
Rapid host-plant adaptation in the herbivorous spider
mite Tetranychus urticae occurs at low cost
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The herbivorous spider mite Tetranychus urticae is a generalist

world crop pest. Early evidence for host races, its fully

sequenced genome resolved to the chromosome level, and the

development of other molecular tools in this species suggest

that this arthropod can be a good model to address host plant

adaptation and early stages of speciation. Here, we evaluate

this possibility by reviewing recent studies of host-plant

adaptation in T. urticae. We find that evidence for costs of

adaptation are relatively scarce and that studies involving

molecular-genetics and genomics are mostly disconnected

from those with phenotypic tests. Still, with the ongoing

development of genetic and genomic tools for this species,

T. urticae is becoming an attractive model to understand the

molecular basis of host-plant adaptation.
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Introduction
The interaction between herbivores and plants is a

textbook example for the evolution of ecological inter-

actions [1,2]. Given the differential selection pressures

that host plants exert upon herbivores, these may evolve

to become specialized on a particular subset of hosts [3].

Such ecological specialization is expected when local

adaptation to different hosts occurs through divergent

selection, that is when phenotypes favored on a given set

of hosts are selected against in others [4,5]. Moreover,

organisms preferring particular host plants will be

more often exposed to them, fostering evolution of
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specialization [6]. This results in trade-offs and fitness

costs when the ability to feed and reproduce on a particu-

lar host leads to poorer performance on other host plants

[4]. The high prevalence of specialist species among

herbivorous arthropods [7] is in agreement with this

hypothesis. Indeed, it is estimated that over 25% of all

multicellular species are plant-feeding arthropods [2], and

this extreme diversity is thought to result from increased

opportunities for ecological speciation via host shifts [8,9].

Generalist plant-feeding arthropods challenge the

prediction that host-plant adaptation leads to ecological

specialization. Indeed,generalist species may be composed

of individuals that are able to thrive on many hosts.

Alternatively, they may represent a compilation of host

races, that is genetically distinct populations specialized on

particular host plants [10,11]. The occurrence of such races,

especiallyamongsympatric populations, suggests that costs

of adaptation also occur within generalist species, which

may be experiencing early steps of speciation.

Spider mites (Acari: Tetranychidae) are a family of

haplodiploid herbivorous mite species that colonize a

highly variable number of host plants [12]. A recent study

suggests that most limitations in host range in this group

stem from the lack of geographic co-occurrence of spider-

mite and plant species, rather than from phylogenetic

distance between host plants [13]. Additionally, equivocal

evidence for the occurrence of host races within several

species of this group has been documented [14��].

Tetranychus urticae is an extreme generalist spider-mite

crop pest, colonizing more than 900 host plant species

[15]. Given its high economic impact, understanding how

it adapts to different host plants is highly relevant from an

applied perspective [16��]. Most studies on host races in

the Acari have been done with this species, providing

mixed evidence for their occurrence [14��]. Moreover,

experimental evolution studies under controlled labora-

tory conditions suggest that rapid adaptation to novel host

plants occurs often, and that this process does not entail

high costs [17]. The sequencing of the genome of this

species [16��] opened the door to understand these

processes at the genomic level. Since then, a great effort

has been put into characterizing the genetic basis of the

response to different host plants and to pesticides

(e.g. [18,19��]). The evolution of pesticide resistance in

T. urticae and its potential connection with wide host

range has been reviewed recently [20]. Here, we review
www.sciencedirect.com
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our current knowledge on the evolution of host use in

T. urticae based on studies from field populations and

experimental evolution.

Evidence for host-plant driven divergence in
field populations of T. urticae
In the field, T. urticae often occurs on several host plants

even within small spatial scales, making it an excellent

system to study early stages of ecological specialization

[14��]. Ecological specialization is expected to reduce

gene flow between locally adapted populations. This

may lead to increased genetic differentiation and

accumulation of incompatibilities between populations

on different host plants, potentially forming host races

[11]. For spider mites collected from the field, host races

can be detected by measuring (a) genetic differentiation

using genetic markers; (b) reproductive incompatibilities

based on inter-population crosses; or (c) performance on

different host plants based on common garden

experiments.

Results from field studies reveal inconsistent evidence of

specialization (Table 1). This could be explained by the

fact that measures of ecological specialization can be

confounded with isolation by distance (IBD), that is

the increased genetic differentiation with geographic

distance due to limited dispersal [21]. Thus, spider-mites

from different hosts could be genetically distinct simply

because they were collected from distant places. This

effect is minimized by collecting individuals from

different hosts in the same geographic area (e.g. [22]),

or by accounting for IBD when evaluating genetic

differences between populations [21].

Evidence for fitness costs has come from reports of partial

incompatible crosses between T. urticae populations from

different hosts collected in the same location [23,24].

Early genetic studies based on allozymes reported higher

differentiation between hosts [25,26], but when

accounting for IBD by comparing differentiation patterns

at small scales and across wider areas, geographic distance

seemed to explain most of the genetic differentiation

patterns [22,25,27]. More recent studies based on

mitochondrial DNA (mtDNA), microsatellites and other

nuclear markers confirm that population structure reflects

mostly limitations to dispersal across space rather than

host use [28–31], despite cases of host-related

differentiation (e.g. [32]).

The evolution of specialization depends on environmen-

tal and ecological factors that vary across space (e.g.

landscape structure, endosymbionts, parasites, predators),

which affect demography and metapopulation dynamics.

Moreover, seasonal changes in host availability can

prevent specialization (e.g. [33]). Interactions between

these factors are complex and their impact may vary, even

within a single system. For instance, genetic differences
www.sciencedirect.com 
between T. urticae populations from rosebay and other

hosts (e.g. citrus, tomato) were found in the Western but

not in the Eastern Mediterranean region [25].

So far, studies of field populations have not made use of

the well-annotated reference genome of T. urticae [16��].
This is unfortunate, as genomic studies of field T. urticae
populations hold the promise of uncovering genes

responsible for host-adaptation, while accounting for

the effects of isolation by distance and demographic

history [21,34], as well as symbionts and cryptic species

[35], as recently done to study ecological speciation in

other phytophagous arthropods (e.g. Rhagoletis flies [36]).

Evidence for rapid host-plant adaptation from
experimental evolution studies
Experimental evolution is a methodology that follows the

phenotypic and/or genotypic changes of populations

placed in different environments over multiple genera-

tions [37]. Its experimental power relies on (a) knowledge

of the ancestral state of populations, (b) the ability to

manipulate environmental variables under controlled

settings and (c) having replicates at the population level

(Figure 1). This allows causality to be inferred between

the environmental variable being manipulated and the

evolutionary change observed in populations [37,38].

Additionally, in experimental evolution designs, traits

can be assessed in multiple environments, allowing

correlated responses to selection to be assessed (e.g. costs

of adaptation). The disadvantage of such set-ups are that

they do not necessarily encompass all the relevant

selection pressures that populations are exposed to in

natural settings.

We found a total of 14 experimental evolution studies of

host use in T. urticae, some of which were reported across

several articles (Table 2). Most studies revealed rapid

adaptation to novel hosts (usually tomato, but also

broccoli, cucumber or cotton plants) with few costs of

performance on ancestral hosts (mostly bean plants),

while some studies showed no evidence of adaptation.

However, several requirements must be met to draw such

conclusions (Figure 2). First, rapid evolution rests upon

the existence of genetic variation in the initial population.

Although no study has explicitly measured the genetic

variation upon collection in the field, some studies report

the number of individuals used to form base populations

in the laboratory, which can serve as an indication of such

variation (Table 2). Second, and for the same reason,

experimentally evolving populations should be initiated

from a high number of individuals. Otherwise, genetic

drift due to small populations and/or founder events can

lead to loss of genetic diversity and mask the effects of

natural selection (Figure 2). Third, having replicates at

the population level (n > 1) is essential to disentangle

adaptation by natural selection from drift (Figure 2, [37]).

Finally, it is only possible to disentangle genetic from
Current Opinion in Insect Science 2019, 36:82–89
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Table 1

Studies addressing host-plant specialization based on field populations of T. urticae.

Host plants Measures of

fitness costsa
Molecular

makers

Account for

symbiont

infection?

Account for

isolation by

distance?

Geography

explains

patterns?

Host

speciali-

zation?

Refs.

Perf. in the lab Reprod. Incomp. Genetic diff. Type of marker # loci

Chrysanthemum, rose U n/a n/a No Yes n/a Yes [23]

Rose, gerbera, ivy, croton, rhododendron U n/a n/a No No No No [24]

Tomato, cucumber U U Allozymes 1 No No n/a Yes [52]

Lemon, citron, lichwort, pumpkin, tomato, okra U Allozymes 4 No Yes Yes No [27]

Rose, carnation, lemon, amaranth, eggplant,

tomato, pumpkin, cucumber, bean, setaria,

watermelon, melon, malva

U Allozymes 4 No Yes Yes Yes/Nod [26]

Rose, field bindweed, European black

nightshade, carnation, violet, red-root

amaranth, eggplant, tomato

U Allozymes 4 No Yes Yes No [22]

Common spindle, common honeysuckle U AFLP 53 No Yes n/a Yes [53]

Rosebay compared to several other plants Ub U Allozymes 4 Yesc No Yes Yes/Noe [25]

Eggplant, french bean U Microsatellite 5 No Yes n/a No [29]

rosebay, lemon, tomato U n/a n/a No No No Yes/Nof [39��]
Lemon, annual mercury U n/a n/a No Yes n/a Yes [54]

Clementine, tall fescue U Microsatellite 18 No Yes n/a Yes [32]

– no effect found.

U – significant difference found.

# – numbers.

n/a – not applicable.
a Measures of fitness costs in field populations vary across studies and include: quantification of reproductive incompatibilities (Reprod. Incomp.) with inter-population crosses, quantification of

genetic differentiation (Genetic diff.) with molecular markers, and assessing performance in controlled laboratory conditions (Perf. in the lab).
b Crosses between rosebay from different locations and a laboratory strain.
c Tested for Wolbachia infection in inter-population crosses.
d Yes for populations collected on lemon trees in open-field habitats only. No for all populations sampled in greenhouses.
e Yes on rosebay in Western Mediterranean region, no in Eastern Mediterranean region.
f Yes for populations collected on tomato and lemon, no for populations collected on rosebay.
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Figure 1

(a)

(c)

(b)

(d)
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Set-up to unravel adaptation and its potential costs using experimental evolution. (a) In experimental evolution studies, adaptation (and the cost of

adaptation) is tested by transferring and allowing populations to evolve on a novel host plant (in orange) from populations that are maintained on a

control host plant (‘ancestral populations’ in blue). ‘Reverse populations’ (in green), derived from those already adapted to the novel host (in

orange), can also be placed back in the ancestral host plant. (b) Adaptation is then measured by comparing trait values (e.g. fecundity, survival,

acceptance) of the adapted populations with those of the ancestral populations on the novel host plant, while the cost of adaptation is measured

by comparing trait values of adapted and ancestral populations on the ancestral host plant, and/or by comparing adapted and reverse populations

on the novel host plant. (c) The assumption here is that populations adapted to the novel host reach a plateau and do not continue increasing

their performance on the novel host plant, while the performance of reverse populations decreases with time if such adaptation is costly to

maintain (i.e. cost of adaptation). (d) If adaptation entails a cost, the performance of the populations evolving in the novel host should decrease in

the ancestral host plant, and the cost of adaptation should disappear in the reverse populations while they are re-adapting to the ancestral host.
plastic responses if individuals are placed in a common

environment before being tested for adaptation.

Nine out of the 14 studies tested for the occurrence of costs

of adaptation. Out of these, three found a cost. Two of these

[39��,40] show inconsistencies in the different measures

used to test for costs: Fry [40] found a cost when using

reverse lines but not when testing mite performance in the

ancestral environment, whereas Fellous et al. [39��] found a

cost of rosebay adapted mites when tested on tomato that

was not recapitulated in tests involving field populations.

The third study found that populations evolving on the

novel host performed worse than control populations on

both the novel and the ancestral host [41]. These results are

more consistent with an overall poor performance of those

populations, possibly due to inbreeding depression instead

of a cost of adaptation, as those populations were initiated

with two individuals only. Therefore, overall, evidence of

costs of adaptation are, at most, equivocal.
www.sciencedirect.com 
Only six studies so far have exploited molecular-genetic

methods to unravel host-plant adaptation in T. urticae
[42–44,45�], and of those six, only two combine such

techniques with phenotypic measurements [19��,46�].
Although some studies found a link between the

response to host plants and pesticides, most of these

studies focused on transcriptome profiles or differential

expression of particular genes. Hence, molecular-genetic

and genomic approaches have been largely disconnected

from phenotypic studies [42–44,45�]. Still, the recent

study of Wybouw et al. [19��] illustrates the potential

of combining experimental evolution with genomic data.

Their results suggest that adaptation to new hosts is

likely polygenic, involving several genes and phenotypic

traits [19��]. Hence, although studies combining

genomics and phenotypes are still in their infancy

[19��,46�], this will be required for a clear identification

of the genetic basis of adaptation to different host plants

in T. urticae.
Current Opinion in Insect Science 2019, 36:82–89
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Table 2

Studies addressing the host range of T. urticae using experimental evolution.

Field Laboratory and experimental evolution Evolved

adaptation?

Evolved costs

of adaptation?

Molecular

biology?

References

Field host # Initial

collected

Rearing

host

Novel host

plant

Replicate number # Initial per

replicate

Generations

Peach 200 Bean Cucumber 1 200 5, 42 Yes No n/a [55]

Corn 1000 Bean Tomato, broccoli 1 300 14, 50 Yes Yes n/a [40,56,57]

Rose 500b Bean Bean with mycorrhizal

fungi, bean with nematodes

1 >10000 15 Yes n/ac n/a [58]

Tomato, nerium,

citrus

5–30 Bean Tomato, nerium, citrus 4, 2 or 1 20 4–8 Yes Yes n/a [39��]

Cucumber 5000b Cucumber Tomato 4 220–400 24 Yes n/a n/a [59�]
n/a

n/a
Mexican

Cotton
Cotton tree

6 2 10 No n/a n/a
[41]10 100 6 No Yes n/a

n/aa 1 Bean Tomato 3 200 30–35 Yes No Yes [46�]
n/aa 1 Bean Tomato 7 3 20 Yes No n/a [60]

n/aa 1b Bean Tomato 15 500 50 Yes n/a Yes [19��]
Cotton, bean,

rose, morning glory

>100 Cotton Cucumber 1 >100 5, 13, 20 Yes No n/a [61]

Cucumber 10 000b Cucumber Tomato, pepper 5 300 15, 25, 35, 45 Yes No n/a [17,62,63]

Rose n/a Bean Lima, bean, tomato,

cotton, burclover

3 250 6 n/a n/a Yes [42]

n/aa 1 Bean Cotton, maize, soy,

tomato

3–4 250 5 or 30 n/a n/a Yes [43,44,45�]

# – numbers.

n/a – not applicable or no data.
a London strain.
b transferred from another laboratory.
c Probably a cost, but no statistical test performed.
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Figure 2

(a) (b)

(c) (e) (g) (i)

(d) (f) (h)
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Genetic diversity and experimental evolution sampling design. Maximizing the probability of detecting and quantifying responses to selection in

experimental evolution requires a careful experimental design. Here, we illustrate this by simulating a 100 000 bp genetic region in a haplodiploid

species with a female biased sex-ratio (70% females), mimicking T. urticae populations, using SLIM v2.6 [50]. We assumed that the ancestral

population established in the laboratory was sampled from an outbred population of 100 000 individuals (a). Establishment in the laboratory affects

the initial genetic diversity upon which selection can act, which depends on whether individuals are kept in an outbreeding population (b) or in a

small inbreeding population with 10 generations of sib-mating (c). Indeed, following the theoretical predictions that most variants are rare in a

stationary population, establishment with a population of n = 100 individuals (i.e. 70 mated females (b) retains much of the genetic variation in the

ancestral field population (d). In contrast, 10 generations of sib-mating (inbred) as a starting population (n = 2; i.e. 1 mated female (c) results in very

low initial genetic diversity, with most alleles having a frequency of 0% (e). After this, replicated populations start evolving in the new environment

in the laboratory with a size of n = 200 individuals (‘Experimental evolution’ panels). We simulated a case where a random neutral allele with a

frequency between 1% and 25% becomes beneficial in the new environment during experimental evolution, with a strong selective coefficient of

s = 0.25. Also, we assumed a high mutation rate of 1.0 � 10�8 mutations/site/generation and a recombination rate of 1.0 � 10�8/site/generation. In

both cases, performing replicated experiments is crucial to detect selection as changes in allele frequencies and in phenotypic traits across

generations are not necessarily evidence for selection. Changes due to genetic drift can be detected as neutral alleles are expected to show

different trajectories in different replicate populations (f). In contrast, selected beneficial alleles are expected to show similar evolutionary

trajectories in all replicates (h). When starting experimental evolution from a population with little initial diversity (e.g. inbred line), some generations

are required until new mutations appear (even with a high mutation rate, as used in our simulations), and different mutations are likely to appear

independently in different replicates, making it harder to distinguish genetic drift from selection (g, i). Note that in experimental evolution designs

with spider mites (and other arthropods) population sizes and mutation rates are likely lower than in these simulations used to illustrate principles.

Hence, new mutations are less likely to occur during the experiment, as opposed to experimental evolution using bacteria or yeast, in which

population sizes can be many orders of magnitude larger [51].
Future perspectives
T. urticae is a good model to address the evolution of host

range in herbivorous arthropods, because (a) field

populations are easy to collect, (b) T. urticae populations

are amenable to experimental evolution and (c) genomic

tools are available. However, progress on several fronts is

needed to fully realize the potential of this model system.

Using several approaches in the same study is needed to

enable a more complete description of the mechanistic

basis of specialism/generalism. Indeed, several factors
www.sciencedirect.com 
have been suggested to underlie host race formation

associated with local adaptation, including differential

host chemistry [47] or morphology [48], and the

community of natural enemies on different plants [49].

A future challenge will be to investigate whether such

factors operate in this system. Second, it will be important

to develop genetic tools (e.g. genome editing methods

such as CRISPR-Cas9) that allow functional validation of

candidate genes arising from genomic studies. Finally, a

complementary approach that should be explored is the
Current Opinion in Insect Science 2019, 36:82–89
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investigation of the evolution of host range in related

spider mite species. This is attractive as there is wide

variation in this family along the generalist to specialist

host range spectrum [13].
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