result in the original

Hamming is: “USXUUUSYSZU”. This algorithm results in the encoding size presented in

Equation (4.2).

SizeDH = M+C0 +(len(�)∗ (5))+(len(◦)∗ (1+huf (•))) (4.2)

The function len(�) is the quantity of delta numeric characters (i.e., [0–9]) in the string

and len(◦) is the number of differing characters in the string. One of the main advantages of

this approach is that its encoding size is not lower bounded by the length of the sequences `.

For instance, if two strings are identical, this encoding results only in a special code of five

bits to inform that there is no additional edit operation in the comparison. Contrarily, the

encoding of Hamming (already presented) and Levenshtein (the next description) algorithms

are lower bounded by ` bits informing that there are ` UNMODIFIED operations.

The Levenshtein algorithm verifies four different edit operations (UNMODIFIED, SUBSTI-

TUTION, DELETE, and INSERT), which requires 2 bits per operation. Similarly to the previous

4.4 GenoDedup 75

encoding, we use Huffman codes to describe characters in SUBSTITUTION and INSERT

operations. The resulting size (in bits) is given by Equation (4.3).

SizeL = M+C0 +2∗ `+((S+ I)∗huf (•)) (4.3)

S and I denote the number of SUBSTITUTION and INSERT operations. In this Lev-

enshtein encoding, the best-case scenario results in 2 ∗ ` bits when all characters match,

which is the equivalent to an upper bound of 4× in compression ratio. We also evaluated a

Delta-Levenshtein encoding, similar to the proposed Delta-Hamming. However, it has a

limited impact because it requires more bits to represent its additional operations, and it

reduces very little the total number of edit operations of deduplicated sequences.

4.4.3.2 Number of Candidate Comparisons

The number of candidate comparisons executed on each query influences the search perfor-

mance and directly depends on the employed algorithm and configuration. We implement

two forms of similarity search: optimal and probabilistic.

In the former, the system loads all modelled base chunks to a list in main memory and

compares each queried sequence to all entries in this list. This process is inefficient when

the number of candidates is very large. However, it always finds the best candidate (i.e., the

nearest neighbour) in the index and is a feasible solution for small indexes.

In the latter, the system inserts all base chunks into an efficient data structure, called

Locality-Sensitive Hashing (LSH) index, and compares each queried sequence only to

entries that belong to the same buckets as the queried sequence. It effectively reduces the

number of candidates to be compared.

LSH is an algorithm that, given an entry, returns a content hash that has a high probability

of colliding with the hash of similar objects—and a low probability of colliding with distinct

76 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

ones [143]. This idea is the opposite of cryptographic hashes, where even very similar

objects should generate very distinct content hashes [22].

The resulting hash from LSH is composed of a group of k smaller hashes (e.g., integers).

The LSH index is composed of k multimaps—i.e., a KVS where each key maps to a list of

values. Each smaller hash from the LSH hash is the key to one of these multimaps. In an

insert operation, the LSH hash from the received sequence is obtained, and the object is

appended in the list of values mapped by each small hash in the respective multimap.

In a query operation, the LSH hash is also obtained, and the result is the joint set of

values mapped by the small hashes in the respective multimaps. The best candidate sequence

is obtained by calculating the string distance of choice between the queried sequence and

all base chunks present in the returned small joint set, which becomes an optimal search

with less candidates. Finally, the chosen base chunk is used to calculate the delta-encoding,

which is the minimal list of edit operations necessary to restore the queried sequence from

the base chunk.

In GenoDedup, we implement the LSH hash as a MinHash [41], which is proportional to

the Jaccard distance—i.e., the ratio between the intersection and union of two sets. It means

that sequences that are more similar than a given threshold will have a higher probability of

being placed in the same bucket in at least one multimap. We also implement bit sampling

techniques [167] in our LSH hash to reduce its size and to become even more efficient in

space and time.

To implement the LSH index, we extended the Chronicle-Map library to provide a mul-

timap instead of their original key-value store [53]. GenoDedup benefits from Chronicle’s

principles and results in a well-engineered solution that provides: off-heap techniques to

avoid garbage collection; efficient persistent storage to support data bigger than the available

main memory; multi-threads and fine-grain locks to support multiple writers and readers;

collections of objects as small as Java primitives to avoid space overhead; among others.

Finally, our deduplication index supports four orders of magnitude more base chunks than

the values reported by other solutions for similarity-based deduplication [91, 256].

4.4 GenoDedup 77

4.5 Evaluation

We evaluate our Java prototype of GenoDedup to illustrate the strengths and limitations

of similarity-based deduplication in genome sequencing data. It is open-source and publicly

available on GitHub [73].

Experiments are divided into three parts: the encoding size of deduplicated entries; a

performance evaluation; and an end-to-end scenario with a large workload. In the first two

experiments (Section 4.5.1 and Section 4.5.2), our testing dataset is the first two hundred

and fifty thousand FASTQ entries from the SRR618666 genome, which properly represents

the diversity of its entries. We use this subset, instead of all portions of this genome, because

we intend to evaluate an optimal (exhaustive) search algorithm that compares every queried

sequence to all candidates in a deduplication index. Testing this optimal search with the

whole genome (instead of using only these 250k reads) would make it infeasible to complete

these tests in practical time when using indexes with more than 216 deduplication entries.

This optimal search is also important to identify the expected performance of the system

given different number of candidates returned by the LSH optimisation (Section 4.4.3.2).

Tests with DNA sequences are directly executed using the original FASTQ file and the

human reference genome hg38 [188]. Tests with QS sequences first convert them to circular

delta values (Section 2.2) and compare them to entries in the deduplication index, which

also are encoded as circular deltas.

Experimental Setup

The experimental setup is composed of a Dell PowerEdge R430 server, equipped with 2

Intel Xeon E5-2670v3 processors (2.3GHz), 128GB of RAM (DIMM 2133MHz) and a

300GB disk of 15k RPM with an average sequential write and read throughput of 215MB/s.

The operating system used was an Ubuntu 16.04.2 LTS x86_64.

78 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

4.5.1 Encoding Gains

In this experiment, we compare the average size (in bits) of delta-encoded entries using

Hamming edit operations, Levenshtein, and Delta-Hamming ones. They include a pointer

to the most similar deduplication entry and the encoded edit operations to transform it back

into the original sequence.

To validate the differences in the data entropy of each portion of FASTQ entries, we

separate and compress them individually with ZPAQ. For instance, the file with the first

comment line of every FASTQ entry from the SRR618666 sizes 15.1GB. ZPAQ compresses

it 6.43× to 2.3GB. The DNA and QS portions of this genome size 23.3GB each. ZPAQ

compresses the former to 5.4GB (4.33×) and the latter to 7.4GB (3.14×).

Every queried DNA and QS sequence has 100 characters, which means that each

one of them occupies 800 bits in text mode originally. When using the human reference

genome hg38 as the deduplication index, DNA sequences are compressed 13.43× with

our Delta-Hamming encoding, whereas ZPAQ compresses it only 4.33×. We used only

the Delta-Hamming encoding for DNA sequences because the encoding of Hamming and

Levenshtein are bounded up to 8× and 4×, respectively (see Section 4.4.3.1 for more details

on their encoding).

For QS sequences, the results from Figure 4.3 show that Hamming encoding achieves a

smaller output size than Delta-Hamming, which is smaller than Levenshtein. Their best

case (i.e., 2.46× considering the Hamming distance and 220 index entries) already achieves

nearly 80% of the reduction gains from the ZPAQ algorithm when considering only quality

score sequences—3.14× for SRR618666. Our solution can obtain even better reduction

gains with bigger indexes.

4.5 Evaluation 79

 0

 100

 200

 300

 400

 500

2
0

2
4

2
8

2
12

2
16

2
20

2
0

2
4

2
8

2
12

2
16

2
20

2
0

2
4

2
8

2
12

2
16

2
20

A
v
e

ra
g

e
 S

iz
e

 (
in

 b
it
s
)

Number of Entries in the Index (log2)

1
.9

6
x

2
.0

1
x

2
.0

6
x

2
.1

1
x

2
.1

3
x

2
.4

6
x

Pointer Edit Operations

1
.5

9
x

1
.6

5
x

1
.7

3
x

1
.7

8
x

1
.8

4
x

2
.0

5
x

1
.7

8
x

1
.8

3
x

1
.8

9
x

1
.9

3
x

1
.9

6
x

2
.3

5
x

Delta-HammingLevenshteinHamming

Figure 4.3: Average encoding size of deduplicated QS sequences (in bits) and its reduction ratio.

4.5.2 Performance

In this section, we evaluate the read and write performance of GenoDedup both for DNA

and QS sequences. We discuss the performance of the deduplication and restoring processes

only in the aspects that our algorithm and implementation may have a bigger impact or may

represent a bottleneck to the workflow. More specifically, GenoDedup is compute-bound,

mostly by finding the best candidate, which requires calculating the distance metric between

the query and all returned candidates. For this reason, we do not evaluate in this section:

• Processing bottlenecks on services (e.g., LSH and KVS), because they can be placed

in local memory if they are small enough or they can horizontally scale by using

multiple nodes [48];

• Bottlenecks from parsing and direct data conversion, because they usually are signifi-

cantly faster than the main processing steps we evaluate here;

• Disk bottleneck, because it is specific to the hardware used in the experimental

environment and it can be avoided by processing entries from multiple files on

different disks up to the point the processing becomes the main bottleneck again;

80 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

• Network bottleneck, because it is also specific to the experimental environment and

can be avoided with faster networks (e.g., 10Gbps instead of 1Gbps).

4.5.2.1 Read Operations

Our next experiment aims to evaluate the performance of applying the list of edit operations

(i.e., the delta-encoding) in a base chunk to restore the original sequences from FASTQ

entries (i.e., steps 29 and 30 in Figure 4.2). In theory, it is directly related to the number of

differences between the two sequences, where the fewer differences they have, the faster it

is to recover.

Figure 4.4 presents the throughput (in MB/s) that GenoDedup reaches in applying the

identified edit operations with different parallelism configurations (from 1 to 48 threads).

The length of the analysed sequences is 100 characters. As expected, the more threads

processing requests up to the number of physical cores, the bigger the throughput. For

instance, GenoDedup restores entries in a single thread at a pace of 30.8MB/s with the

Hamming encoding, 21.3MB/s with Delta-Hamming, and 9.5MB/s with Levenshtein. Since

the machine in our experimental environment has 24 physical cores (i.e., two processors

with 12 cores each), using 24 threads obtains the best results: 188MB/s with Hamming,

108.1MB/s with Delta-Hamming, and 65.3MB/s with Levenshtein.

The Hamming algorithm results in the best throughput because it is the simplest encod-

ing to be restored. The Hamming and Levenshtein algorithms have the number of operations

directly proportional to the length of the used sequences since they store UNMODIFIED op-

erations when characters from both sequences match. However, the Delta-Hamming has

potential in obtaining a higher throughput as the modelled index becomes better. If the best

base chunk for each queried sequence results in less SUBSTITUTION operations, then the

Delta-Hamming becomes proportionally smaller and reduces the restore time.

As mentioned in Section 4.2, the restore throughput from the ten selected compression

algorithms range as follows: ZPAQ, Quip, and Fqzcomp reach less than 10MB/s; SPRING

4.5 Evaluation 81

 0

 50

 100

 150

 200

 250

 300

 1 4 8 12 24 48

SeqDB = 127.9 MB/s

pigz = 66.1 MB/s

SPRING = 20.9 MB/s

T
h

ro
u

g
h

p
u

t
(i
n

 M
B

/s
)

Threads

GenoDedup + Hamming

GenoDedup + Delta-Hamming

GenoDedup + Levenshtein

Figure 4.4: Average throughput of reads.

reaches 20MB/s; GZIP, BSC, and FaStore reach 40–50MB/s, pigz reaches 66MB/s, and

DSRC2 and SeqDB reach 125MB/s. These values refer to decompressing the whole FASTQ

file in the specialised tools, not only quality scores as in the results from Figure 4.4.

Restoring only the QS data from GenoDedup is up to 2.84× faster than pigz, the fastest

generic competitor and up to 170× faster than ZPAQ, the generic algorithm with the best

compression ratio for QS.

4.5.2.2 Write Operations

We evaluate the performance of string comparisons using different encoding algorithms

and how do they interfere with the performance of GenoDedup (i.e., mainly steps 15–17 in

Figure 4.2). Similarity-based deduplication directly depends on the number of comparisons

necessary to find the nearest neighbour (i.e., the best candidate) of a queried sequence.

Genome sequencing data is usually written once and read many times later for processing.

Systems for genome sequencing data should support a write throughput of at least 0.3MB/s—

the average write throughput from an NGS machine [172]—to not become a bottleneck in

an NGS pipeline.

82 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

2
0

2
4

2
8

2
12

2
16

2
20

NGS = 0.3 MB/s

T
h
ro

u
g
h
p
u
t
(i
n
 M

B
/s

)
(l
o
g
)

Number of Comparisons (log2)

Figure 4.5: Average throughput of writes.

Figure 4.5 presents the throughput (in MB/s) obtained when comparing a single queried

sequence to all entries in deduplication indexes of different sizes (from 20–220) using

a single thread. As expected, the more entries to compare in the index, the smaller the

throughput is. More specifically, GenoDedup reaches 25MB/s when comparing the queried

sequence to a single candidate using Hamming encoding (i.e., 0.004ms per comparison),

15.5MB/s using Delta-Hamming (i.e., 0.0064ms), and 0.0076MB/s using Levenshtein (i.e.,

13.11ms). From these results, Levenshtein is two to three orders of magnitude slower than

Hamming and Delta-Hamming algorithms.

GenoDedup must process at least 3000 queries (of 100 characters each) per second to

support the 0.3MB/s throughput from NGS machines [172]. The maximum number of

comparisons on each query, to reach at least 0.3MB/s, is 422 for Hamming and 113 for

Delta-Hamming. Levenshtein requires a speed-up of 40 to reach 0.3MB/s when comparing

the queried sequenced to a single entry, which makes this algorithm unappealing for our

solution. Parallelisation can improve GenoDedup to support higher write throughput in

the future. Currently, it means that queries should return fewer deduplication candidates

than these numbers; otherwise, the system does not support the required throughput of

0.3MB/s.

4.5 Evaluation 83

Conveniently, reducing the number of candidates returned in a query is the exact benefit

LSH brings to GenoDedup. It makes Hamming and Delta-Hamming algorithms even more

feasible. For instance, in an LSH with a similarity threshold of 0.95 and 128 permutations

on the MinHash, it can reduce the number of candidate comparisons from 350 million

entries (333× bigger than 220) to only 50. Such reduction contributes, for instance, to

approximate the write throughput of GenoDedup with the one of the ZPAQ (i.e., 5.3MB/s).

GenoDedup has the potential of reaching higher write throughput with parallelism since

FASTQ entries are processed unrelated to each other.

These results consider only the string comparison. Usually, there are other steps (e.g.,

communication and parsing) that need to be considered. However, 0.3MB/s per second is

an achievable throughput for most modern service solutions.

4.5.3 Large End-to-End Workload

Our last experiment evaluates GenoDedup with a large workload in an end-to-end

scenario. The evaluation considers approximately 265GB from all files in Table 4.3. We

compare our results with the most prominent competitors in terms of compression ratio

(i.e., SPRING [49]) and read throughput (i.e., SeqDB [133]). We also add the DSRC2 [213]

and pigz to the comparison. Table 4.7 presents the observed results. The complete set

of components in our end-to-end solution encompasses: (1) the algorithm from Bhola et

al. [35] to compress FASTQ comments with a ratio of 17.26× on average; and our similarity-

based deduplication both (2) for DNA sequences, which compresses them 13.43×; and (3)

for QS sequences (with 28 entries), which compresses them 1.88×.

SPRING compresses the mentioned FASTQ files 6.023×, which is the biggest compres-

sion ratio observed in our experiments. For the same dataset, SeqDB achieves a compression

ratio of 1.992×, DSRC2 4.148×, and pigz 3.227×. Our end-to-end deduplication solution

achieves a compression ratio of 4.089× using a deduplication index with the human refer-

ence genome hg38 for the DNA sequences and with 28 entries for the QS sequences. This

84 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

result corresponds to 67% the compression ratio of SPRING, 98.6% the ratio of DSRC2,

while we compress 2.05× more than SeqDB and 1.26× more than pigz.

Our solution compresses data at 0.3MB/s with an index of 28 candidates for the QS

sequences in a single thread. The other solutions perform better than us in terms of the

compression speed. However, GenoDedup can reach higher speeds with multi-threading,

with better deduplication indexes, and with the use of LSH to reduce the number of candidate

comparisons (e.g., it reaches almost 10MB/s when comparing 24 entries).

In terms of restoring throughput, SeqDB decompressed the selected FASTQ files at

127.9MB/s (i.e., the fastest competitor), DSRC2 at 125.3MB/s, pigz at 66.1MB/s, and

SPRING at 20.9MB/s. Our end-to-end solution achieves a read throughput of 208.25MB/s

in the same dataset. This result makes GenoDedup 1.62× faster than SeqDB, 1.66× faster

than DSRC2, 3.15× faster than pigz, and 9.96× faster than SPRING.

An important aspect of our solution is that achieving better compression ratios is possible

in the future, and it does not compromise our read throughput since it is independent of

the number of candidates in the deduplication index. Furthermore, a better compression

ratio implies more UNMODIFIED edit operations, which accelerates the restore process even

more.

Applying these results to a repository like the 1000 Genomes Project [57] provides a

better figure of the savings GenoDedup can bring to big genome data warehouses. The

project currently stores approximately 115TB of FASTQ files compressed with GZIP (i.e.,

the equivalent to 370TB of uncompressed FASTQ files). By using our deduplication

strategy, it would be able to store such files using only 90TB, which corresponds to 78% of

the 115TB used today with GZIP. Perhaps even more importantly, GenoDedup would also

improve their data sharing ecosystem by allowing data consumers to restore FASTQ files

5× faster than today (i.e., GZIP decompressed our files at 41.4MB/s).

4.5 Evaluation 85

Algorithm C.R. Write Read
SPRING {1.47×} {143.6×} 9.96×
DSRC2 {1.01×} {4586.3×} 1.66×
SeqDB 2.05× {1385.3×} 1.62×
pigz 1.26× {937×} 3.14×

Table 4.7: Comparison (i.e., the ratio best/worst) of the compression ratio (C.R.) and the (write and
read) throughput between GenoDedup with 28 QS candidates and its main competitors.
Brackets ({}) indicate where competitors are better than GenoDedup.

4.6 Discussion

The methods proposed in this chapter are generic enough to support sequencing data

from other species and NGS machines, as well as other data representations (e.g., aligned

data) and file formats (e.g., SAM). Additionally, it can be explored in other highly-

dimensional data where identity-based deduplication fails [91]. In this section, we discuss

how our solution can work with or be adapted to support other datasets and methods.

4.6.1 Other Data Representations

As previously mentioned, sequencing data is considered the purest unbiased version of

genomic data coming from Next-Generation Sequencing (NGS) machines [61]. Contrarily,

the output from alignment and assembly processes is imprecise, lossy, and depend on the

employed algorithm and reference [165].

For instance, aligned data in the 1000 Genomes Project [57] was generated using

different algorithms and references in distinct phases of the project. Studies that use data

from multiple of these phases must first reconvert the aligned data into sequencing data, and

then realign all the data of interest using the same reference and algorithm before analysing

it. This rework in converting from aligned to sequencing data takes considerable additional

time (e.g., 50–200 minutes for each 100GB [236]) and is even more likely to be required

in studies that involve large quantities of samples and data from multiple sources. It is no

86 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

surprise that the 1000 Genomes Project stores the original sequencing data (i.e., FASTQ) of

every aligned data (i.e., SAM/BAM) they have.

Notwithstanding, our methods can be used with aligned data (e.g., in the SAM/BAM

format [166]). The only difference is that this data representation already contains the

pointer to the best candidate of DNA sequences in the aligned file. It only eliminates

the need to execute the similarity-based deduplication for the matched DNA sequences.

However, it still requires (1) a compression algorithm for the QS sequences, in which

our similarity-based deduplication has shown its potential, (2) a delta-encoding (e.g., our

Delta-Hamming) for the matched DNA sequences, and (3) a similarity-based solution like

ours to the unmatched ones.

Another important data representation is the assembled data. However, recovering

the original sequencing data file from assembled data is impossible because the resulting

assembled genome file (i.e., FASTA) does not contain details such as: How many FASTQ

entries were used to create the assembled genome? In which genome position each one of

them has started and ended? Which was the quality score for each sequenced nucleobase?

Additionally, we consider the compression of assembled data a challenge that has been

mostly addressed by different approaches. For instance, we devised a tool that reduces

assembled human genomes ∼700× in 40 seconds [11].

4.6.2 Paired-end Sequencing

Paired-end sequencing digitises both ends of DNA fragments to increase accuracy and

help in detecting repetitive sequences and rearrangements. It produces two FASTQ files, one

for each end, where the entry order matches among them (i.e., entry 15 from the second file

is the reverse complement of the DNA sequence of entry 15 from the first file). GenoDedup

may explore this additional redundancy in the future to eliminate the similarity-search

for the DNA sequences of the second FASTQ file. In this case, GenoDedup may use the

reverse complement of the best candidate of the DNA sequence from the first file also as

the best candidate for the DNA sequence in the second file. It will reduce the size of our

4.6 Discussion 87

encodings and speed-up the deduplication and restore since only one pointer is used as the

best candidate of two sequences.

4.6.3 Other Species

In this work, we favour sequencing data from human genomes due to the availability of

a comprehensive reference genome and the potential impact of this data domain. However,

the methods proposed in this work can easily be adapted to work with sequencing data from

other species. In an extreme case, one will end up with one deduplication index for DNA of

each species. Moreover, species with a representative reference genome have the advantage

of using it as the deduplication index for DNA, but it is not a requirement since the same

method of modelling the index of QS sequences can be used for DNA.

4.6.4 Other Sequencing Machines

Many related works for FASTQ compression select genomes from several species and

sequencing machines. This choice usually results in selecting only a few genomes per

species or selecting small FASTQ files with very low coverage. We intended to select more

and bigger genomes from the same species and the same sequencing machine to reduce the

influence of these two variables in our results.

Our datasets include only human genomes (due to the previously mentioned reasons)

sequenced with the Illumina HiSeq 2000 platform. To the best of our knowledge, this

machine was the most used NGS machine in sequencing laboratories around the world

when we started this work [120]. Additionally, some of the selected datasets were also used

in other papers on FASTQ compression (e.g., SRR400039 in Quip’s paper [151]).

Datasets in our work had an expected alphabet of forty possible QS [137]. Newer

Illumina platforms have been binning QS into groups with reduced alphabets (e.g., seven

groups in HiSeqX10 [139] and four in NovaSeq [140]). This binning is similar to the initial

approach of many lossy FASTQ compression algorithms [196]. These smaller alphabets

88 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

reduce the size of our encoding and may benefit our index modelling since it also reduces

the possible combinations. Notwithstanding, our methods can work with data from most of

the modern NGS machines. The differences in QS distribution patterns and alphabet may

require one to model new deduplication indexes, and one may end up with one index per

machine in an extreme case.

4.6.5 Other Sequence Lengths

Our methods support sequences of any length while working even with indexes con-

taining sequences with multiple lengths. The length influences several aspects in our

solution (e.g., index size, string comparison time, chances of finding more differences).

More specifically, LSH supports entries of different sizes when using MinHash. MinHash

converts entries of any size into hashes of fixed size proportional to Jaccard distance (i.e.,

also independent on the entry size). Furthermore, Levenshtein edit operations can compare

strings of different sizes since it includes insert and delete operations. In an extreme case,

one may model a few different deduplication indexes for different entry sizes. However,

big differences in the size of the query sequences and the modelled ones may reduce the

compression ratio.

Additionally, the bigger the sequence length is, the bigger the chances of having more

edit operations, which tends to reduce the compression ratio and throughput on the selection

of the best candidate. The impact of this length in GenoDedup is proportional to the impact

of the sequence length in the string distance calculation.

4.6.6 Reordering FASTQ entries

Reordering FASTQ entries to group similar entries is another pattern explored in the

literature [49, 245]. The current version of our methods works entry by entry, without

correlating them or their order. GenoDedup compresses the DNA and QS sequences

independently and reordering them separately would reduce its compression ratio and

performance since it requires storing and working with additional correlating metadata.

4.6 Discussion 89

4.7 Final Remarks
This chapter proposed the GenoDedup, which is the first method to integrate efficient

similarity-based deduplication and specialised delta-encoding for genome sequencing data.

Data resulting from this chapter (i.e., the Reduction phase of our storage pipeline) is

composed of two compressed deduplicated files per genome, one for the privacy-sensitive

portion and another for the non-sensitive one. The obtained reduction in this phase (i.e.,

4.09×) enables the efficient storage of whole human genomes in the Storage phase of our

pipeline, which stores each genome portion in the most appropriate location.

90 Chapter 4: Sequencing Data Reduction with Similarity-based Deduplication and

Delta-Encoding

5Auditability of
Effective Reads in
Register
Emulations
Characteristics like cost-effectiveness, high scalability, and ease of use promoted the

migration from private storage infrastructures to public multi-tenant clouds in the last

decade. Security and privacy concerns were the main deterrents for this migration since

the beginning [231]. Numerous secure storage systems have been proposing the use of

advanced cryptographic primitives to securely disperse critical data (e.g., human genomes)

across multiple clouds (i.e., independent administrative domains [3]) to reduce the risk of

data breaches [225] (e.g., DepSky [28] and AONT-RS [212]).

Given a secure storage system (e.g., we use CHARON [183] in this thesis) composed

of n storage objects, these information dispersal techniques split and convert the original

data item into n coded blocks [161, 207, 209, 225]. Each coded block is stored in a

different base object, and clients need to obtain only τ out of n coded blocks to effectively

recover the original data. In this type of solution, no base object stores the whole data item,

which differentiates information dispersal from fully-replicated storage systems (e.g., [2,

16, 179])—where each object retains a full copy of the data.

91

Despite the advances in secure storage systems, the increasing severity of data breaches

(e.g., [220]) and the tightening of privacy-related regulations (e.g., GDPR [201]) have been

driving the demand for further improvements on this topic. For instance, auditability [158]

enables the systematic verification of who has effectively read data (e.g., the privacy-

sensitive portion of a human genome) in secure storage systems. Notably, this verification

allows one to separate these users from the whole set of clients that are authorised to read

data but have never done so. It is an important step to detect data breaches (including those

caused by authorised users, e.g., Snowden’s case [126]), analyse leakages, and sanction

misuses.

Problem. In this chapter, we address the following question: How to extend resilient

storage emulations with the capability of auditing who has effectively read data? More

specifically, we address the problem of protecting storage systems from readers trying to

obtain critical data without being detected (i.e., audit completeness) and protecting correct

readers from faulty storage objects trying to incriminate them (i.e., audit accuracy). The

answer must encompass the techniques used in these emulations, such as information

dispersal [161, 209, 225] and available quorum systems [179], for providing a R/W register

abstraction [162]. We consider information dispersal the primary form of auditable register

emulations because alternative solutions that replicate the whole data (even if encrypted)

can suffer from faulty base objects leaking data (and encryption keys) to readers without

logging this operation.

Contributions. This chapter initiates the study of auditing in resilient storage by presenting

lower bounds and impossibility results related with the implementation of an auditable

register on top of n base objects that log read attempts despite the existence of f faulty ones.

Our results show that, given a minimum number τ of data blocks required to recover a data

item from information dispersal schemes (e.g., CHARON [183]) and a maximum number

f of faulty storage objects (1) auditability is impossible with τ ≤ 2 f ; (2) when fast reads

(reads executed in a single communication round-trip [117]) are supported, τ ≥ 3 f +1 is

required for implementing a weak form of auditability, while a stronger form of auditability

92 Chapter 5: Auditability of Effective Reads in Register Emulations

is impossible; (3) signing read requests overcomes the lower bound of weak auditability; and

(4) totally ordering operations or using non-fast reads can still provide strong auditability.

Most discussions in this chapter are generic for any critical data, however they can be

adapted directly to the data of interest of this thesis, i.e., human genome sequencing data.

See Chapter 6 for a more detailed integration of this auditability into our storage pipeline.

The remainder of this chapter is organised as follows. Section 5.1 contains the theoretical

preliminaries, Section 5.2 introduces the idea of auditable register emulations, Section 5.3

presents some preliminary results, and Section 5.4 contains impossibility results for the

audit properties. Section 5.5 describes our audit algorithm and proves the lower bounds

of audit properties, and Section 5.6 presents alternative models to reduce the requirements

of weak auditability or to achieve stronger auditability. Finally, Section 5.7 concludes the

chapter.

5.1 Preliminaries

System Model. Our system is composed of an arbitrary number of client processes Π =

{p1, p2, ...}, which interact with a set of n storage objects O = {o1,o2, ...,on}. Clients

can be subdivided into three main classes: writers ΠW = {pw1, pw2, ...}, readers ΠR =

{pr1, pr2, ...}, and auditors ΠA = {pa1, pa2, ...}. These different roles do not necessarily

mean they have to be performed by different processes.

A configuration C is a vector of the states of all entities (i.e., processes and objects)

in the system. An initial configuration is a specific configuration where all entities of the

system are in their initial state. An algorithm Alg defines the behaviour of processes in

Π and objects in O as deterministic state machines, which can modify the system’s states

through actions (e.g., invoke and response). Clients invoke operations in the storage objects

and wait for responses. An execution segment is a (finite or infinite) sequence of alternated

configurations and actions. An execution ρ is an execution segment that begins in an initial

configuration. An event is the occurrence of an action in an execution.

5.1 Preliminaries 93

A finite sequence of invocations and responses compose a history σ of the system. We

consider the following relationships between operations within a history. First, if a history

σ contains the invocation of an operation op1 and its response, then op1 is complete in

σ . Otherwise, if σ contains only the former, then operation op1 is incomplete. Second, if

the response of an operation op1 precedes the invocation of another operation op2 in σ ,

then op1 precedes op2. Third, if operations op1 and op2 do not precede each other in σ ,

then they are concurrent. Fourth, a history σ that does not contain concurrent operations is

considered sequential.

Information Dispersal. We consider a high-level shared storage object that stores a value

v from domain V using information dispersal schemes (i.e., a special case of disintegrated

storage [27]). These schemes provide efficient redundancy since they disperse pieces of

information across multiple locations instead of replicating the whole value on each one of

them. Moreover, they allow clients to recover the original stored value only after obtaining

a subset of these pieces of information. Examples of information dispersal schemes include

erasure codes [207, 209] and secret sharing [161, 222].

This object provides two high-level operations: a-write(v) and a-read(). A high-level

a-write(v) operation converts a value v ∈V, passed as an argument, into n coded blocks

bv1 ,bv2, ...,bvn from domain B, and each coded block bvk is stored in the kth base object in

O (as described bellow). The employed techniques guarantee that no untrusted base object

ok stores an entire copy of value v and no reader recovers v by obtaining less than a certain

fraction of these blocks.

A high-level a-read() operation recovers the original value v from any subset of a

specific number (τ) of blocks bvk . It means readers do not need to execute low-level reads

in all n base objects to obtain these τ blocks. Base objects in this work are loggable R/W

registers.

Loggable R/W Register Specification. A loggable read-write (R/W) register is an object

ok that stores a data block bvk from domain B and has a log Lk to store records of every

94 Chapter 5: Auditability of Effective Reads in Register Emulations

read operation that this base object has responded. This object ok provides three low-level

operations [162]:

• rw-write(bvk): writes the data block bvk ∈ B, passed as an argument, in this base

object ok and returns an ack to confirm that the operation has succeeded.

• rw-read(): returns the data block bvk ∈B currently stored in this base object ok (or

⊥/∈B if no block has been written on it).

• rw-getLog(): returns the log Lk of this base object ok.

The behaviour of a loggable R/W register is given by its sequential specification. A

low-level rw-write operation always writes the block passed as an argument and returns an

ack. A low-level rw-read operation returns the block written by the last preceding rw-write

operation on this object or ⊥/∈ B if no write operation has been executed in this object.

Additionally, the low-level rw-read operation also creates a record 〈pr, label(bvk)〉 about

this read operation in its log Lk, where pr is the identifier of the reader that invoked the

rw-read operation and label(bvk) is an auxiliary function that, given a block bvk , returns a

label associated with the value v (from which the block bvk was derived). A low-level rw-

getLog returns the log Lk containing records of all preceding rw-read executed in this object

ok. A history σ of low-level operations in this object is linearisable [129] if invocations

and responses of concurrent operations can be reordered to form a sequential history that

is correct according to its sequential specification. This object is linearisable if all of its

possible histories are also linearisable.

We define a providing set based on the notion introduced by Lamport [163] to abstract

the access to multiple base objects. A providing set is the set of base objects that have both

stored a block associated with value v and responded this block to a reader pr in history

σ .

Definition 1 (Providing Set). The set of objects Pσ
pr,v is providing blocks associated to value

v for the reader pr in a history σ iff σ contains, for every object ok ∈ Pσ
pr,v, an event in

5.1 Preliminaries 95

which ok receives a write request to store bvk and an event in which ok responds bvk to a

read request from pr.

Given a finite history σ being audited, there is only one possible providing set Pσ
pr,v for

each pair 〈pr,v〉 of reader pr and value v. For the sake of simplicity, this set is presented

only as Ppr,v from now on. Every single base object ok that stored block bvk and returned

this block to pr belongs to the providing set Ppr,v, independent on how many times ok has

returned bvk to pr. There might exist cases where providing sets for different pairs of readers

and values are composed of the same objects.

We introduce the notion of an effective read, which characterises a providing set large

enough that a reader pr is able to effectively read value v from the received blocks.

Definition 2 (Effective read). A value v ∈V, written in wv, is effectively read by a reader

pr in history σ iff |Pσ
pr,v| ≥ τ , i.e., pr has received at least τ distinct blocks bvk associated

with value v from different base objects ok ∈ Pσ
pr,v in history σ .

An effective read depends only on the number of different coded blocks (derived from

the same value v) that a reader pr has already obtained from different base objects in

the same history. Reader pr does not necessarily obtain all these blocks in a single high-

level a-read operation. Due to unlimited concurrency, there might exist cases where it is

accomplished only after receiving responses from many subsequent a-read operations.

High-level operations in our system have two additional particularities. First, high-level

read operations (i.e., a-read) are fast reads.

Definition 3 (Fast read [117]). An a-read operation is fast if it completes in a single

communication round-trip between the reader and the storage objects.

Second, we consider multi-writer multi-reader (MWMR) shared objects where multiple

writers from Πw execute high-level a-write operations and multiple readers from ΠR execute

high-level a-read operations.

96 Chapter 5: Auditability of Effective Reads in Register Emulations

Fault Model. Clients (i.e., writers, readers, and auditors) and storage objects that obey

their specifications are said to be correct. Faulty writers and faulty auditors are honest

and can only fail by crashing. Faulty readers may crash or request data to only a subset

of objects, which may characterise an attack where it attempts to read data without being

detected and reported by the audit.

Writers are trusted entities because they are the data owners, who are the most interested

party in the auditable register we are proposing in this work. This assumption is common

(e.g., [28, 179]) since malicious writers can always write invalid values, compromising the

application’s state. Furthermore, auditors are also trusted because they are controlled either

by the same entity as writers or by third-party entities writers trust.

Faulty storage objects can be nonresponsive (NR) [149] in an execution since they may

crash, omit their values to readers, omit read records to auditors, or record nonexistent read

operations. More specifically, they can fail by NR-omission when accessing their values and

NR-arbitrary when accessing their log records [149]. Omitting records to auditors means

a faulty object may be helping a reader to evict being detected by the auditor. Producing

records for nonexistent reads characterises an attack where a faulty object may be trying to

incriminate a reader. Furthermore, we assume no more than f storage objects are faulty.

5.2 Auditable Register Emulations
We extend the aforementioned register emulation with a high-level operation a-audit().

It uses the fail-prone logs obtained from the rw-getLog operation in loggable R/W registers

to define an auditable register emulation. This emulation has access to a virtual log L⊆⋃
k∈{1..n}Lk from which we can infer who has effectively read a value from the register.

The a-audit operation obtains records from L and produces a set of evidences EA about

the effectively read values. We define a threshold t as the required number of collected

records to create an evidence Epr,v of an effective read. Each evidence Epr,v contains at least

t records from different storage objects ok proving that v was effectively read by reader pr

5.2 Auditable Register Emulations 97

in history σ . This threshold t is a configurable parameter that depends on the guarantees

a-audit operations provide (defined bellow).

We define an auditing quorum A as the set of objects from which the a-audit collects

fail-prone individual logs to compose the set of evidences. To ensure audit operations are

available in our asynchronous system model, we consider |A|= n− f .

We are interested in auditing effective reads because we aim to audit who has actually

read a data value v—including faulty readers that do not follow the read protocol and leave

operations incomplete. A correct auditor receives EA and reports all evidenced reads.

An auditable register provides an a-audit() operation that guarantees completeness (i.e.,

Definition 4) and at least one form of accuracy (i.e., Definitions 5 and 6).

Definition 4 (Completeness). Every value v effectively read by a reader pr before the

invocation of an a-audit in history σ is reported in the EA from this audit operation, i.e.,

∀pr ∈ΠR,∀v ∈V, |Ppr,v| ≥ τ =⇒ Epr,v ∈ EA.

Definition 5 (Weak Accuracy). A correct reader pr that has never invoked an a-read (i.e.,

never tried to read any value v) before the invocation of an a-audit in history σ will not be

reported in the EA from this audit operation, i.e., ∀pr ∈ΠR,∀v ∈V,Ppr,v =∅ =⇒ Epr,v /∈

EA.

Definition 6 (Strong Accuracy). A correct reader pr that has never effectively read a value

v before the invocation of an a-audit in history σ will not be reported in the EA from this

audit operation as having read v, i.e., ∀pr ∈ΠR,∀v ∈V, |Ppr,v|< τ =⇒ Epr,v /∈ EA.

While completeness is intended to protect the storage system from readers trying to

obtain data without being detected, accuracy focuses on protecting correct readers from

faulty storage objects incriminating them.

Both variants of accuracy guarantee that auditors report only readers that have invoked

read operations. The difference between them is that strong accuracy guarantees that

auditors report only readers that have effectively read some value, while weak accuracy

98 Chapter 5: Auditability of Effective Reads in Register Emulations

may report readers that have not effectively read any value. Strong accuracy implies weak

accuracy. Additionally, the accuracy property provides guarantees to correct readers only,

which means that auditors may report faulty (honest or malicious) readers in incomplete or

partial reads because they had the intention to read the data and aborted it or crashed while

doing so.

We consider weak auditability when the storage system provides completeness and

weak accuracy in audit operations and strong auditability when it provides completeness

and strong accuracy.

5.3 Preliminary Results

In the presence of faulty base objects, it is impossible to audit systems in which readers

can recover values by accessing a single object (e.g., non-replicated and fully-replicated

systems). The reason is that, in these solutions, every base object stores a full copy of data

and can give it to readers without returning the log record of this operation to auditors.

Therefore, we consider information dispersal techniques (e.g., [161, 209, 225]) as the

primary form of auditable register emulations. Moreover, we assume these information

dispersal schemes require τ > f blocks to recover the data because, otherwise, the f faulty

objects may also deliver their blocks to readers and omit the records of these operations

from auditors.

Records Available for Auditing Registers. As a starting point, we identify the minimum

number of records from each preceding effective read that will be available for any a-audit

operation. It relates to the minimum number of correct objects that are present at the

smallest intersection of any providing set Ppr,v and an auditing quorum A.

Lemma 1. Any available a-audit operation obtains at least τ−2 f records of every preced-

ing effective read in history σ .

5.3 Preliminary Results 99

Proof. Let us assume a system configuration composed of n storage objects divided into

four groups G1−4, as depicted in Figure 5.1. Objects within the same group initially contain

the same value v and an empty log Lk =∅. Without loss of generality, group G1 contains

the f faulty objects of the system, G2 contains τ−2 f correct objects, G3 contains f correct

objects, and G4 contains the remaining n− τ correct objects of the system.

|G2| = τ–2f |Ppr1,v| = τ

|G4| = n–τ
|A| = n–f

|G1| = f |G3| = f

Figure 5.1: A configuration with a providing set Ppr1,v of an effective read and an auditing quorum
A.

A reader pr1 effectively reads a value v after obtaining exactly τ blocks bvk from objects

in a providing set Ppr1,v composed of the f faulty objects in G1 (that do not record the read

operation) and τ− f correct objects in G2∪G3 (that do record it). In the worst-case scenario,

an available a-audit operation receives n− f rw-getLog responses from an auditing quorum

A composed of the f faulty objects in G1 (that belong to the providing set Ppr1,v but return

empty logs Lk to auditors), τ−2 f correct objects in G2 (that belong to the providing set

Ppr1,v and return the correct records of this read operation), and n− τ correct objects in G4

(that do not belong to Ppr1,v).

In this case, auditors receive only the τ−2 f records from the objects in G2, which are

the only correct objects at the intersection of Ppr1,v and A. This is the minimum number of

records of an effective read available to an auditing quorum since any other configuration

makes auditors receive more records of this effective read, i.e., in any alternative scenario,

the faulty objects in G1 may correctly record the read operation and return these records to

auditors or the auditing quorum A may also include up to f correct objects from G3 (that

belong to Ppr1,v) instead of objects from G4.

Receiving this minimum number τ − 2 f of records from an effective read must be

enough to trigger the creation of an evidence for that read in a-audit operations. As a

consequence, the value of t must be defined considering this constraint.

100 Chapter 5: Auditability of Effective Reads in Register Emulations

5.4 Resilience Lower Bounds
This section identifies impossibility results for the properties of auditable registers:

completeness (Definition 4), weak accuracy (Definition 5), and strong accuracy (Defini-

tion 6).

Lemma 2. It is impossible to satisfy the completeness of auditable registers with τ ≤ 2 f .

Proof. Consider an auditable register implemented using the same four subset groups of

objects G1−4 from Lemma 1 (depicted in Figure 5.1). Without loss of generality, let us

assume that τ = 2 f . As a consequence, group G2 will be empty because |G2|= τ−2 f = 0.

A reader pr1 obtains τ coded blocks for value v from a providing set Ppr1,v composed of

f faulty objects in G1 (which do not log the operation) and τ− f = f correct nodes in G3

(that log the operation). This reader can decode the original value v after receiving these τ

blocks, performing thus an effective read. Consequently, |G2|= 0 and any auditing quorum

A that does not include at least one object from G3 will not receive any record for the read

operation from reader pr1. For instance, an auditing quorum A = G1∪G2∪G4 (e.g., from

Figure 5.1) receives no record of this read in this history, which violates the completeness

property since an evidence cannot be created without records (i.e., t ≥ 1).

Lemma 3. It is impossible to satisfy the weak accuracy of auditable registers with t ≤ f .

Proof. Consider an auditable register implemented using n− f correct objects and f faulty

objects. A read has never been invoked in this history of the system, but the f faulty objects

create records for a nonexistent read operation from a reader pr. Any auditing quorum A

that includes these faulty objects will receive f records for a read operation that has never

been invoked. If the threshold t ≤ f is enough to create an evidence and report an effective

read, then a correct auditor must report it, violating the weak accuracy property.

The next theorem shows in which conditions these two properties cannot be supported

simultaneously.

5.4 Resilience Lower Bounds 101

Theorem 1. It is impossible to satisfy both completeness and weak accuracy of auditable

registers with τ ≤ 3 f .

Proof. Consider an auditable register implemented using the same four subset groups of

objects G1−4 from Lemma 1 (depicted in Figure 5.1). Without loss of generality, let us

assume that τ = 3 f is enough to satisfy both the completeness and weak accuracy properties.

As a consequence, group G2 will contain |G2|= τ−2 f = f objects.

A reader pr1 obtains τ blocks for value v from a providing set Ppr1,v composed of f

blocks from the faulty objects in G1 (which do not log the operation) and other τ− f correct

objects in G2∪G3 (that log the operation). The auditing quorum A will produce τ−2 f = f

records (Lemma 1). Evidences must be created using these f records to report the effective

read and satisfy completeness. However, as proved in Lemma 3, it is impossible to guarantee

weak accuracy with t ≤ f .

Now, we turn our attention to strong accuracy, i.e., the capability of an auditor to report

exactly which value v each reader pr has effectively read.

Lemma 4. It is impossible to satisfy the strong accuracy of auditable registers with t <

τ + f .

Proof. Consider an auditable register implemented using five subset groups of objects

G1−5, as depicted in Figure 5.2. The main difference to the scenario from Figure 5.1 is

that the group G4 was subdivided into two groups: G4 with 2 f − 1 objects and G5 with

n− τ−2 f +1 objects.

This configuration has an incomplete write operation1 of a value x ∈V that has arrived

to objects from all groups but G2 and G4. A reader pr2 obtains blocks of value v from

objects from groups G2 and G4, which log the record for the read, and form a providing

set with size |Ppr2,v|= τ−2 f +2 f −1 = τ−1. In this history, due to the incomplete write

1An incomplete write operation may be caused, for instance, by network delays in clients’ requests or a
writer that has crashed in the middle of a write operation.

102 Chapter 5: Auditability of Effective Reads in Register Emulations

|G2| = τ–2f |Ppr1,v| = τ

|G4| = 2f–1 |G5| = n–τ–2f+1

|Ppr2,v| = τ–1
|A| = n–f

|G1| = f |G3| = f

Figure 5.2: A configuration with two providing sets and an auditing quorum A. Only Ppr1,v

represents an effective read.

operation of value x, reader pr2 has not received τ blocks for value v, which means it cannot

recover v.

However, the f faulty objects in G1 decide to mimic groups G2 and G4 and log the

record for the read of value v by reader pr2. Any auditing quorum A that includes the

objects from groups G1, G2, and G4 will return τ + f −1 records. If t < τ + f is enough to

produce an evidence of an effective read, then the auditor will report this read from reader

pr2 (i.e., not an effective read), violating the strong accuracy property.

Theorem 2. It is impossible to satisfy both completeness and strong accuracy of auditable

registers.

Proof. Consider an auditable register implemented using the same five subset groups of

objects G1−5 from Lemma 4 (depicted in Figure 5.2). Without loss of generality, let us

assume τ ≥ 2 f +1 is required to guarantee the completeness of audit operations (Lemma 2).

As a consequence, G2 contains τ−2 f ≥ 1 object and G5 contains n− τ−2 f +1≤ n−4 f

objects.

A reader pr1 executes a read operation in groups G1−3. Faulty objects from G1 return

their blocks for value v (but do not log the read operation). Reader pr1 receives exactly τ

correct data blocks and obtains the original value v (i.e., an effective read).

A writer pw leaves incomplete an operation to write a value x, similarly to the config-

uration of Lemma 4, which has been received by objects in all groups but G2 and G4. A

5.4 Resilience Lower Bounds 103

second reader pr2 executes a read operation that receives τ−1 blocks for value v from a

providing set Ppr2,v. These τ−1 blocks are insufficient to recover the original value v (i.e.,

it does not represent an effective read). Faulty objects from G1 decide to mimic groups G2

and G4 and log the read of v by pr2.

After these two reads, any auditing quorum A that includes G4 receives the same number

or more records of the read from pr2 (i.e., not an effective read) than records of the effective

read from pr1. As a consequence, it is impossible to define a single reporting threshold t to

be used to produce evidences without violating either completeness or strong accuracy.

For instance, the auditing quorum A = G1∪G2∪G4∪G5 receives τ + f − 1 records

〈pr2, label(bvk)〉k and τ−2 f records 〈pr1, label(bvk)〉k. Defining t ≤ τ−2 f is enough to

report the effective read from pr1, but it violates the strong accuracy by also reporting the

(not effective) read from pr2. Alternatively, defining t ≥ τ + f satisfies the strong accuracy

because it does not report the read from pr2, but it violates the completeness because it does

not report the effective read from pr1.

Remark: Adding any number of objects to the scenario of Figure 5.2 does not change

the impossibility result of Theorem 2. The reason is that with the unlimited concurrency in

our model, each additional object may have a value different from all values stored in the

other objects.

5.5 Audit Algorithm
We present a generic auditability algorithm for register emulations and prove that all

bounds from the previous section (Lemmata 2–4 and Theorem 1) are tight in our system

model when using this algorithm. Concretely, we prove that this algorithm satisfies the

completeness property with t ≥ 1 and τ ≥ 2 f +1 (Lemma 5) and the weak accuracy with

t ≥ f +1 (Lemma 6). Then, we prove that it supports both completeness and weak accuracy

with t ≥ f +1 and τ ≥ 3 f +1 (Theorem 3). Finally, we prove it supports the strong accuracy

property alone with t ≥ τ + f (Lemma 7).

104 Chapter 5: Auditability of Effective Reads in Register Emulations

Algorithm 1 The a-audit() algorithm.
1: function a-audit()
2: EA←∅, L[1..n]←∅
3: parallel for 1 ≤ k ≤ n do L[k]← ok.getLog()
4: wait |{k : L[k] 6=∅}| ≥ n− f
5: for all 〈pr, label(bv)〉 ∈

⋃
k∈{1..n}L[k] do

6: for 1 ≤ k ≤ n do if 〈pr, label(bv)〉 ∈ L[k] then Epr,v← Epr,v∪{k}
7: if |Epr,v| ≥ t then EA← EA∪{Epr,v}
8: return EA

The implementation for a-audit() is presented in Algorithm 1. It starts with an empty

set EA that will be used to store the evidences attesting the effective reads and an array of

empty logs to store the logs it will receive from objects (Line 2). It then queries n storage

objects to obtain the list of records on objects’ logs (i.e., ok.getLog()), waits the response

from at least n− f of them, and stores these responses in the array of logs L (Lines 3–4).

For each previously seen record (Line 5), it adds the identifier of every object containing

this record to an evidence Epr,v (Line 6). If this evidence contains more than t identifiers,

then it refers to an effective read and is added to the reporting set of evidences EA (Line 7).

After verifying all records, the audit operation returns the set EA (Line 8), which is used

by auditors to report that the detected readers have effectively read the mentioned data

values.

Lemma 5. Algorithm 1 satisfies the completeness property of auditable registers with t ≥ 1

and τ ≥ 2 f +1.

Proof. Based on Lemma 1 if τ ≥ 2 f + 1, any auditing quorum A receives, for every

effective read, at least one record from a correct storage object that has also participated

on the providing set of this read (i.e., τ − 2 f ≥ 1). Consequently, Algorithm 1 satisfies

completeness by obtaining some record from any effective read.

Lemma 6. Algorithm 1 satisfies the weak accuracy of auditable registers with t ≥ f +1.

Proof. To support the weak accuracy of auditable registers, Algorithm 1 simply needs

to make the f records from faulty objects insufficient to create an evidence reporting an

5.5 Audit Algorithm 105

effective read from a reader pr. Therefore, t ≥ f +1 ensures that any auditing quorum A

includes at least one correct object that received a read request from this reader and

participates in the providing set Ppr ,v.

Theorem 3. Algorithm 1 satisfies both completeness and weak accuracy of auditable

registers with τ ≥ 3 f +1.

Proof. Assuming τ ≥ 3 f +1 directly satisfies completeness (Lemma 5). Based on Lemma 1,

any auditing quorum A receives at least τ−2 f ≥ f +1 records from correct storage objects

that have participated on the providing sets of each effective read. As proved in Lemma 6,

t ≥ f +1 is enough for Algorithm 1 to satisfy also weak accuracy.

A practical consequence of Theorem 3 is that existing information dispersal schemes

that support fast reads using n ≥ τ + 2 f objects, such as Hendricks et. al [128], would

require at least n ≥ 5 f +1 to support this weak auditability.

Lemma 7. Algorithm 1 satisfies the strong accuracy of auditable registers with t ≥ τ + f .

Proof. To support the strong accuracy property of auditable registers, evidences must be

created using at least τ records attesting the read of the same value from correct storage

objects that have participated in the providing sets of each effective read. Since f faulty

objects can mimic these objects and also participate in an auditing quorum A, this number

f must be added to the threshold number t of records required to create an evidence. These

two requirements make strong accuracy satisfiable with t ≥ τ + f by accessing any auditing

quorum A because, in this case, the records from the f faulty objects make no difference

when reporting a value effectively read by a reader.

5.6 Alternative Models for the Algorithm
As proved in Theorems 1 and 2, respectively, weak auditability is impossible with

τ ≤ 3 f and strong auditability is impossible in our system model. In the following, we

106 Chapter 5: Auditability of Effective Reads in Register Emulations

Weak Completeness + Strong Completeness +
Model Completeness Accuracy Weak Accuracy Accuracy Strong Accuracy

Our Model

τ ≥ 2 f +1

t ≥ f +1 τ ≥ 3 f +1
t ≥ τ + f ImpossibleSigned Reads/SR t ≥ 1 τ ≥ 2 f +1

Total Order/TO
t ≥ f +1 τ ≥ 3 f +1

t ≥ f +1 τ ≥ 3 f +1Non-Fast Reads/NF
TO+SR

t ≥ 1 τ ≥ 2 f +1NF+SR t ≥ 1 τ ≥ 2 f +1

Table 5.1: Threshold number t and number of blocks τ in each model for each audit property.

present three modifications to our system model that allow Algorithm 1 to overcome these

negative results. More specifically, signing read requests makes weak auditability easier

(Section 5.6.1), while totally ordering operations (Section 5.6.2) or using non-fast reads

(Section 5.6.3) enables strong auditability. Table 5.1 presents an overview of the results in

our system model and models with these three modifications.

5.6.1 Signed Read Requests

Digital signatures are tamper-proof mechanisms that enable attesting the authenticity

and integrity of received messages. Correct readers may sign their read requests to mitigate

being incriminated by faulty objects.

In general, readers signing requests prevents a faulty object from creating correct records

about them if this object has never received a signed request from them before. It does

not modify the number of records from an effective read available to auditors (Lemma 1)

nor does it modify the lower bound on the completeness (Lemma 5). However, it directly

relates to the weak accuracy property since auditors receiving any correct record with a

signed read request is enough for them to attest that a reader has definitely tried to read data

in the storage system.

5.6 Alternative Models for the Algorithm 107

Lemma 8. Correct readers signing read requests in our model allows Algorithm 1 to satisfy

weak accuracy with t ≥ 1.

Proof. If read requests from correct readers are signed and these readers have never sent

signed requests to the storage system, faulty objects will never create correct records about

these readers. As a result, t ≥ 1 ensures that auditors will only create evidences for the

readers that have tried to read data by sending signed requests to the storage objects.

Theorem 4. Correct readers signing read requests in our model allows Algorithm 1 to

satisfy both completeness and weak accuracy with τ ≥ 2 f +1.

Proof. With τ ≥ 2 f +1 and based on Lemma 1, any auditing quorum A receives at least

τ−2 f = 1 record from a correct storage object that has participated on each effective read.

As proved in Lemma 8, t ≥ 1 is enough to satisfy weak accuracy in our model when read

requests are signed. Moreover, this limitation does not change the lower bound of Lemma 5,

which means that τ ≥ 2 f +1 is enough for Algorithm 1 to also satisfy completeness in our

model.

Faulty objects can still repurpose generic signed read requests to create correct records of

an arbitrary value. For that reason, signing generic read requests does not modify the lower

bounds of strong accuracy (Lemma 7) and supporting it in conjunction with completeness

remains impossible (Theorem 2).

Alternatively, correct readers can sign the read request with the label of the exact value

they intend to read (e.g., a timestamp). However, additional modifications are required to

enable readers learning this label before sending the read request, as will be explained in

Section 5.6.3.

108 Chapter 5: Auditability of Effective Reads in Register Emulations

5.6.2 Total Order

Serialising operations using total order broadcast [121] allows our system to execute

operations sequentially. By doing so, we limit the number of different values in storage

objects to only one value since high-level a-read and a-write operations are executed in

total order. In the worst case, the system will have f faulty objects with incorrect read

records. With this limitation, strong accuracy becomes easier and can be satisfied together

with completeness.

Lemma 9. Totally ordering operations in our model allows Algorithm 1 to satisfy strong

accuracy with t ≥ f +1.

Proof. If operations are totally ordered in the system, all objects will store blocks of the

same value v, and no object returns blocks of other values. No read operation will result

in correct records for more than one data value, and every read operation results in the

creation of records in at least n− f objects. The worst case is when the f faulty objects

log incorrect read records for a value other than v. As a result, any auditing quorum A that

includes the faulty objects will receive f records attesting the read of a value other than v.

Requiring t ≥ f +1 to create an evidence guarantees that at least one correct object has also

participated in the providing set Ppr,v, which guarantees that n− f objects will also return

their blocks, allowing pr to effectively read the value v.

Theorem 5. Totally ordering operations in our model allows Algorithm 1 to satisfy both

completeness and strong accuracy with τ ≥ 3 f +1.

Proof. With τ ≥ 3 f +1 and based on Lemma 1, any auditing quorum A receives at least

τ−2 f = f +1 records from correct storage objects that have participated on each effective

read of value v. As proved in Lemma 9, t ≥ f +1 is enough to satisfy strong accuracy in

our model when operations are totally ordered. Moreover, this limitation does not change

the lower bound of Lemma 5, which means that τ ≥ 3 f +1 is enough for Algorithm 1 to

also satisfy completeness in our model.

5.6 Alternative Models for the Algorithm 109

As proved in Lemma 8, signing generic read requests reduces the lower bound of weak

accuracy, which also benefits the model with total ordering (see Table 5.1). However, as

previously mentioned, these generic signatures do not modify the lower bounds of strong

accuracy.

5.6.3 Non-fast Reads

There are read algorithms that use more than one communication round (i.e., a non-fast

read [117]) to ensure correct readers will only fetch the blocks of the most up-to-date value

stored in the register. For instance, DepSky-CA [28] is a register emulation in which the

first round of a read obtains the label of the most up-to-date value available in n− f objects,

while the second round actually reads only the coded blocks for that specific value. As a

consequence, correct objects log reads from readers only if they hold the most up-to-date

value available in at least n− f objects.

Lemma 10. Applying Algorithm 1 to DepSky-CA protocol satisfies strong accuracy with

t ≥ f +1.

Proof. Let us assume registers follow DepSky-CA protocol [28] with two communication

rounds in read operations. No read operation will result in correct records for more than

one data value, and every read operation results in the creation of records in at least n− f

objects. In the worst-case scenario, the f faulty storage objects can only create at most

f incorrect records for an arbitrary value. Requiring t ≥ f +1 to create an evidence and

report an effective read guarantees that it is achieved only when the reported value was

effectively read from n− f objects.

Theorem 6. Applying Algorithm 1 to DepSky-CA protocol satisfies both completeness and

strong accuracy with τ ≥ 3 f +1.

Proof. Let us assume registers follow DepSky-CA protocol [28] with two communication

rounds in read operations. Assuming τ ≥ 3 f + 1 and based on Lemma 1, any auditing

110 Chapter 5: Auditability of Effective Reads in Register Emulations

quorum A receives at least τ−2 f = f +1 records from correct storage objects that have

participated on the providing set of each effective read. As proved in Lemma 10, t ≥ f +1

is enough to satisfy strong accuracy when using DepSky-CA algorithm. Moreover, this

limitation does not change the lower bound of Lemma 5, which means that τ ≥ 3 f +1 is

also enough to satisfy completeness in our model.

As mentioned in Section 5.6.1, readers can sign their read requests for any value (i.e.,

generic signatures) or for specific values. Non-fast reads can leverage the latter to allow

the system to protect against faulty objects using signed read requests to record reads from

other values than the one intended by the reader. It contributes to reduce the lower bound of

strong accuracy and makes easier to support it with completeness.

Lemma 11. Applying Algorithm 1 to DepSky-CA protocol with specific signed read requests

satisfies strong accuracy with t ≥ 1.

Proof. Let us assume registers follow DepSky-CA protocol [28] with two communication

rounds in read operations. If readers learn, in the first communication round, the label of the

value they can effectively read and use it to sign the read request specifically for that value,

faulty objects will never create correct records of these readers and that value. Additionally,

no read operation will result in correct records for more than one data value, and every read

operation results in the creation of correct records in at least n− f objects. As a result, t ≥ 1

ensures that auditors will only create evidences for the readers that have effectively read

that value by sending specific signed requests to the storage objects.

Theorem 7. Applying Algorithm 1 to DepSky-CA protocol with specific signed read requests

satisfies both completeness and strong accuracy with τ ≥ 2 f +1.

Proof. Let us assume registers follow DepSky-CA protocol [28] with two communication

rounds in read operations and signed read requests for specific values. Assuming τ ≥ 2 f +1

and based on Lemma 1, any auditing quorum A receives at least τ−2 f = 1 record from

correct storage objects that have participated on the providing set of each effective read. As

5.6 Alternative Models for the Algorithm 111

proved in Lemma 11, t ≥ 1 is enough to satisfy strong accuracy when using DepSky-CA

algorithm with specific signatures. Moreover, this limitation does not change the lower

bound of Lemma 5, which means that τ ≥ 2 f +1 is also enough to satisfy completeness in

our model.

A practical consequence of Theorems 6 and 7 is that DepSky-CA protocol [28] would

require at least n ≥ 5 f +1 (without signed reads) and n ≥ 4 f +1 (with signed reads for

specific values) to support strong auditability.

5.7 Final Remarks
In this chapter (i.e., the auditability component of the MANAGEMENT phase of our

storage pipeline), we have identified the formal requirements of auditing who has effectively

read critical data (e.g., the privacy-sensitive portion of human genomes) from secure storage

systems (e.g., CHARON [183]). This auditability requires n≥ 5 f +1 (i.e., τ ≥ 3 f +1) to

provide weak auditability in systems supporting fast reads or strong auditability in systems

with slow reads (i.e., reads with more than one communication round) or with total order.

Signing read requests enables both forms of auditability to be supported with τ ≥ 2 f +1.

112 Chapter 5: Auditability of Effective Reads in Register Emulations

6An End-to-End
Storage Pipeline
for Human
Genomes
In this chapter, we present and evaluate an end-to-end composite pipeline intended to enable

the secure, dependable cloud-based storage of human genomes by integrating the three

mechanisms we proposed in the previous chapters. These mechanisms encompass (1) a

privacy-sensitivity detector for human genomes (Chapter 3) [70], (2) a similarity-based

deduplication and delta-encoding algorithm for sequencing data (Chapter 4) [72], and (3) an

auditability scheme to verify who has effectively read data in storage systems that use secure

information dispersal (Chapter 5) [69]. The first mechanism identifies the privacy-sensitive

portions of human genomes and allows the portions associated with different privacy risk

levels to follow different privacy-related paths in the pipeline. The second mechanism

focuses on balancing reduction ratio and read performance better than existent genome

compression algorithms. Finally, the third mechanism identifies and enforces the additional

requirements for auditing who has effectively read data from secure dispersed storage

systems.

113

Sample

Sequencing

SEQUENCING

DNA Privacy

Detector

Non-Sensitive

Privacy-
Sensitive

DETECTION

Single-Cloud
Storage

Multi-Cloud
Storage

STORAGE

Auditability

Access
Control

MANAGEMENT

Similarity-based
Deduplication

REDUCTION

FASTQ
entries

Metadata

Figure 6.1: Overview of our pipeline intended to enable the efficient, dependable storage human
genomes in public clouds.

We advocate that one can obtain reasonable privacy protection, security, and depend-

ability guarantees at modest costs (e.g., less than $1/Genome/Year) by integrating the

mentioned mechanisms with appropriate storage configurations. Our pipeline presents a

small storage overhead of 3% compared to non-replicated systems, but it costs 48% less

than fully-replicating all data and 31% less than secure information dispersal schemes.

The remainder of this chapter is organised as follows. Section 6.1 contains an integrated

description of the pipeline, Section 6.2 discusses its feasibility, and Section 6.3 presents the

final remarks.

6.1 The Pipeline

In this section, we present an end-to-end composite pipeline intended to enable the

efficient, dependable cloud-based storage of human genomes. This pipeline inserts privacy-

awareness, cost-efficiency, and auditability into the storage ecosystem focused on human

genomes. It is composed of five phases, as presented in Figure 6.1: SEQUENCING, DETEC-

TION, REDUCTION, STORAGE, and MANAGEMENT.

The first phase (SEQUENCING) obtains the digitised genome from biological samples.

The second (DETECTION) separates genomes’ portions according to their privacy sensitivity.

The third (REDUCTION) applies data reduction techniques to improve data density and

reduce storage costs. The fourth (STORAGE) retains the genome’s portions in appropriate

114 Chapter 6: An End-to-End Storage Pipeline for Human Genomes

repositories and provides data to clients. Finally, the fifth (MANAGEMENT) provides tools

for controlling and monitoring the system. These phases are described in the remaining of

this section.

6.1.1 Sequencing

Sequencing machines digitise genomes by translating the chemical compounds from

biological samples to digital information. Next-Generation Sequencing (NGS) [223]

is the name given to the machines that sequence genomes at a high-throughput [172].

However, NGS machines do not provide the whole human genome in a single contiguous

DNA sequence. They generate millions of small DNA reads, which are small pieces of

DNA containing sequences with hundreds to thousands of nucleotides each. Additionally,

every nucleobase from a human genome is sequenced many times and appear in several

complementary reads (e.g., 30–45×) to improve the sequencing accuracy.

Data obtained from this process is usually stored in the FASTQ text format [61], in

which every entry contains four lines. The first line of every FASTQ entry is a comment

about the read sequence and starts with a “@” character. The second line contains the DNA

sequence read by the machine. The third line starts with a “+” character to determine the

end of the nucleotide sequence and can optionally be followed by the same content of the

first line. The fourth line contains quality scores, which measure the confidence of the

machine on each read nucleotide. Each sequenced FASTQ entry (i.e., four lines) is sent

separately to the next step in our storage pipeline.

6.1.2 Detection

Previous works on privacy-preserving genome processing advocated the partitioning of

genomic data [97, 114], but assumed it would be done manually [19] or by a tool out of their

scope [153]. We closed this gap by proposing a DNA Privacy Detector [70], which was the

first comprehensive privacy-aware detection method that enabled users to implement such

partitioning automatically.

6.1 The Pipeline 115

Given a DNA segment of a predefined size, our method detects whether this segment

may contain known privacy-sensitive information or not. It does so based on a knowledge

database of published signatures or patterns of privacy-sensitive nucleic and amino acid

sequences. The detector decides based on the information present in the knowledge database,

and forwards each received FASTQ entry alternatively to a privacy-sensitive output or a non-

sensitive one. Recent works have upgraded this detection method to: evolve the knowledge

database to detect previously unknown privacy-sensitive sequences [71]; support FASTQ

entries with larger DNA sequences [83]; and support additional privacy-sensitivity levels

according to different risk classifications [102].

In this work, data from the DETECTION phase results in two subsets: a small privacy-

sensitive portion (i.e., 12% of the FASTQ entries from each human genome) and a large

non-sensitive one (i.e., 88%). This 12/88 ratio between these two portions comes from

the employed knowledge database, which contains the currently known privacy-sensitive

sequences [70]. Reducing the data that requires stronger security and dependability premises

(to less than 12%) naturally contributes to the cost-efficiency of any storage solution.

By identifying the privacy-sensitive sequences using our solution and protecting them,

one neutralises the existent threats of re-identifying individuals [118] and of inferring private

information about them [191]. Finally, FASTQ entries from both portions (i.e., the privacy-

sensitive and the non-sensitive) are sent to the REDUCTION phase, which deduplicates this

data to make it even more cost-efficient.

6.1.3 Reduction

Reducing the size of data from genomes is imperative to enable the efficient storage of

large data sets of human genomes. Without a considerable data reduction, most hospitals

and biobanks cannot store this data, which may delay advances in medical research and

diagnosis [203].

116 Chapter 6: An End-to-End Storage Pipeline for Human Genomes

We have selected portions of five representative human genomes (SRR400039, SRR618664,

SRR618666, SRR618669, SRR622458) from the 1000 Genomes project [57]. They sum up

approximately 265GB of data in FASTQ files. We evaluated and compared several generic

and specialised compression tools in Section 4.2 to better depict the state-of-the-art in the

reduction of human genomes. However, for this chapter, we have selected only two of

them: GZIP [88] and SPRING [49] for the reasons that follow. GZIP was chosen because

it is the fastest generic compressor used in practice and compresses the selected genomes,

on average, 3.225×, which results in a reduction ratio r = 0.31. SPRING was selected

because it is the specialised tool with the best reduction ratio and compresses the mentioned

genomes, on average, 6.02×, which results in a reduction ratio r = 0.166.

Storage of sequencing data is an important, challenging domain mostly unexplored

in the systems community [203]. Deduplication is a technique that reduces the storage

requirements by eliminating unrelated redundant data [103]. Additionally, deduplication

has two advantages when compared to compression algorithms: it may leverage the inter-

file similarities, while most compression algorithms consider only intra-file data or use a

single generic contiguous reference; and it usually achieves a better read performance than

compression. However, traditional identity-based deduplication (e.g., chunk-based [202])

fails to provide a satisfactory reduction in the storage of genomes because FASTQ entries

contain unique identifiers.

Similarity-based deduplication is an interesting alternative since there are several en-

tries with very similar structure or content. Solutions for similarity-based deduplication

commonly cluster similar entries into buckets and use identity-based deduplication within

them [202], or they focus mostly on the delta-encoding problem [91] and employ inefficient

global indexes [256]. We have proposed a solution that balances space savings and read per-

formance by integrating efficient similarity-based deduplication based on Locality-Sensitive

Hashing (LSH) [143] and specialised delta-encoding based on the Hamming distance for

genome sequencing data [72]. This solution finds, separately for the DNA and QS lines

of each FASTQ entry, the most similar base chunk in a deduplication index and replaces

6.1 The Pipeline 117

the original lines by a pointer to the best candidate and the transformations to recover the

original sequence from it.

Preliminary analysis of our work indicates it achieves 81.7% of the reduction ratio of

the best specialised tool (i.e., SPRING) and compresses 50% more than the fastest generic

competitor used in practice (i.e., GZIP) using a human reference genome as the deduplication

index for the DNA lines and 220 synthetic candidates for the QS lines. Additionally, it

restores data 9.96× faster than SPRING and 4.4× faster than GZIP. In summary, our

solution compresses the selected genomes, on average, 4.92× (i.e., r = 0.2032).

6.1.4 Storage

Data from the DETECTION phase is divided into two subsets: a privacy-sensitive portion

of human genomes and a non-sensitive one. These two portions are deduplicated and

delta-encoded in the REDUCTION phase and are handled differently in the present phase.

The privacy-sensitive portion requires stronger security premises, while the other portion

can use affordable security techniques. From the moment they are delivered by the previous

phases, the STORAGE phase applies commonly used dependability and security techniques

to store data properly in public clouds.

Cloud computing is an economical alternative to expensive private infrastructures. We

consider a system architecture composed of a single public cloud to store the non-sensitive

portion of human genomes and a cloud-of-clouds to store the privacy-sensitive portion.

6.1.4.1 Single-Cloud Storage

This scenario is the simplest one, where we apply standard encryption on data from the

REDUCTION phase and store it in a single public cloud. This encryption guarantees that

only authorised users have access to data, and these users need to know the decryption key.

The rationale for this decision is the fact that this data is the less (or non-) sensitive portion

118 Chapter 6: An End-to-End Storage Pipeline for Human Genomes

of human genomes, and thus the security and dependability provided by a single public

cloud is acceptable.

There is an inherent execution cost in this scenario. The cost for reading data will be

equals to the cost of transferring the encrypted, compressed file from the cloud, decrypting

it, decompressing it, requesting the original sequences and quality scores from the dedu-

plication index, and applying the delta-encoded transformations to recover the original

data.

6.1.4.2 Multi-Cloud Storage

In this storage configuration, we also initiate by applying standard encryption on data.

Then, data is split in blocks that will be sent to different clouds later [28]. It guarantees that

no cloud has the whole genome in its infrastructure, which increases the privacy-protection

if data stored in a subset of clouds is compromised. We opt to apply secret sharing [161] on

the encryption key to distribute it together with the data blocks, which makes the system

independent of key managers. Storage optimal erasure codes [207] are also employed to

allow recovering the data in case of failures without the need for replicating all data blocks,

which reduces the storage cost compared to full replication. Finally, data is sent to a quorum

of clouds from the cloud-of-clouds, where each cloud stores different data blocks in a secure

setting and provides increased availability.

There is an inherent execution cost in applying all these techniques over data. The

cost for reading data will be equals to the cost of transferring the data from a subset of

clouds plus: recovering the original blocks from the erasure codes and secret sharing

methods, decrypting the data, and decoding the original data based on the entries used in the

deduplication system and the delta-encoded transformations. The needed subset of clouds

must result in clients receiving at least the minimum number τ of correct blocks to decode

a data item.

6.1 The Pipeline 119

We employ CHARON [183] as our backend since it is a complete storage solution that

provides the two mentioned configurations (single public clouds and a cloud-of-clouds)

and also allows the storage of data in private repositories. The original cloud-of-clouds

configuration of CHARON assumes n ≥ 3 f + 1, with τ ≥ f + 1, which means that this

storage configuration incurs in an optimal storage overhead of 50% (f = 1). As it will

be explained in the next section, to support auditability, we consider a cloud-of-clouds

configuration in our pipeline where n≥ 5 f +1 and τ ≥ 3 f +1 (i.e., resulting in a storage

overhead of only 25% with f = 1).

6.1.5 Management

Several components (e.g., key distribution, performance monitoring, and billing) may fit

in this generic phase. However, we are interested only in the access control and auditability

ones because these are the main blocks responsible for guaranteeing that only authorised

users can and have effectively accessed the data.

6.1.5.1 Access Control

Access control permits certain users to obtain and modify specific data items according to

their roles. This mechanism may also have distinct access rules for the different portions of

human genomes (i.e., the privacy-sensitive and the non-sensitive portions). Additionally,

cryptographic solutions from the STORAGE phase complement access control mechanisms

since an attacker that circumvents the access control does not obtain the data in clear.

Finally, the cloud-of-clouds in CHARON provides a joint access control combining cloud

providers, where its access control is satisfied even if up to f providers have been compro-

mised [183].

120 Chapter 6: An End-to-End Storage Pipeline for Human Genomes

6.1.5.2 Auditability

Auditability is the systematic ability to verify some property in an environment and is

a deterrent measure that complements preventive ones, e.g., security, dependability, and

privacy protection. In this work, we are interested in auditing exactly which users have

effectively read each human genome stored in the system, which already separates them

from the whole group of users that are authorised to read it but have never done so. Auditors

need to access only metadata, such as filenames, access logs, and access control rules (i.e.,

they do not need to access the whole data sets).

Usually, auditability systems must keep an indelible tamper-proof track of data accesses

to detect, analyse, and sanction misuses. However, the guarantees from this registry directly

depend on the configuration of the system. For instance, non-replicated storage systems

must trust in the single cloud provider they use to register and provide evidences for every

action users perform in the system.

However, storage systems that employ multiple cloud providers have the opportunity

to avoid this trust requirement by using the logs from a subset of providers to create a

fault-tolerant track of records. In Chapter 5, we have identified the formal requirements of

such auditability for systems based on secure information dispersal schemes [69]. Basically,

auditability requires n≥ 5 f +1 (i.e., τ ≥ 3 f +1) to provide a weak form of auditability in

systems supporting fast reads [117] or a strong form of auditability in systems with slow

reads (i.e., reads with more than one communication round). Signing read requests enables

both forms of auditability to be supported with τ ≥ 2 f +1, but it would increase the storage

overhead and was not considered in the evaluation in this chapter.

Privacy-awareness (from Section 6.1.2) allows us to provide adequate auditability

guarantees for the different portions of human genomes. The fact that only the non-sensitive

portions of human genomes are stored on single-cloud storage reduces the impact of losing

auditability information on these configurations. The storage of the privacy-sensitive

6.1 The Pipeline 121

portion of human genomes guarantees that every effective read is reported by the audit

process [69].

6.2 Feasibility Discussion

Storage costs directly impact the feasibility of collecting large sets of whole human

genomes. Furthermore, storage solutions must benchmark their cost-efficiency to not burden

institutions and to make dependability affordable [50].

Haussler et. al [127] estimated the costs of creating a data warehouse to store (and

process) one million human genomes (compressed to 180GB each). Their calculated

capital expenditure (CAPEX) was $65M for the first year and $35M per subsequent year to

maintain and update the infrastructure.

One million human genomes is an interesting example of the scale biobanks will face

since they already manage similar numbers of physical samples [251]. Assuming that each

human genome sizes s = 300GB (i.e., 30–45× of coverage), one million genomes result in

300PB of data. Storing all this data is expensive, where even the cost of using only cold

storage from a single cheap cloud provider (e.g., Microsoft Azure—see Table 6.1) is $3.6M

per year. Investing in more dependable solutions (e.g., secure information dispersal using

multiple clouds) increases this annual cost to approximately $13M.

In this section, we evaluate the feasibility of the presented composite pipeline. We use

the estimated annual cost (in $) to store a single human genome as the metric of interest

since it can easily be adapted to deployments of any size. We start by delineating three basic

configurations typically used in cloud-based storage and present their pros and cons.

The first configuration (NON-REP) stores all data only in the cheapest single cloud

provider from Table 6.1 (i.e., Microsoft Azure). It is the baseline of this evaluation and

represents a non-replicated scenario, where the cloud provider has to be trusted and is

a single point of failure at the administrative domain level. The second configuration

122 Chapter 6: An End-to-End Storage Pipeline for Human Genomes

Cloud Storage Standard Infrequent Cold
Microsoft Azure [184] 0.0184 0.01 0.001
Alibaba Cloud [7] 0.0185 0.01 0.0036
Google Cloud [112] 0.02 0.01 0.004
Amazon AWS [13] 0.023 0.01 0.004
IBM Cloud [135] 0.022 0.012 0.006
Oracle Cloud [199] 0.0425 0.0255 0.0026

Table 6.1: Cloud storage pricing (in $/GB/Month) as in June, 2019.

(FULL-REP) replicates all data into trusted cloud providers. It tolerates cloud outages (i.e.,

crash faults only) of a subset of providers (i.e., n ≥ f + 1). We consider tolerating one

fault (i.e., f = 1) in this evaluation, which means that this configuration results in a storage

overhead of 100% since n = 2. The third configuration (INFO-DISP) distributes data into

multiple untrusted providers using secure information dispersal schemes [3, 28], which

guarantee that no single cloud stores or has access to the entire data set. It tolerates a

subset of malicious clouds (i.e., n≥ 3 f +1) and results in a storage overhead of 50% (for

f = 1) [28] compared to our baseline (i.e., NON-REP).

Our pipeline employs the steps described in Section 6.1 and stores each genome portion

in an appropriate configuration. It results in a fourth configuration (PRI-AWR) that con-

servatively stores approximately 12% of each human genome (i.e., the privacy-sensitive

portion) using a special case of secure information dispersal and the remaining 88% (i.e.,

the non-sensitive portion) in a non-replicated configuration. Our secure information dis-

persal uses more clouds than the configuration in INFO-DISP because it supports the

auditability of who has effectively read data, as described in Section 6.1.5. This increase

in the number of replicas results in a storage overhead of 25% (for f = 1) instead of the

50% from INFO-DISP. In the end, our pipeline has a storage overhead of only 3% since

0.12×1.25× r× s+0.88× r× s = 1.03× r× s.

Despite the configuration of choice, we assume all solutions encrypt data to protect

confidentiality and use the n cheapest clouds on each different configuration. Additionally,

this comparison considers that a human genome originally sizes s = 300GB (i.e., r = 1)

6.2 Feasibility Discussion 123

1

10

100

â��â�� N F I P â��â�� N F I P â��â�� N F I P â��â�� N F I P â��â��

Original (r=1) GZIP (r=0.31) Deduplication (r=0.2032) SPRING (r=0.166)

N - NON-REP F - FULL-REP

I - INFO-DISP P - PRI-AWR
C

o
s
t
($

/G
e
n
o

m
e
/Y

e
a
r)

Configuration

Standard Infrequent Cold

69.29

37.29

4.80
21.48

11.56

1.49

14.08

7.57

0.97

11.50

6.19

0.80

Figure 6.2: Estimated annual cost (in $) to store a human genome (s = 300GB) considering
different configurations and reduction ratios (r).

and can be reduced by different algorithms with the following compression ratio r: GZIP

reduces a genome to 93.45GB (r = 0.31), our similarity-based deduplication reduces it to

60.96GB (r = 0.2032), and SPRING reduces it to 49.8GB (r = 0.166).

Figure 6.2 presents the estimated annual cost (in $) to store a human genome in every

configuration described in this section either uncompressed or compressed by one of the

three mentioned reduction algorithms. Additionally, this figure considers scenarios using

three storage service levels that are available in all evaluated cloud providers and differ in

the expected frequency of data accesses: standard, infrequent, and cold storage (the less

frequent, the cheaper—see Table 6.1).

While storing an uncompressed human genome can cost $66.24 per year in NON-REP

using the cheapest standard cloud storage, it can drop to $0.59 storing this genome com-

pressed by the SPRING in the cheapest cold storage provider. Considering dependable

alternatives, fully replicating data always costs more than using secure information dispersal,

which by its turn always costs more than using our privacy-aware pipeline. Storing an

uncompressed genome using only our privacy-awareness (Section 6.1.2) and auditability

phases (Section 6.1.5) can cost $69.29 per year in NON-REP standard storage, while $0.80

are enough to store it compressed with SPRING using cold storage. However, SPRING has

a small restore throughput compared to our deduplication and the other competitors (see

Section 6.1.3). Using all phases from our pipeline (i.e., privacy-awareness, auditability, and

deduplicating instead of using SPRING) results in a storage cost of $14.08 using standard

storage services and $0.97 using cold storage. It means that storing one million human

124 Chapter 6: An End-to-End Storage Pipeline for Human Genomes

genomes with our pipeline costs less than $1M per year. These results vouch for the utility

of the mechanisms integrated into our composite pipeline to enable the efficient, dependable

storage of human genomes in public cloud infrastructures.

6.3 Final Remarks
The complete storage pipeline presented in this thesis integrates the specific contribu-

tions of Chapters 3–5 and enables the efficient, dependable cloud-based storage of human

genomes in public clouds since it provides reasonable privacy protection, security, and

dependability guarantees at modest costs (less than $1/Genome/Year) using appropriate

storage configurations.

6.3 Final Remarks 125

7Conclusion

7.1 Final Remarks
This thesis encompasses works that have proposed, implemented, and evaluated an

end-to-end composite storage pipeline, which introduced privacy-awareness, cost-efficiency,

and auditability into the data storage ecosystem for human genomes. By integrating the

described mechanisms with appropriate storage configurations, one can obtain reasonable

privacy protection, security, and dependability guarantees at modest costs (e.g., less than

$1/Genome/Year). This pipeline enables the efficient, dependable cloud-based storage of

human genomes since it provides enhanced dependability guarantees with adequate storage

overhead (e.g., 3% compared to non-replicated systems). Moreover, the efficiency of the

proposed pipeline is also attested by the fact it costs 48% less than fully-replicating data

and 31% less than using secure information dispersal schemes exclusively.

More specifically, our first contribution was to propose a novel efficient solution to

automatically detect privacy-sensitive DNA sequences from an input stream using, as a ref-

erence, a knowledge database of privacy-sensitive sequences. Data from this solution results

into two sets: a small privacy-sensitive portion (less than 12%) and a large non-sensitive

one (more than 88%). The assessment of the privacy-sensitivity detector demonstrated its

feasibility to address the challenges imposed by some published attacks and to establish

the basis for future developments in this field. We have shown that the privacy-sensitivity

detector can easily be fitted inline with the NGS production cycle and fulfil the systematic

detection promise, exhibiting adequate performance and scalability, by using Bloom filters.

127

However, we note again that besides the effectiveness of our solution, the proposed compu-

tational framework and architecture can be reused and evolved with new privacy-sensitive

sequences being identified [71].

The second specific contribution from this thesis was the proposal of GenoDedup, the

first method that integrates efficient similarity-based deduplication and specialised delta-

encoding for genome sequencing data. Experimental results attested that GenoDedup (with

28 entries in the QS deduplication index) achieves 67.8% of the reduction gains of the

best specialised tool in this metric (i.e., SPRING [49]) and restores data 1.62× faster than

SeqDB [133] (i.e., its fastest competitor). Additionally, GenoDedup restores data 9.96×

faster than SPRING and compresses files 2.05× more than SeqDB. Finally, GenoDedup

compresses 50% more than the fastest generic compressor used in practice (i.e., GZIP [88])

and restores data 4.4× faster than it.

The third specific contribution initiated the study of auditable storage emulations,

which provides the capability for an auditor to discover the previously executed reads in

a register. This work defined auditable registers, their properties, and established tight

bounds and impossibility results for auditable storage emulations in the presence of faulty

storage objects. Our system model considered read-write registers that securely store data

using information dispersal and support fast reads. In such a scenario, given a minimum

number τ of data blocks required to recover a value from information dispersal schemes

and a maximum number f of faulty storage objects (1) auditability is impossible with

τ ≤ 2 f ; (2) when fast reads are supported, τ ≥ 3 f +1 is required for implementing weak

auditability, while strong auditability is impossible; (3) signing read requests overcomes

the lower bound of weak auditability; and (4) totally ordering operations or using non-fast

reads can provide such strong auditability.

128 Chapter 7: Conclusion

7.2 Future Work

This thesis has explored several topics related to the storage of critical data, more

specifically of human genomes. Opportunities arise from each thesis’ contribution and

every step in our storage pipeline.

Privacy-awareness. There is an opportunity to advance scientific knowledge and the sys-

tems’ awareness of the privacy-sensitivity of human genomes. For instance, a natural

next step is to delineate a comprehensive map of privacy-sensitivity in human genomes by

organising privacy-sensitive information according to their location in the genome and corre-

lating this distribution with biological reasoning. Another open contribution is the creation

of an educational service that informs whether and why a small queried DNA sequence

contains or not privacy-sensitive information and what is its privacy risk severity. Other

colleagues, from which some are also co-authors of the first paper of this thesis [70], have

been extending the proposed detection method to support FASTQ entries with longer DNA

sequences [83] and to support additional privacy-sensitivity levels according to different risk

classifications and allele frequencies [102]. There are opportunities to expand even further

these risk levels by classifying information based on the correlation of genes and mutation

with diseases by defining that sequences associated with some diseases (e.g., Alzheimer’s)

are more privacy-sensitive than when linked to others (e.g., allergic Rhinitis).

Reduction of sequencing data. The proposed similarity-based deduplication highly de-

pends on the size and quality of the deduplication index, as presented in Section 4.3.2.

There is an opportunity in exploring other feature selection and clustering algorithms to

evaluate more genomes to model better deduplication indexes faster. One can create multi-

ple indexes considering the different sequencing profiles—e.g., one index for sequencing

resulting mostly in high quality scores and another for lower values. Other engineering

optimisations are possible, namely: improving the LSH scalability and distribution into

several nodes (however the implemented LSH scales to more entries than one can model

in practical time), experimenting different LSH configurations to improve the search for

7.2 Future Work 129

the best candidates, and testing other distance metrics and their encodings. The theoretical

aspects of deduplication are also an open problem, where one can explore the required

amount of memory in deduplicating registers or even impossibility results depending on the

system model and operations available.

Auditability. The system model considered in this thesis is strongly grounded on practical

systems deployed in multi-cloud environments (e.g., [3, 28, 183, 212]). More specifically,

this thesis used CHARON [183] as the storage back-end because it provided all the con-

figurations our pipeline needed. As future work, it would be interesting to study how

our results will change if considering different models, such as server-based (where base

objects can run protocol-specific code and communicate with each other) and synchronous

systems. Having audit operations that wait for all n base objects can be an interesting

alternative to be explored in the future as well. The results can also be made more generic

considering any system with three or more available quorum-based operations with distinct

intersections. Exploring blockchains to audit these datasets is another alternative, but with

the inconvenience of requiring additional system components to support the blockchain.

Blockchain opens another venue for innovation, such as creating a market place for

human genomic data where donors keep full control over their data and determine exactly

when and who may have access to which portions of their genomes. There are several

ongoing discussions on the ELSI (ethical, social, and legal) implications of a marketplace

for genomic data [131], but it has not deterred some solutions from being proposed [9,

186].

130 Chapter 7: Conclusion

Bibliography

[1] 1000 Genomes Project. Current directory tree. Available at http://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/current.tree. Accessed on Apr. 19, 2020. 2020.

[2] I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. “Byzantine disk paxos:

optimal resilience with Byzantine shared memory”. In: Proc. of the 23rd annual

ACM symposium on Principles of Distributed Computing (PODC). 2004, pp. 226–

235.

[3] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. “RACS: A Case for Cloud

Storage Diversity”. In: Proc. of the 1st ACM Symposium on Cloud Computing

(SoCC). 2010, pp. 229–240.

[4] M. Adler. pigz - Parallel gzip. Available at https://zlib.net/pigz/. Accessed

on Apr. 19, 2020. 2020.

[5] M. K. Aguilera, B. Englert, and E. Gafni. “On using network attached disks as

shared memory”. In: Proc. of the 22nd Annual ACM Symposium on Principles of

Distributed Computing (PODC). 2003, pp. 315–324.

[6] S. Al Yami and C.-H. Huang. “LFastqC: A lossless non-reference-based FASTQ

compressor”. In: PlOS ONE 14.11 (2019).

[7] Alibaba, Inc. Alibaba Storage Pricing. Available at https://www.alibabacloud.

com/product/oss/pricing. Accessed on Apr. 19, 2020. 2020.

131

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/current.tree
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/current.tree
https://zlib.net/pigz/
https://www.alibabacloud.com/product/oss/pricing
https://www.alibabacloud.com/product/oss/pricing

[8] A. L. Allen. “What Must We Hide: The Ethics of Privacy and the Ethos of Disclo-

sure”. In: St. Thomas Law Review 25 (2012), pp. 1–18.

[9] AllSeq, Inc. AllSeq - The Sequencing Marketplace. Available at https://allseq.

com/. Accessed on Apr. 19, 2020. 2020.

[10] F. Alves, V. V. Cogo, and A. Bessani. “Indexação sob Demanda para a Compressão

Referencial de Ficheiros de ADN”. In: Proc. of the 6th Simposio de Informatica

(INFORUM). 2014.

[11] F. Alves, V. V. Cogo, S. Wandelt, U. Leser, and A. Bessani. “On-Demand Indexing

for Referential Compression of DNA Sequences”. In: PLOS ONE 10.7 (2015),

e0132460.

[12] Amazon Web Services, Inc. Amazon Glacier Pricing. Available at https://aws.

amazon.com/glacier/pricing/. Accessed on Apr. 19, 2020. 2020.

[13] Amazon Web Services, Inc. Amazon S3 Pricing. Available at https://aws.

amazon.com/s3/pricing/. Accessed on Apr. 19, 2020. 2020.

[14] Amazon Web Services, Inc. AWS CloudTrail. Available at https://aws.amazon.

com/cloudtrail/. Accessed on Apr. 19, 2020. 2020.

[15] E. Androulaki, C. Cachin, D. Dobre, and M. Vukolić. “Erasure-coded Byzantine

storage with separate metadata”. In: Proc. of the 18th International Conference on

Principles of Distributed Systems (OPODIS). 2014, pp. 76–90.

[16] H. Attiya, A. Bar-Noy, and D. Dolev. “Sharing memory robustly in message-passing

systems”. In: Journal of the ACM (JACM) 42.1 (1995), pp. 124–142.

[17] T. K. Attwood, S. R. Pettifer, and D. Thorne. Bioinformatics challenges at the

interface of biology and computer science: Mind the gap. John Wiley & Sons, 2016.

[18] S. Axelsson, U. Lindqvist, U. Gustafson, and E. Jonsson. “Approach to UNIX

security logging”. In: Doktorsavhandlingar vid Chalmers Tekniska Hogskola 1530

(1999), pp. 137–158.

132

https://allseq.com/
https://allseq.com/
https://aws.amazon.com/glacier/pricing/
https://aws.amazon.com/glacier/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/

[19] E. Ayday, J. L. Raisaro, U. Hengartner, and et al. “Privacy-preserving processing of

raw genomic data”. In: Data Privacy Management and Autonomous Spontaneous

Security. Springer, 2014, pp. 133–147.

[20] E. Ayday, E. De Cristofaro, J.-P. Hubaux, and G. Tsudik. “Whole genome se-

quencing: Revolutionary medicine or privacy nightmare?” In: IEEE Computer 48.2

(2015), pp. 58–66.

[21] M. M. A. Aziz, M. N. Sadat, D. Alhadidi, et al. “Privacy-preserving techniques of

genomic data—a survey”. In: Briefings in bioinformatics 20.3 (2019), pp. 887–895.

[22] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic Hash Functions: A

Survey. Tech. rep. University of Wollongong, 1995.

[23] N. S. Bakr and A. A. Sharawi. “DNA lossless compression algorithms: review”. In:

American Journal of Bioinformatics Research 3.3 (2013), pp. 72–81.

[24] C. Basescu et al. “Robust data sharing with key-value stores”. In: Proc. of the 42nd

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). 2012.

[25] BBMRI Consortium. BBMRI: Biobanking and Biomolecular Resources Research In-

frastructure. Originally available at http://bbmri.eu/. Accessed on Jul. 24, 2014.

Permanently available at https://web.archive.org/web/20140724151631/

http://bbmri.eu/. 2014.

[26] BBMRI-ERIC Consortium. BBMRI-ERIC: Biobanking and BioMolecular resources

Research Infrastructure (European Research Infrastructure Consortium). Available

at http://bbmri-eric.eu/. Accessed on Apr. 19, 2020. 2020.

[27] A. Berger, I. Keidar, and A. Spiegelman. “Integrated Bounds for Disintegrated

Storage”. In: Proc. of the 32nd International Symposium on Distributed Computing

(DISC). 2018, 11:1–11:18.

[28] A. Bessani, M. Correia, B. Quaresma, F. Andre, and P. Sousa. “DepSky: Dependable

and Secure Storage in Cloud-of-Clouds”. In: ACM Transactions on Storage (TOS)

9.4 (2013).

133

http://bbmri.eu/
https://web.archive.org/web/20140724151631/http://bbmri.eu/
https://web.archive.org/web/20140724151631/http://bbmri.eu/
http://bbmri-eric.eu/

[29] A. Bessani, V. V. Cogo, P. Verissimo, et al. State of the Art and Preliminary

Architecture. BiobankCloud Project, Deliverable D4.1, 75 pages. 2013.

[30] A. Bessani, S. Wandelt, M. Bux, et al. Reference-based Compression Algorithms.

BiobankCloud Project, Deliverable D2.2, 94 pages. 2014.

[31] A. Bessani, R. Mendes, V. V. Cogo, et al. The Overbank Cloud Architecture, Proto-

cols and Middleware. BiobankCloud Project, Deliverable D4.2, 85 pages. 2014.

[32] A. Bessani, J. Brandt, M. Bux, et al. “BiobankCloud: a Platform for the Secure

Storage, Sharing, and Processing of Large Biomedical Data Sets”. In: Proc. of the

1st International Workshop on Data Management and Analytics for Medicine and

Healthcare (DMAH 2015). 2015.

[33] A. Bessani, R. Mendes, T. Oliveira, and V. V. Cogo. Overbank Implementation and

Evaluation. BiobankCloud Project, Deliverable D4.3, 40 pages. 2015.

[34] A. N. Bessani, R. Mendes, T. Oliveira, et al. “SCFS: A Shared Cloud-backed

File System.” In: Proc. of the USENIX Annual Technical Conference (ATC). 2014,

pp. 169–180.

[35] V. Bhola, A. S. Bopardikar, R. Narayanan, K. Lee, and T. Ahn. “No-reference

compression of genomic data stored in FASTQ format”. In: Proc. of the IEEE Inter-

national Conference on Bioinformatics and Biomedicine (BIBM). 2011, pp. 147–

150.

[36] B. H. Bloom. “Space/time trade-offs in hash coding with allowable errors”. In:

Communications of the ACM 13.7 (1970), pp. 422–426.

[37] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. “Single instance storage

in Windows 2000”. In: Proc. of the USENIX Windows Systems Symposium. 2000,

pp. 13–24.

[38] J. K. Bonfield and M. V. Mahoney. “Compression of FASTQ and SAM format

sequencing data”. In: PlOS ONE 8.3 (2013), e59190.

134

[39] E. T. Borer, E. W. Seabloom, M. B. Jones, and M. Schildhauer. “Some simple

guidelines for effective data management”. In: Bulletin of the Ecological Society of

America 90.2 (2009), pp. 205–214.

[40] S. E. Brenner. “Be prepared for the big genome leak”. In: Nature 498.7453 (2013),

pp. 139–139.

[41] A. Z. Broder. “On the resemblance and containment of documents”. In: Proc. of the

IEEE Compression and Complexity of Sequences. 1997, pp. 21–29.

[42] J.-M. C. Brook et al. Top Threats to Cloud Computing: Egregious Eleven. Tech. rep.

Cloud Security Alliance (CSA), 2019.

[43] J. Brown, M. Ahamad, M. Ahmed, et al. “Redactable and auditable data access for

bioinformatics research”. In: Proc. of AMIA Joint Summits on Translational Science

(2013), pp. 18–22.

[44] K. V. Brown. A $100 Genome Within Reach, Illumina CEO Asks If World Is Ready.

Available at https://www.bloomberg.com/news/articles/2019-02-27/a-

100-genome-within-reach-illumina-ceo-asks-if-world-is-ready.

Accessed on Apr. 19, 2020. 2019.

[45] J. M. Butler. “Genetics and genomics of core short tandem repeat loci used in

human identity testing”. In: Journal of Forensic Sciences 51.2 (2006), pp. 253–265.

[46] S. Byma et al. “Persona: a high-performance bioinformatics framework”. In: Proc.

of the USENIX Annual Technical Conference (ATC). 2017, pp. 153–165.

[47] V. R. Cadambe, Z. Wang, and N. Lynch. “Information-theoretic lower bounds on the

storage cost of shared memory emulation”. In: Proc. of the 35th ACM Symposium

on Principles of Distributed Computing (PODC). 2016, pp. 305–313.

[48] R. Cattell. “Scalable SQL and NoSQL Data Stores”. In: ACM SIGMOD Record

39.4 (2011), pp. 12–27.

[49] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez, and T. Weissman. “SPRING:

a next-generation compressor for FASTQ data”. In: Bioinformatics 35.15 (2018),

pp. 2674–2676.

135

https://www.bloomberg.com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready
https://www.bloomberg.com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready

[50] R. Charette. “Why software fails”. In: IEEE Spectrum 42.9 (2005), pp. 42–49.

[51] G. Chockler and A. Spiegelman. “Space complexity of fault-tolerant register em-

ulations”. In: Proc. of the 36th Annual ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing (PODC). 2017, pp. 83–92.

[52] G. Chockler, R. Guerraoui, and I. Keidar. “Amnesic distributed storage”. In: Proc. of

the 21st International Symposium on Distributed Computing (DISC). 2007, pp. 139–

151.

[53] Chronicle Software. Chronicle-Map. Available at https://github.com/OpenHFT/

Chronicle-Map. Accessed on Apr. 19, 2020. 2020.

[54] J. Y. Chung, C. Joe-Wong, S. Ha, J. W.-K. Hong, and M. Chiang. “CYRUS: Towards

Client-Defined Cloud Storage”. In: Proc. of the 10th ACM European Systems

Conference (EuroSys). 2015.

[55] D. Cirillo and A. Valencia. “Big data analytics for personalized medicine”. In:

Current opinion in biotechnology 58 (2019), pp. 161–167.

[56] M. e. Clamp. “Distinguishing protein-coding and noncoding genes in the human

genome”. In: Proceedings of the National Academy of Sciences (PNAS) of the

United States of America 104.49 (2007), pp. 19428–19433.

[57] L. Clarke et al. “The 1000 Genomes Project: data management and community

access”. In: Nature methods 9.5 (2012), pp. 459–462.

[58] Cloud Harmony. Service Status. Available at https://cloudharmony.com/

status-1year-of-storage-group-by-regions-and-provider. Accessed

on Apr. 19, 2020. 2020.

[59] Cloud Security Alliance. CloudAudit: Automated Audit, Assertion, Assessment,

and Assurance. Originally available at http://cloudaudit.org. Accessed on

Mar. 22, 2015. Permanently available at http://web.archive.org/web/

20150322234732/http://cloudaudit.org/CloudAudit/Home.html. 2020.

136

https://github.com/OpenHFT/Chronicle-Map
https://github.com/OpenHFT/Chronicle-Map
https://cloudharmony.com/status-1year-of-storage-group-by-regions-and-provider
https://cloudharmony.com/status-1year-of-storage-group-by-regions-and-provider
http://cloudaudit.org
http://web.archive.org/web/20150322234732/http://cloudaudit.org/CloudAudit/Home.html
http://web.archive.org/web/20150322234732/http://cloudaudit.org/CloudAudit/Home.html

[60] G. Cochrane, I. Karsch-Mizrachi, and Y. Nakamura. “The international nucleotide

sequence database collaboration”. In: Nucleic Acids Research 39.suppl 1 (2011),

pp. D15–D18.

[61] P. Cock et al. “The Sanger FASTQ file format for sequences with quality scores,

and the Solexa/Illumina FASTQ variants”. In: Nucleic Acids Research 38.6 (2010),

pp. 1767–1771.

[62] V. V. Cogo. DNA Privacy Detector. Available at: https://github.com/vvcogo/

dna-privacy-detector. Accessed on Apr. 19, 2020. 2020.

[63] V. V. Cogo and A. Bessani. “A Privacy-Assuring Disclosure Filter for Genetic

Information”. In: the Ph.D. Students’ Session of the 32nd IEEE Symposium on

Reliable Distributed Systems (SRDS 2013). 2013.

[64] V. V. Cogo and A. Bessani. “BiobankCloud Platform as a Service for Biobanking”.

In: the 2nd Annual Next Generation Sequencing Data Congress (Poster). 2014.

[65] V. V. Cogo and A. Bessani. Efficient Storage of Whole Human Genomes. Poster in

the 11th ACM European Systems Conference (EuroSys). 2016.

[66] V. V. Cogo and A. Bessani. “From Data Islands to Sharing Data in the Cloud: the

Evolution of Data Integration in Biological Data Repositories”. In: Communications

and Innovations Gazette (ComInG) 1.1 (2016), pp. 1–11.

[67] V. V. Cogo and A. Bessani. FS-BioBench: A File System Benchmark from Bioinfor-

matics Workflows. Technical report integrated into [183]. 2016.

[68] V. V. Cogo and A. Bessani. “Enabling the Efficient, Dependable Cloud-based

Storage of Human Genomes”. In: Proc. of the 1st Workshop on Distributed and

Reliable Storage Systems (DRSS’19). 2019, pp. 1–6.

[69] V. V. Cogo and A. Bessani. “Auditable Register Emulations”. In: arXiv:1905.08637

(2020), pp. 1–16.

[70] V. V. Cogo, A. Bessani, F. M. Couto, and P. Verissimo. “A high-throughput method

to detect privacy-sensitive human genomic data”. In: Proc. of the 14th ACM Work-

shop on Privacy in the Electronic Society (WPES). 2015, pp. 101–110.

137

https://github.com/vvcogo/dna-privacy-detector
https://github.com/vvcogo/dna-privacy-detector

[71] V. V. Cogo, A. Bessani, F. M. Couto, et al. “How can photo sharing inspire sharing

genomes?” In: Proc. of the 11th International Conference on Practical Applications

of Computational Biology & Bioinformatics (PACBB). Springer. 2017, pp. 74–82.

[72] V. V. Cogo, J. Paulo, and A. Bessani. “GenoDedup: Similarity-Based Deduplication

and Delta-Encoding for Genome Sequencing Data”. In: IEEE Transactions on

Computers (TC) Early Access (2020), pp. 1–12.

[73] V. V. Cogo. GenoDedup. Available at https://github.com/vvcogo/GenoDedup.

Accessed on Apr. 19, 2020. 2020.

[74] COMMIT. COMMIT. Originally available at http://www.amolf.nl/research/

bims/research-activities/e-biobanking/. Accessed on Feb. 03, 2015. Per-

manently available at http://web.archive.org/web/20150203044617/http:

//www.amolf.nl/research/bims/research-activities/e-biobanking/.

2020.

[75] A. Cornish-Bowden. “Nomenclature for incompletely specified bases in nucleic

acid sequences: recommendations 1984”. In: Nucleic acids research 13.9 (1985),

p. 3021.

[76] A. J. Cox, M. J. Bauer, T. Jakobi, and G. Rosone. “Large-scale compression of

genomic sequence databases with the Burrows–Wheeler transform”. In: Bioinfor-

matics 28.11 (2012), pp. 1415–1419.

[77] L. C. Crosswell and J. M. Thornton. “ELIXIR: a distributed infrastructure for

European biological data”. In: Trend in Biotechnology 30.5 (2012), pp. 241–242.

[78] J. W. Dale, M. Von Schantz, and N. Plant. From genes to genomes: concepts and

applications of DNA technology. John Wiley & Sons, 2012.

[79] Dat Project. rabin—Node native addon module for Rabin fingerprinting data

streams. Available at https://github.com/datproject/rabin. Accessed

on Apr. 19, 2020. 2020.

[80] J. G. Day and G. N. Stacey. “Biobanking”. In: Molecular Biotechnology 40.2 (2008),

pp. 202–213.

138

https://github.com/vvcogo/GenoDedup
http://www.amolf.nl/research/bims/research-activities/e-biobanking/
http://www.amolf.nl/research/bims/research-activities/e-biobanking/
http://web.archive.org/web/20150203044617/http://www.amolf.nl/research/bims/research-activities/e-biobanking/
http://web.archive.org/web/20150203044617/http://www.amolf.nl/research/bims/research-activities/e-biobanking/
https://github.com/datproject/rabin

[81] H. Debar, M. Dacier, and A. Wespi. “Towards a taxonomy of intrusion-detection

systems”. In: Computer Networks 31.8 (1999), pp. 805–822.

[82] T. Debatty. Implementation of various string similarity and distance algorithms.

Available at https://github.com/tdebatty/java- string- similarity.

Accessed on Apr. 19, 2020. 2020.

[83] J. Decouchant, M. Fernandes, M. Voelp, F. M. Couto, and P. Esteves-Verissimo. “Ac-

curate filtering of privacy-sensitive information in raw genomic data”. In: Journal

of biomedical informatics 82 (2018), pp. 1–12.

[84] M. A. C. Dekker. Critical Cloud Computing: A CIIP perspective on cloud computing

services (v1.0). Tech. rep. European Network and Information Security Agency

(ENISA), 2012.

[85] S. Deorowicz and S. Grabowski. “Compression of DNA sequence reads in FASTQ

format”. In: Bioinformatics 27.6 (2011), pp. 860–862.

[86] S. Deorowicz and S. Grabowski. “Robust relative compression of genomes with

random access”. In: Bioinformatics 27.21 (2011), pp. 2979–2986.

[87] S. Deorowicz and S. Grabowski. “Data compression for sequencing data”. In:

Algorithms for Molecular Biology 8.1 (2013), p. 1.

[88] P. Deutsch. GZIP file format specification version 4.3. RFC 1952. RFC Editor, 1996,

pp. 1–11.

[89] H. B. F. Dixon et al. “Nomenclature and Symbolism for Amino Acids and Peptides”.

In: Pure and Applied Chemistry 56.5 (1984), pp. 595–624.

[90] DNAnexus. DNAnexus. Available at https://dnanexus.com/. Accessed on Apr.

19, 2020. 2020.

[91] F. Douglis and A. Iyengar. “Application-specific Delta-encoding via Resemblance

Detection”. In: Proc. of the USENIX Annual Technical Conference (ATC). 2003,

pp. 113–126.

[92] C. Dwork. “Differential privacy”. In: Automata, languages and programming.

Springer, 2006, pp. 1–12.

139

https://github.com/tdebatty/java-string-similarity
https://dnanexus.com/

[93] V. J. Dzau, G. S. Ginsburg, K. Van Nuys, D. Agus, and D. Goldman. “Aligning

incentives to fulfill the promise of Personalized Medicine.” In: Lancet (London,

England) 385.9982 (2015), p. 2118.

[94] A. El Allali and M. Arshad. “MZPAQ: a FASTQ data compression tool”. In: Source

code for biology and medicine 14.1 (2019), p. 3.

[95] ELIXIR. ELIXIR. Available at http://www.elixir-europe.org/. Accessed on

Apr. 19, 2020. 2020.

[96] EMBL-EBI. 1000 Genomes Project: A Deep Catalog of Human Genetic Variation.

Available at http://www.1000genomes.org/. Accessed on Apr. 19, 2020. 2020.

[97] Y. Erlich and A. Narayanan. “Routes for breaching and protecting genetic privacy”.

In: Nature Reviews Genetics 15.6 (2014), pp. 409–421.

[98] K. Eshghi and H. K. Tang. A framework for analyzing and improving content-based

chunking algorithms. Tech. rep. 2005. 2005.

[99] B. Ewing, L. Hillier, M. C. Wendl, and P. Green. “Base-calling of automated

sequencer traces using Phred. I. Accuracy assessment”. In: Genome Research 8.3

(1998), pp. 175–185.

[100] H. Fan and J.-Y. Chu. “A brief review of short tandem repeat mutation”. In: Ge-

nomics, Proteomics & Bioinformatics 5.1 (2007), pp. 7–14.

[101] FARGEN. FARGEN - Faroe Genome Project. Available at https://www.fargen.

fo/en/. Accessed on Apr. 19, 2020. 2020.

[102] M. Fernandes, J. Decouchant, M. Volp, F. M. Couto, and P. Verissimo. “DNA-

SeAl: Sensitivity Levels to Optimize the Performance of Privacy-Preserving DNA

Alignment”. In: IEEE Journal of Biomedical and Health Informatics Early Access

(2019), pp. 1–8.

[103] L. Freeman, R. Bolt, and T. Sas. Evaluation criteria for data de-dupe. INFOSTOR.

2007.

140

http://www.elixir-europe.org/
http://www.1000genomes.org/
https://www.fargen.fo/en/
https://www.fargen.fo/en/

[104] D. Frey, A.-M. Kermarrec, and K. Kloudas. “Probabilistic deduplication for cluster-

based storage systems”. In: Proc. of the ACM Symposium on Cloud Computing

(SoCC). 2012, p. 17.

[105] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney. “Efficient storage of high

throughput DNA sequencing data using reference-based compression”. In: Genome

research 21.5 (2011), pp. 734–740.

[106] Galaxy Project. The Galaxy Project – Online bioinformatics analysis for everyone.

Available at http://galaxyproject.org/. Accessed on Apr. 19, 2020. 2020.

[107] Y. Gelfand, A. Rodriguez, and G. Benson. “TRDB—the tandem repeats database”.

In: Nucleic Acids Research 35.suppl 1 (2007), pp. D80–D87.

[108] Genealogy by Genetics, Ltd. Ysearch: The number one Y-DNA public database.

Available at: http://www.ysearch.org/. Accessed on Apr. 19, 2020. 2020.

[109] C. Gentry et al. “Fully homomorphic encryption using ideal lattices.” In: Proc. of

the 41st ACM Symposium on Theory of Computing (STOC). Vol. 9. 2009, pp. 169–

178.

[110] R. Gerhards. The syslog protocol. RFC 5424. 2009.

[111] L. Goldsmith, L. Jackson, A. O’Connor, and H. Skirton. “Direct-to-consumer ge-

nomic testing: systematic review of the literature on user perspectives”. In: European

Journal of Human Genetics 20.8 (2012), pp. 811–816.

[112] Google, Inc. Google Storage Pricing. Available at https://cloud.google.com/

storage/pricing. Accessed on Apr. 19, 2020. 2020.

[113] I. Grebnov. BSC: High performance data compression library. Available at http:

//libbsc.com/. Accessed on Apr. 19, 2020. 2020.

[114] D. Greenbaum, A. Sboner, X. J. Mu, and M. Gerstein. “Genomics and privacy:

Implications of the new reality of closed data for the field”. In: PLOS Computational

Biology 7.12 (2011), e1002278.

141

http://galaxyproject.org/
http://www.ysearch.org/
https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/pricing
http://libbsc.com/
http://libbsc.com/

[115] D. Grishin, J. L. Raisaro, J. R. Troncoso-Pastoriza, et al. “Citizen-Centered, Au-

ditable, and Privacy-Preserving Population Genomics”. In: bioRxiv (2019), pp. 1–

15.

[116] S. Grumbach and F. Tahi. “A new challenge for compression algorithms: genetic

sequences”. In: Information Processing & Management 30.6 (1994), pp. 875–886.

[117] R. Guerraoui and M. Vukolić. “How Fast Can a Very Robust Read Be?” In: Proc. of

the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC).

2006, pp. 248–257.

[118] M. Gymrek, A. L. McGuire, D. Golan, and et al. “Identifying personal genomes by

surname inference”. In: Science 339.6117 (2013), pp. 321–324.

[119] F. Hach, I. Numanagić, C. Alkan, and S. C. Sahinalp. “SCALCE: boosting sequence

compression algorithms using locally consistent encoding”. In: Bioinformatics

28.23 (2012), pp. 3051–3057.

[120] J. Hadfield. NGS Mapped. Available at http : / / enseqlopedia . com / ngs -

mapped/. Accessed on Apr. 19, 2020. 2020.

[121] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and

related problems. Tech. rep. Cornell University, 1994.

[122] A. Haeberlen. “A case for the accountable cloud”. In: ACM SIGOPS Operating

Systems Review 44.2 (2010), pp. 52–57.

[123] A. Haeberlen, P. Kouznetsov, and P. Druschel. “PeerReview: Practical Account-

ability for Distributed Systems”. In: Proc. of 21st ACM SIGOPS Symposium on

Operating Systems Principles (SOSP). 2007.

[124] M. A. Hamburg and F. S. Collins. “The path to personalized medicine”. In: New

England Journal of Medicine 2010.363 (2010), pp. 301–304.

[125] S. Han, H. Shen, T. Kim, et al. “MetaSync: File Synchronization Across Multiple

Untrusted Storage Services”. In: Proc. of the USENIX Annual Technical Conference

(ATC). 2015.

142

http://enseqlopedia.com/ngs-mapped/
http://enseqlopedia.com/ngs-mapped/

[126] L. Harding. The Snowden files: The inside story of the world’s most wanted man.

Guardian Faber Publishing, 2014.

[127] D. Haussler et al. A million cancer genome warehouse. Tech. rep. University of

Berkley, Dept. of Electrical Engineering and Computer Science, 2012.

[128] J. Hendricks, G. R. Ganger, and M. K. Reiter. “Low-overhead Byzantine Fault-

tolerant Storage”. In: Proc. of 21st ACM SIGOPS Symposium on Operating Systems

Principles (SOSP). 2007.

[129] M. P. Herlihy and J. M. Wing. “Linearizability: A correctness condition for con-

current objects”. In: ACM Transactions on Programming Languages and Systems

(TOPLAS) 12.3 (1990), pp. 463–492.

[130] J. N. Hirschhorn and M. J. Daly. “Genome-wide association studies for common

diseases and complex traits”. In: Nature Reviews Genetics 6.2 (2005), pp. 95–108.

[131] J. Hoang. The Genome Marketplace. Available at http://www.immpressmagazine.

com/the-genome-marketplace/. Accessed on Apr. 19, 2020. 2018.

[132] N. Homer, S. Szelinger, M. Redman, and et al. “Resolving individuals contribut-

ing trace amounts of DNA to highly complex mixtures using high-density SNP

genotyping microarrays”. In: PLOS Genetics 4.8 (2008), e1000167.

[133] M. Howison. “High-throughput compression of FASTQ data with SeqDB”. In:

IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)

10.1 (2013), pp. 213–218.

[134] D. A. Huffman. “A method for the construction of minimum-redundancy codes”.

In: Proc. of the Institute of Radio Engineers (IRE) 40.9 (1952), pp. 1098–1101.

[135] IBM. IBM. Available at https://www.ibm.com/cloud-computing/bluemix/

pricing-object-storage. Accessed on Apr. 19, 2020. 2020.

[136] Illumina, Inc. HiSeq 2000 Sequencing System. Available at https://www.illumina.

com/documents/products/datasheets/datasheet_hiseq2000.pdf. Ac-

cessed on Apr. 19, 2020. 2010.

143

http://www.immpressmagazine.com/the-genome-marketplace/
http://www.immpressmagazine.com/the-genome-marketplace/
https://www.ibm.com/cloud-computing/bluemix/pricing-object-storage
https://www.ibm.com/cloud-computing/bluemix/pricing-object-storage
https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf
https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf

[137] Illumina, Inc. Quality Scores for Next-Generation Sequencing. In: https://www.

illumina.com/documents/products/technotes/technote_Q-Scores.pdf.

Accessed on Apr. 19, 2020. 2011.

[138] Illumina, Inc. Estimating Sequencing Coverage. Available at https://jp.support.

illumina.com/content/dam/illumina-marketing/documents/products/

technotes/technote_coverage_calculation.pdf. Accessed on Apr. 19,

2020. 2014.

[139] Illumina, Inc. Human Whole-Genome Sequencing with the HiSeq X Sequencing Sys-

tem. In: https://www.illumina.com/content/dam/illumina-marketing/

documents/products/appnotes/appnote-hiseq-x.pdf. Accessed on Apr.

19, 2020. 2014.

[140] Illumina, Inc. NovaSeqTM 6000 System Quality Scores and RTA3 Software. In:

https://www.illumina.com/content/dam/illumina-marketing/documents/

products/appnotes/novaseq-hiseq-q30-app-note-770-2017-010.pdf.

Accessed on Apr. 19, 2020. 2017.

[141] Illumina, Inc. Illumina BaseSpace. Available at https://basespace.illumina.

com/. Accessed on Apr. 19, 2020. 2020.

[142] Illumina, Inc. Illumina introduces the HiSeq X Ten sequencing system. Available

at: https://www.businesswire.com/news/home/20140114006291/en/

Illumina- Introduces- HiSeq- X%E2%84%A2- Ten- Sequencing- System.

Accessed on Apr. 19, 2020. 2020.

[143] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards removing

the curse of dimensionality”. In: Proc. of the 30th ACM Symposium on Theory of

Computing (STOC). 1998, pp. 604–613.

[144] International Human Genome Sequencing Consortium. “Finishing the euchromatic

sequence of the human genome”. In: Nature 431.7011 (2004), pp. 931–945.

[145] International Nucleotide Sequence Database Collaboration. INSDC. Available at

http://www.insdc.org/. Accessed on Apr. 19, 2020. 2020.

144

https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf
https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf
https://jp.support.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_coverage_calculation.pdf
https://jp.support.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_coverage_calculation.pdf
https://jp.support.illumina.com/content/dam/illumina-marketing/documents/products/technotes/technote_coverage_calculation.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/appnote-hiseq-x.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/appnote-hiseq-x.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/novaseq-hiseq-q30-app-note-770-2017-010.pdf
https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/novaseq-hiseq-q30-app-note-770-2017-010.pdf
https://basespace.illumina.com/
https://basespace.illumina.com/
https://www.businesswire.com/news/home/20140114006291/en/Illumina-Introduces-HiSeq-X%E2%84%A2-Ten-Sequencing-System
https://www.businesswire.com/news/home/20140114006291/en/Illumina-Introduces-HiSeq-X%E2%84%A2-Ten-Sequencing-System
http://www.insdc.org/

[146] A. K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern Recognition

Letters 31.8 (2010), pp. 651–666.

[147] R. K. Jakobsen. “Sequencing the genome of an entire population”. In: ScienceNordic

(2012). Available at: http : / / sciencenordic . com / sequencing - genome -

entire-population. Accessed on Apr. 19, 2020.

[148] M. Janitz. Next-generation genome sequencing: towards personalized medicine.

John Wiley & Sons, 2011.

[149] P. Jayanti, T. D. Chandra, and S. Toueg. “Fault-tolerant Wait-free Shared Objects”.

In: J. ACM 45.3 (1998), pp. 451–500.

[150] A. Johnson and V. Shmatikov. “Privacy-preserving data exploration in genome-wide

association studies”. In: Proc. of the 19th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD). 2013, pp. 1079–1087.

[151] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze. “Compression of next-

generation sequencing reads aided by highly efficient de novo assembly”. In: Nucleic

acids research 40.22 (2012), e171–e171.

[152] A. Juels and B. S. Kaliski Jr. “PORs: Proofs of retrievability for large files”. In: Proc.

of the 14th ACM conference on Computer and communications security (CCS).

2007, pp. 584–597.

[153] K. Zhang et al. “Sedic: privacy-aware data intensive computing on hybrid clouds”.

In: Proc. of the 18th ACM conference on Computer and communications security

(CCS).

[154] S. D. Kahn et al. “On the future of genomic data”. In: Science(Washington) 331.6018

(2011), pp. 728–729.

[155] D. J. Kaufman, J. Murphy-Bollinger, J. Scott, and et al. “Public opinion about the

importance of privacy in biobank research”. In: The American Journal of Human

Genetics 85.5 (2009), pp. 643–654.

[156] T. E. King and M. A. Jobling. “What’s in a name? Y chromosomes, surnames and

the genetic genealogy revolution”. In: Trends in Genetics 25.8 (2009), pp. 351–360.

145

http://sciencenordic.com/sequencing-genome-entire-population
http://sciencenordic.com/sequencing-genome-entire-population

[157] R. K. Ko. “Data accountability in cloud systems”. In: Security, Privacy and Trust in

Cloud Systems. Springer, 2014, pp. 211–238.

[158] R. K. Ko, B. S. Lee, and S. Pearson. “Towards achieving accountability, auditability

and trust in cloud computing”. In: Proc. of the 1st International Conference on

Advances in Computing and Communications (ACC). 2011, pp. 432–444.

[159] M. Kolhar, M. M. Abu-Alhaj, and S. M. A. El-atty. “Cloud data auditing techniques

with a focus on privacy and security”. In: IEEE Security & Privacy 15.1 (2017),

pp. 42–51.

[160] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, and G. Varghese. “Compress-

ing genomic sequence fragments using SlimGene”. In: Journal of Computational

Biology 18.3 (2011), pp. 401–413.

[161] H. Krawczyk. “Secret sharing made short”. In: Proc. of the 13th Annual Interna-

tional Cryptology Conference (CRYPTO). 1993, pp. 136–146.

[162] L. Lamport. “On interprocess communication”. In: Distributed computing 1.2

(1986), pp. 86–101.

[163] L. Lamport. “Lower Bounds for Asynchronous Consensus”. In: Distrib. Comput.

19.2 (2006), pp. 104–125.

[164] A. Lesk. Introduction to bioinformatics. Oxford University Press, 2013.

[165] H. Li and N. Homer. “A survey of sequence alignment algorithms for next-generation

sequencing”. In: Briefings in bioinformatics 11.5 (2010), pp. 473–483.

[166] H. Li, B. Handsaker, A. Wysoker, et al. “The sequence alignment/map format and

SAMtools”. In: Bioinformatics 25.16 (2009), pp. 2078–2079.

[167] P. Li and C. König. “b-Bit minwise hashing”. In: Proc. of the 19th International

Conference on World Wide Web (WWW). 2010, pp. 671–680.

[168] M. Lillibridge et al. “Sparse Indexing: Large Scale, Inline Deduplication Using

Sampling and Locality”. In: Proc. of the USENIX Conference on File and Storage

Technologies (FAST). Vol. 9. 2009, pp. 111–123.

146

[169] Z. Lin, A. B. Owen, and R. B. Altman. “Genomic Research and Human Subject

Privacy”. In: Science 305.5681 (2004), p. 183.

[170] J.-E. Litton, J. Muilu, A. Bjorklund, A. Leinonen, and N. L. Pedersen. “Data

modeling and data communication in GenomEUtwin”. In: Twin Research 6.5 (2003),

pp. 383–390.

[171] J.-E. Litton, R. Martinez, J. Reichel, et al. Disclosure Model. Deliverable D1.4 of

BiobankCloud Project. 2015.

[172] L. Liu, Y. Li, S. Li, et al. “Comparison of next-generation sequencing systems”. In:

Journal of Biomedicine and Biotechnology 2012 (2012), pp. 1–11.

[173] Logical Clocks. Hopsworks: The Platform for Data-Intensive AI with a Feature

Store. Available at https://www.logicalclocks.com/. Accessed on Apr. 19,

2020. 2020.

[174] LongFastBloomFilter. http://code.google.com/p/java-longfastbloomfilter/.

Accessed on Apr. 19, 2020. 2020.

[175] M. P. Van der Loo. “The stringdist package for approximate string matching”. In:

The R (2014), p. 2.

[176] M. Mahoney. The LPAQ Compression Algorithm. Available at http://mattmahoney.

net/dc/#lpaq. Accessed on Apr. 19, 2020. 2007.

[177] M. Mahoney. Data compression explained. Available at http://mattmahoney.

net/dc/dce.html. Accessed on Apr. 19, 2020. 2013.

[178] M. Mahoney. The ZPAQ Compression Algorithm. Available at http://mattmahoney.

net/dc/zpaq_compression.pdf. Accessed on Apr. 19, 2020. 2015.

[179] D. Malkhi and M. Reiter. “Byzantine quorum systems”. In: Distributed Computing

11.4 (1998), pp. 203–213.

[180] E. R. Mardis. “Next-generation DNA sequencing methods”. In: Annual Review of

Genomics and Human Genetics 9 (2008), pp. 387–402.

147

https://www.logicalclocks.com/
http://code.google.com/p/java-longfastbloomfilter/
http://mattmahoney.net/dc/#lpaq
http://mattmahoney.net/dc/#lpaq
http://mattmahoney.net/dc/dce.html
http://mattmahoney.net/dc/dce.html
http://mattmahoney.net/dc/zpaq_compression.pdf
http://mattmahoney.net/dc/zpaq_compression.pdf

[181] V. Marx. “Biology: The big challenges of big data”. In: Nature 498.7453 (2013),

pp. 255–260.

[182] G. Mayer. “Data management in systems biology I - Overview and bibliography”.

In: CoRR abs/0908.0411 (2009).

[183] R. Mendes, T. Oliveira, V. V. Cogo, N. Neves, and A. Bessani. “CHARON: A Secure

Cloud-of-Clouds System for Storing and Sharing Big Data”. In: IEEE Transactions

on Cloud Computing (TCC) Early Access (2019), pp. 1–12.

[184] Microsoft Corporation. Windows Azure Pricing. Available at https://azure.

microsoft.com/pricing/details/storage/blobs/. Accessed on Apr. 19,

2020. 2020.

[185] A. Moffat. “Implementing the PPM data compression scheme”. In: IEEE Transac-

tions on communications 38.11 (1990), pp. 1917–1921.

[186] M. Molteni. These DNA Startups Want to Put All of You on the Blockchain. Available

at https://www.wired.com/story/these-dna-startups-want-to-put-

all-of-you-on-the-blockchain/. Accessed on Apr. 19, 2020. 2018.

[187] J. Muilu, L. Peltonen, and J.-E. Litton. “The federated database–a basis for biobank-

based post-genome studies, integrating phenome and genome data from 600 000

twin pairs in Europe”. In: European Journal of Human Genetics 15.7 (2007),

pp. 718–723.

[188] R. Myers et al. Genome Reference Consortium. Available at http://genomereference.

org/. Accessed on Apr. 19, 2020. 2020.

[189] M. Naehrig, K. Lauter, and V. Vaikuntanathan. “Can homomorphic encryption

be practical?” In: Proc. of the 3rd ACM workshop on Cloud computing security

workshop (CCSW). 2011, pp. 113–124.

[190] V. Navale and P. E. Bourne. “Cloud computing applications for biomedical science:

A perspective”. In: PLOS Computational Biology 14.6 (2018).

[191] M. Naveed, E. Ayday, E. W. Clayton, et al. “Privacy in the genomic era”. In: ACM

Computing Surveys (CSUR) 48.1 (2015), p. 6.

148

https://azure.microsoft.com/pricing/details/storage/blobs/
https://azure.microsoft.com/pricing/details/storage/blobs/
https://www.wired.com/story/these-dna-startups-want-to-put-all-of-you-on-the-blockchain/
https://www.wired.com/story/these-dna-startups-want-to-put-all-of-you-on-the-blockchain/
http://genomereference.org/
http://genomereference.org/

[192] S. Niazi, M. Ismail, S. Haridi, et al. “Hopsfs: Scaling hierarchical file system

metadata using newsql databases”. In: 15th USENIX Conference on File and Storage

Technologies (FAST 17). 2017, pp. 89–104.

[193] M. Nicolae. Estimating Sequencing Coverage. Available at https://github.com/

mariusmni/lfqc/issues/4. Accessed on Apr. 19, 2020. 2020.

[194] M. Nicolae, S. Pathak, and S. Rajasekaran. “LFQC: a lossless compression algo-

rithm for FASTQ files”. In: Bioinformatics 31.20 (2015), pp. 3276–3281.

[195] D. R. Nyholt, C.-E. Yu, and P. M. Visscher. “On Jim Watson’s APoE status: genetic

information is hard to hide”. In: European Journal of Human Genetics 17 (2009),

pp. 147–149.

[196] I. Ochoa, M. Hernaez, R. Goldfeder, T. Weissman, and E. Ashley. “Effect of lossy

compression of quality scores on variant calling”. In: Briefings in bioinformatics

18.2 (2017), pp. 183–194.

[197] W. Ollier, T. Sprosen, and T. Peakman. “UK Biobank: from concept to reality”. In:

Pharmacogenomics 6.6 (2005), pp. 639–646.

[198] OMIM. OMIM. Available at: http://omim.org/. Accessed on Apr. 19, 2020.

2020.

[199] Oracle, Inc. Oracle Storage Pricing. Available at https://cloud.oracle.com/

storage/pricing. Accessed on Apr. 19, 2020. 2020.

[200] C. Orengo, D. T. Jones, and J. M. Thornton. Bioinformatics: genes, proteins and

computers. Garland Science, 2003.

[201] E. Parliament. “Regulation (EU) 2016/679 of the European Parliament and of the

Council of 27 April 2016 on the protection of natural persons with regard to the

processing of personal data and on the free movement of such data, and repealing

Directive 95/46/EC (General Data Protection Regulation)”. In: Official Journal of

the European Union L119 (2016), pp. 1–88.

[202] J. Paulo and J. Pereira. “A survey and classification of storage deduplication sys-

tems”. In: ACM Computing Surveys (CSUR) 47.1 (2014), p. 11.

149

https://github.com/mariusmni/lfqc/issues/4
https://github.com/mariusmni/lfqc/issues/4
http://omim.org/
https://cloud.oracle.com/storage/pricing
https://cloud.oracle.com/storage/pricing

[203] D. Pavlichin, T. Weissman, and G. Mably. “The quest to save genomics: Unless

researchers solve the looming data compression problem, biomedical science could

stagnate”. In: IEEE Spectrum 55.9 (2018), pp. 27–31.

[204] I. Pavlov. LZMA. Available at https://www.7-zip.org/. Accessed on Apr. 19,

2020. 2020.

[205] W. R. Pearson and D. J. Lipman. “Improved tools for biological sequence compari-

son”. In: Proceedings of the National Academy of Sciences (PNAS) of the United

States of America 85.8 (1988), pp. 2444–2448.

[206] A. J. Pinho and D. Pratas. “MFCompress: a compression tool for FASTA and

multi-FASTA data”. In: Bioinformatics 30.1 (2014), pp. 117–118.

[207] J. S. Plank. “Erasure codes for storage systems: A brief primer”. In: The USENIX

Magazine 38.6 (2013), pp. 44–50.

[208] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang. “Enabling Secu-

rity in Cloud Storage SLAs with CloudProof.” In: Proc. of the USENIX Annual

Technical Conference (ATC). Vol. 242. 2011.

[209] M. O. Rabin. “Efficient dispersal of information for security, load balancing, and

fault tolerance”. In: Journal of the ACM (JACM) 36.2 (1989), pp. 335–348.

[210] M. O. Rabin et al. Fingerprinting by random polynomials. Center for Research in

Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[211] A. Regalado. China’s BGI says it can sequence a genome for just $100. Available at

https://www.technologyreview.com/s/615289/china-bgi-100-dollar-

genome/. Accessed on Apr. 19, 2020. 2020.

[212] J. K. Resch and J. S. Plank. “AONT-RS: Blending Security and Performance in

Dispersed Storage Systems”. In: Proc. of the 9th USENIX Conference on File and

Storage Technologies (FAST). 2011, p. 14.

[213] Ł. Roguski and S. Deorowicz. “DSRC 2—Industry-oriented compression of FASTQ

files”. In: Bioinformatics 30.15 (2014), pp. 2213–2215.

150

https://www.7-zip.org/
https://www.technologyreview.com/s/615289/china-bgi-100-dollar-genome/
https://www.technologyreview.com/s/615289/china-bgi-100-dollar-genome/

[214] L. Roguski, I. Ochoa, M. Hernaez, and S. Deorowicz. “FaStore: a space-saving

solution for raw sequencing data”. In: Bioinformatics 34.16 (2018), pp. 2748–2756.

[215] C. M. Ruitberg, D. J. Reeder, and J. M. Butler. “STRBase: a short tandem re-

peat DNA database for the human identity testing community”. In: Nucleic Acids

Research 29.1 (2001), pp. 320–322.

[216] M. Sabt, M. Achemlal, and A. Bouabdallah. “Trusted execution environment: what

it is, and what it is not”. In: 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. IEEE.

2015, pp. 57–64.

[217] M. Safran et al. “GeneCards Version 3: the human gene integrator”. In: Database

2010 (2010), baq020.

[218] D. Salomon and G. Motta. Handbook of data compression. Springer Science &

Business Media, 2010.

[219] V. A. Schneider et al. “Evaluation of GRCh38 and de novo haploid genome assem-

blies demonstrates the enduring quality of the reference assembly”. In: Genome

Research 27.5 (2017), pp. 849–864.

[220] O. Security. The 21 Biggest Data Breaches Of The 21st Century. Available at

https://optimumsecurity.ca/21-biggest-data-breach-of-21-century.

Accessed on Apr. 19, 2020. 2020.

[221] J. Seward. bzip2 and libbzip2. Available at https://github.com/enthought/

bzip2-1.0.6. Accessed on Apr. 19, 2020. 2020.

[222] A. Shamir. “How to Share a Secret”. In: Communications of the ACM 22.11 (1979),

pp. 612–613.

[223] J. Shendure and H. Ji. “Next-generation DNA sequencing”. In: Nature biotechnology

26.10 (2008), pp. 1135–1145.

[224] S. S. Shringarpure and C. D. Bustamante. “Privacy risks from genomic data-sharing

beacons”. In: The American Journal of Human Genetics 97.5 (2015), pp. 631–646.

151

https://optimumsecurity.ca/21-biggest-data-breach-of-21-century
https://github.com/enthought/bzip2-1.0.6
https://github.com/enthought/bzip2-1.0.6

[225] D. Slamanig and C. Hanser. “On cloud storage and the cloud of clouds approach”.

In: Proc. of the IEEE International Conference for Internet Technology And Secured

Transactions (ICITST). 2012, pp. 649–655.

[226] Sorenson Molecular Genealogy Foundation. SMGF: Y-Chormosome database.

Originally available at http://www.smgf.org/. Accessed on Aug. 9, 2013.

Permanently available at http://web.archive.org/web/20130809023911/

http://www.smgf.org/. 2020.

[227] A. Spiegelman, Y. Cassuto, G. Chockler, and I. Keidar. “Space bounds for reliable

storage: Fundamental limits of coding”. In: Proc. of the 35th ACM Symposium on

Principles of Distributed Computing (PODC). 2016, pp. 249–258.

[228] L. D. Stein et al. “The case for cloud computing in genome informatics”. In: Genome

Biology 11.5 (2010), p. 207.

[229] M. Steinbach, G. Karypis, V. Kumar, et al. “A comparison of document clustering

techniques”. In: Proc. of the KDD Workshop on Text Mining. Vol. 400. 1. 2000,

pp. 525–526.

[230] Z. D. Stephens, S. Y. Lee, F. Faghri, et al. “Big data: astronomical or genomical?”

In: PLOS Biology 13.7 (2015), e1002195.

[231] H. Takabi, J. B. Joshi, and G.-J. Ahn. “Security and privacy challenges in cloud

computing environments”. In: IEEE Security & Privacy 8.6 (2010), pp. 24–31.

[232] G. Tan, L. Opitz, R. Schlapbach, and H. Rehrauer. “Long fragments achieve lower

base quality in Illumina paired-end sequencing”. In: Scientific Reports 9:2856.1

(2019), pp. 1–7.

[233] H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo. “UniDrive: Synergize Multiple Con-

sumer Cloud Storage Services”. In: Proc. of the ACM/IFIP/USENIX Middleware.

2015.

[234] W. Tembe, J. Lowey, and E. Suh. “G-SQZ: compact encoding of genomic sequence

and quality data”. In: Bioinformatics 26.17 (2010), pp. 2192–2194.

152

http://www.smgf.org/
http://web.archive.org/web/20130809023911/http://www.smgf.org/
http://web.archive.org/web/20130809023911/http://www.smgf.org/

[235] The 1000 Genomes Project Consortium. “An integrated map of genetic variation

from 1,092 human genomes”. In: Nature 491 (2012), pp. 56–65.

[236] G. Tischler and S. Leonard. “biobambam: tools for read pair collation based al-

gorithms on BAM files”. In: Source Code for Biology and Medicine 9.1 (2014),

p. 13.

[237] UK Biobank. UK Biobank. Available at http : / / www . ukbiobank . ac . uk/.

Accessed on Apr. 19, 2020. 2020.

[238] UniProt Consortium. “The universal protein resource (UniProt)”. In: Nucleic Acids

Research 36.suppl 1 (2008), pp. D190–D195.

[239] U.S. National Library of Medicine. Help Me Understand Genetics. Available at

https://ghr.nlm.nih.gov/primer. Accessed on Apr. 19, 2020. 2020.

[240] B. Vavala, N. Neves, and P. Steenkiste. “Secure tera-scale data crunching with

a small TCB”. In: 2017 47th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). IEEE. 2017, pp. 169–180.

[241] Vawlt Technologies. Vawlt - Dynamic Storage Platform. Available at https://

vawlt.io/. Accessed on Apr. 19, 2020. 2020.

[242] E Vayena and U Gasser. “Between Openness and Privacy in Genomics.” In: PLOS

Medicine 13.1 (2016), e1001937.

[243] J. C. Venter et al. “The sequence of the human genome”. In: Science 291.5507

(2001), pp. 1304–1351.

[244] P. E. Verissimo and A. Bessani. “E-biobanking: What Have You Done to My Cell

Samples?” In: IEEE Security&Privacy 11.6 (2013), pp. 62–65.

[245] R. Wan and K. Asai. “Sorting next generation sequencing data improves compres-

sion effectiveness”. In: Proc. of the IEEE International Conference on Bioinformat-

ics and Biomedicine Workshops (BIBMW). 2010, pp. 567–572.

[246] R. Wan, V. N. Anh, and K. Asai. “Transformations for the compression of FASTQ

quality scores of next-generation sequencing data”. In: Bioinformatics 28.5 (2012),

pp. 628–635.

153

http://www.ukbiobank.ac.uk/
https://ghr.nlm.nih.gov/primer
https://vawlt.io/
https://vawlt.io/

[247] S. Wandelt and U. Leser. “FRESCO: Referential compression of highly similar

sequences”. In: IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics (TCBB) 10.5 (2013), pp. 1275–1288.

[248] S. Wandelt, M. Bux, and U. Leser. “Trends in genome compression”. In: Current

Bioinformatics 9.3 (2014), pp. 315–326.

[249] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou. “Privacy-preserving public

auditing for secure cloud storage”. In: IEEE Transactions on Computers 62.2 (2013),

pp. 362–375.

[250] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou. “Learning Your Identity and

Disease from Research Papers: Information Leaks in Genome Wide Association

Study”. In: Proc. of the 16th ACM conference on Computer and communications

security (CCS). 2009, pp. 534–544.

[251] R. W. G. Watson, E. W. Kay, and D. Smith. “Integrating biobanks: addressing the

practical and ethical issues to deliver a valuable tool for cancer research”. In: Nature

Reviews Cancer 10.9 (2010), pp. 646–651.

[252] H. Weatherspoon and J. D. Kubiatowicz. “Erasure coding vs. replication: A quanti-

tative comparison”. In: Peer-to-Peer Systems. Springer, 2002, pp. 328–337.

[253] K. A. Wetterstrand. DNA Sequencing Costs. Available at http://www.genome.

gov/sequencingcostsdata. Accessed on Apr. 19, 2020. 2020.

[254] D. A. Wheeler et al. “The complete genome of an individual by massively parallel

DNA sequencing”. In: Nature 452.7189 (2008), pp. 872–876.

[255] C. Wilks, M. S. Cline, E. Weiler, et al. “The Cancer Genomics Hub (CGHub):

overcoming cancer through the power of torrential data”. In: Database 2014 (2014),

bau093.

[256] L. Xu, A. Pavlo, S. Sengupta, and G. R. Ganger. “Online Deduplication for

Databases”. In: Proc. of the ACM International Conference on Management of

Data (SIGMOD). 2017, pp. 1355–1368.

154

http://www.genome.gov/sequencingcostsdata
http://www.genome.gov/sequencingcostsdata

[257] A. R. Yumerefendi and J. S. Chase. “The role of accountability in dependable

distributed systems”. In: Proc. of the 1st Workshop on Hot Topics in System De-

pendability (HotDep). Vol. 5. 2005, pp. 3–3.

[258] Y. Zhang, K. Patel, T. Endrawis, A. Bowers, and Y. Sun. “A FASTQ compressor

based on integer-mapped k-mer indexing for biologist”. In: Gene 579.1 (2016),

pp. 75–81.

[259] Y. Zhang et al. “Light-weight reference-based compression of FASTQ data”. In:

BMC Bioinformatics 16.1 (2015), p. 188.

[260] J. Zhou, Z. Ji, Z. Zhu, and S. He. “Compression of next-generation sequencing

quality scores using memetic algorithm”. In: BMC Bioinformatics 15.15 (2014),

p. 1.

[261] B. Zhu, K. Li, and R. H. Patterson. “Avoiding the Disk Bottleneck in the Data

Domain Deduplication File System”. In: Proc. of the USENIX Conference on File

and Storage Technologies (FAST). Vol. 8. 2008, pp. 1–14.

155

	Cover
	Titlepage
	Abstract
	Acknowledgements
	Funding
	List of Figures
	List of Tables
	1 Introduction
	1.1 Main Goal and Context
	1.2 Contributions
	1.3 Thesis Hypothesis
	1.4 Structure of the Thesis

	2 Background and Related Work
	2.1 A Brief Background on Human Genomes
	2.2 Genome Sequencing
	2.3 Storage of Genomic Data
	2.4 Security and Dependability in Storage
	2.5 Privacy-Aware Storage Techniques
	2.6 Data-Reduction Techniques
	2.7 Storage Auditability
	2.8 Discussion

	3 Detection of Privacy-Sensitive Portions in Human Genomes
	3.1 The Detection Method
	3.1.1 Overview
	3.1.2 Privacy-Sensitive Human Genomic Data
	3.1.3 Implementation

	3.2 Experimental Evaluation
	3.2.1 Experimental Setup
	3.2.2 Privacy-Sensitivity of Human Genomes
	3.2.3 Space Efficiency
	3.2.4 Throughput Performance

	3.3 Completeness of the Method
	3.4 Final Remarks

	4 Sequencing Data Reduction with Similarity-based Deduplication and Delta-Encoding
	4.1 Anatomy of a FASTQ Entry
	4.1.1 Comment Lines
	4.1.2 DNA
	4.1.3 Quality Scores (QS)

	4.2 Sequencing Data Compression
	4.3 Human Genome Deduplication
	4.3.1 Identity-based Deduplication
	4.3.2 Similarity-based Deduplication

	4.4 GenoDedup
	4.4.1 Overview
	4.4.2 Offline Phase
	4.4.3 Optimisations of the Online Phase

	4.5 Evaluation
	4.5.1 Encoding Gains
	4.5.2 Performance
	4.5.3 Large End-to-End Workload

	4.6 Discussion
	4.6.1 Other Data Representations
	4.6.2 Paired-end Sequencing
	4.6.3 Other Species
	4.6.4 Other Sequencing Machines
	4.6.5 Other Sequence Lengths
	4.6.6 Reordering FASTQ entries

	4.7 Final Remarks

	5 Auditability of Effective Reads in Register Emulations
	5.1 Preliminaries
	5.2 Auditable Register Emulations
	5.3 Preliminary Results
	5.4 Resilience Lower Bounds
	5.5 Audit Algorithm
	5.6 Alternative Models for the Algorithm
	5.6.1 Signed Read Requests
	5.6.2 Total Order
	5.6.3 Non-fast Reads

	5.7 Final Remarks

	6 An End-to-End Storage Pipeline for Human Genomes
	6.1 The Pipeline
	6.1.1 Sequencing
	6.1.2 Detection
	6.1.3 Reduction
	6.1.4 Storage
	6.1.5 Management

	6.2 Feasibility Discussion
	6.3 Final Remarks

	7 Conclusion
	7.1 Final Remarks
	7.2 Future Work

	Bibliography

