
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

GOSSIP-BASED DATA DISTRIBUTION IN

MOBILE AD HOC NETWORKS

Hugo Alexandre Tavares Miranda

DOUTORAMENTO EM INFORMÁTICA

(Engenharia Informática)

2007

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

GOSSIP-BASED DATA DISTRIBUTION IN

MOBILE AD HOC NETWORKS

Hugo Alexandre Tavares Miranda

DOUTORAMENTO EM INFORMÁTICA

(Engenharia Informática)

Tese orientada pelo Prof. Doutor Luı́s Eduardo Teixeira Rodrigues

2007

This work was partially supported by the European Science Foundation (ESF) programme

Middleware for Network Eccentric and Mobile Applications (MiNEMA), by project

Probabilistically-Structured Overlay Networks (P-SON), POSC/EIA/60941/2004 and by

project Middleware for Context-aware and Adaptive Systems (MICAS),

POSC/EIA/60692/2004 through Fundação para a Ciência e Tecnologia (FCT) and FEDER and

by PRODEP

Resumo Extendido

A tecnologia utilizada nas redes sem fios sofreu avanços significativos, que criaram

as condições para o desenvolvimento de uma nova geração de dispositivos computa-

cionais móveis, como os telefones celulares, os computadores portáteis e os assistentes

digitais pessoais. Por sua vez, a popularidade crescente destes dispositivos aumentou

o interesse nas aplicações de computação móvel que beneficiam da ubiquidade das

redes de computadores.

Os dispositivos computacionais portáteis são tendencialmente de pequena di-

mensão e leves, abdicando de algumas funcionalidades. Em comparação com, por

exemplo, os computadores de secretária, os dispositivos móveis apresentam menor

memória e poder computacional. Adicionalmente, espera-se que nestes dispositivos

ocorram frequentemente interrupções temporárias do acesso à rede, devido por exem-

plo à exaustão das baterias, ao deslocamento do dispositivo para uma zona onde não

existe cobertura ou, simplesmente, porque o utilizador o solicitou.

As redes ad hoc móveis (MANETs, do inglês Mobile Ad hoc NETworks) são uma

classe particular de redes sem fios caracterizadas pela ausência de infra-estrutura. Nas

MANETs, a rede é exclusivamente composta pelos dispositivos participantes. Espera-

se que estas redes venham a ser particularmente úteis para situações onde a instalação

da infra-estrutura é excessivamente cara, demorada ou inadequada, por exemplo em

locais afectados por catástrofes naturais, missões de busca e salvamento ou missões

militares.

O desenvolvimento de aplicações para MANETs tem desafios muito particulares.

Ao contrário do que é comum nas redes fixas e nas redes sem fios infra-estruturadas,

não é possı́vel concentrar serviços como o armazenamento de dados, serviço de no-

mes, etc. em servidores especializados e com um elevado grau de fiabilidade. Pelo

contrário, emMANETs estes serviços terão que ser conseguidos através da cooperação

dos participantes. Um exemplo paradigmático é o encaminhamento de mensagens en-

tre dispositivos e que é suportado por uma cadeia de dispositivos localizados entre

ambos.

Nos últimos anos foram propostas diversas soluções para o problema do enca-

minhamento de mensagens. Com este problema resolvido, é agora o momento de

abordar e resolver outras limitações ao desenvolvimento de aplicações para MANETs.

Idealmente, as soluções devem ser desenvolvidas sob a forma de camadas de código

intermédio, capazes de esconder das aplicações as dificuldades que estas redes acarre-

tam.

A disseminação de dados é um dos serviços chave em MANETs. Este serviço per-

mite por exemplo a equipas de busca e salvamento partilhar fotografias ou informação

actualizada da zona afectada; a passageiros num aeroporto encontrar um parceiro para

um jogo de xadrez ou a vendedores numa feira usar uma MANET para anunciar os

seus produtos. Todos estes exemplos partilham um modelo comum de dados: os da-

dos são produzidos por diferentes participantes e não são actualizados com frequência.

Além disso, não é possı́vel inferir um destinatário para os dados nem quais os dispo-

sitivos que estarão mais interessados.

Em MANETs, a concentração de dados num único dispositivo deve ser evitada

devido: i) à baixa disponibilidade dos dispositivos; ii) à sobrecarga dos dispositi-

vos que armazenariam os dados e iii) à mobilidade dos dispositivos, que resulta em

interrupções frequentes da ligação à rede e na ocorrência de partições. A disponibili-

dade dos dados aumentaria se estes fossem replicados pelos participantes. Por outro

lado, um algoritmo de distribuição das réplicas tem que evitar a redundância exces-

siva, uma vez que os dispositivos podem ter recursos limitados. Atendendo a que para

os dispositivos que operam nas redes sem fios, quer a largura de banda quer a energia

são recursos escassos, o algoritmo deve também reduzir tanto quanto possı́vel a quan-

tidade de dados e informação de controlo necessária para proceder à disseminação.

Nas MANETs, as réplicas devem ser distribuı́das de forma uniforme pelos dis-

positivos que formam a rede, evitando a sua agregação em regiões geográficas. Ou

seja, quando um item de dados é solicitado por um dispositivo, a distância ao dispo-

sitivo que fornece a informação deve ser aproximadamente a mesma, independente-

mente da localização de ambos. Naturalmente, a distância real dependerá demúltiplos

parâmetros, como o número de dispositivos, a memória disponibilizada por cada um

e o número de itens anunciados.

A distribuição geográfica das réplicas pode oferecer uma contribuição valiosa para

o desempenho das aplicações. A transmissão e recepção de dados contribuem signifi-

cativamente para o consumo de energia dos dispositivos. Se as réplicas se encontrarem

distribuı́das geograficamente, um dispositivo que pretenda obter um qualquer item

de dados encontra-lo-á com grande probabilidade num qualquer dispositivo próximo,

permitindo a sua obtenção com umnúmeromenor de transmissões. Contribui-se desta

forma para a redução do consumo de energia, da latência na obtenção de informação

e da quantidade de tráfego gerado.

A disseminação de dados em MANETs, e em particular, a sua distribuição ge-

ográfica, são problemas que já foram abordados por diversos grupos de investigação.

Contudo, a maioria do trabalho anterior assume que os dispositivos conhecem a sua

localização geográfica. De notar que esta informação pode não estar disponı́vel, como

por exemplo no interior de edifı́cios, mesmo assumindo que os dispositivos móveis

dispõem de equipamentos de localização geográfica (por exemplo receptores do sis-

tema de posicionamento global, GPS). Este requisito diminui por isso consideravel-

mente o domı́nio de aplicação destes algoritmos.

A tese apresenta um conjunto de algoritmos que se complementam para oferecer

um serviço integral de replicação dos dados por um subconjunto, geograficamente

disperso, dos participantes na rede. Assumimos contudo que os dispositivos não são

capazes de obter a sua localização geográfica ou que a informação disponı́vel não apre-

senta precisão suficiente. A distribuição geográfica permite que os dispositivos ob-

tenham a informação utilizando um número limitado de transmissões, contribuindo

desta forma para a preservação dos recursos da rede.

As principais contribuições da tese são:

• um novo método para a selecção dos dispositivos mais adequados para proceder

à retransmissão de mensagens que se pretendem difundidas por todos os partici-

pantes. Ométodo utiliza a força do sinal recebido para seleccionar os dispositivos

mais distantes dos emissores anteriores;

• Um algoritmo de replicação de dados para MANETs. O algoritmo dispõe as

réplicas por forma a que qualquer dispositivo possa encontrar uma réplica dos

dados dentro de um número predefinido de saltos;

• Quatro algoritmos para atenuar o impacto do movimento dos dispositivos na

distribuição geográfica. Estes algoritmos apresentam um consumo diminuto de

recursos, beneficiando do tráfego gerado pelas operações de obtenção de dados

para avaliar a qualidade da disseminação e aplicar as correcções;

• Um algoritmo de agregação de dados a partir de uma condição especificada pelo

utilizador e que deve ser satisfeita pelos dados a obter.

A tese começa por motivar o problema e explanar os requisitos do modelo no

Capı́tulo 1. O Capı́tulo 2 apresenta o trabalho relacionado, dividido em dois blocos

principais: algoritmos de disseminação de mensagens e algoritmos de distribuição de

dados. As contribuições da tese para cada um destes aspectos são apresentadas e ava-

liadas respectivamente nos Capı́tulos 3 e 4. Este último apresenta e avalia ainda os

algoritmos de atenuação do movimento dos dispositivos. O Capı́tulo 5 expõe uma

aplicação dos algoritmos a uma versão do Session Initiation Protocol (SIP) especial-

mente desenvolvida para MANETs. As principais conclusões deste trabalho assim

como as perspectivas para o trabalho futuro são apresentadas no Capı́tulo 6.

Abstract

Wireless networks are useful in many different scenarios. They allow to create

emergency networks for catastrophe response, wide area surveillance networks in hos-

tile environments, or simply permit users to share information, play on-line games,

and surf the Web. Mobile ad hoc networks are a particular case of wireless networks

characterised by the absence of a supporting infrastructure.

The thesis addresses the problem of building middleware services that permit to

fully exploit the opportunities offered by mobile ad hoc networks. For that purpose, it

is required to design algorithms that account for the limitations of mobile devices and

that make a careful use of the scarce resources available in ad hoc networks. A central

middleware service for mobile applications is data sharing. The thesis addresses the

use of data replication as a technique to improve data availability and resource sav-

ings in mobile ad hoc networks. In particular, the thesis proposes the use of epidemic

protocols to achieve these goals.

In this context, the thesis presents the following contributions. It presents and eval-

uates i) an algorithm to reduce the number of transmissions required in a broadcast,

ii) an algorithms for the geographical distribution of replicas of data items, and iii)

algorithms to attenuate the impact of node movement in the geographical distribu-

tion. Finally, the thesis describes an application of the algorithms to build a concrete

application, a version of the Session Initiation Protocol for wireless networks.

Palavras Chave

Redes ad hoc móveis,

Distribuição geográfica de dados,

Algoritmos de disseminação

Keywords

Mobile ad hoc networks,

Geographical data distribution,

Broadcast algorithms

Agradecimentos

Na realização deste trabalho contei com o apoio pessoal e/ou cientı́fico de um

conjunto de pessoas e instituições sem as quais este trabalho não teria sido possı́vel.

Aproveito por isso para expressar aqui os meus agradecimentos àqueles que mais sig-

nificativamente deram a sua contribuição.

Ao Gonçalo e ao Pedro agradeço a paciência com que aceitam as minhas ausências.

À Cristina devo uma parte significativa destes resultados. Pela motivação que sempre

me transmitiu, pela disponibilidade com que vai assumindomuitas dasminhas tarefas,

abdicando do seu tempo. Sem a sua energia e apoio não teria sido possı́vel a realização

deste trabalho.

Não teria sido possı́vel chegar até aqui se não tivesse, ao longo dos tempos, sentido

um apoio continuado no prosseguimento dos meus estudos. Agradeço por isso aos

meus pais e irmãs a quem dedico genericamente esta tese.

Foram muitas as instituições que contribuiram para este trabalho. O programa

MiNEMA, da European Science Foundation (ESF) suportou financeiramente os contac-

tos com a Universidade de Helsı́nquia. Adicionalmente, tem servido como um fórum

que me permitiu enriquecer a minha formação, criar e fortalecer laços com outros in-

vestigadores.

Localmente, contei com o apoio institucional do Departamento de Informática

da Faculdade de Ciências da Universidade de Lisboa e do Laboratório de Sistemas

Informáticos de Grande Escala (LaSIGE). A ambos agradeço a disponibilização das

condições para desenvolver o meu trabalho. Uma palavra especial para os membros

(passados e presentes) do DIALNP, que têm feito deste grupo um excelente ponto de

partilha de ideias, entreajuda e convı́vio, contribuindo assim para um ambiente de

estı́mulo à investigação. Um agradecimento especial ao Filipe Araújo pelo cuidado

que pôs na revisão de parte desta tese.

O Professor Luı́s Rodrigues excedeu largamente o papel de orientador cientı́fico

da tese. A sua experiência, permanente disponibilidade, dinâmica invejável e o em-

penho no acompanhamento dos trabalhos dos alunos e em proporcionar-lhes todas as

condições necessárias, são por si só um dos mais importantes factores de motivação

e fazem dele um modelo a seguir. Por fim, agradeço-lhe a oportunidade que me

deu de alargar a minha formação para domı́nios não estritamente relacionados com

a elaboração da tese. Estou certo que experiências como a organização de eventos,

a participação na elaboração de propostas de financiamento e em comissões de pro-

grama, e o estabelecimento de contactos com outros investigadores serão também fac-

tores importantes para o desenvolvimento da minha carreira.

Lisboa, Junho de 2007

Hugo Alexandre Miranda

À Cristina

Ao Gonçalo e ao Pedro

Contents

Contents i

List of Figures vii

List of Tables xiii

1 Introduction 1

1.1 Problem Statement and Objectives . 3

1.2 Contributions . 4

1.3 Results . 5

1.4 Outline of the Thesis . 5

2 Related Work 9

2.1 General Architecture of Data Distribution Protocols 10

2.2 Local Storage Management . 11

2.3 Data Dissemination Algorithms . 14

2.3.1 Location Unaware Algorithms . 15

2.3.2 Improved Location Unaware Algorithms 20

2.3.3 Trial and Error Algorithms . 24

i

2.3.4 Owner Oriented Algorithms . 28

2.3.5 Location Aware Algorithms . 31

2.3.6 Discussion . 33

2.4 Packet Dissemination . 36

2.4.1 Broadcast Algorithms . 37

2.4.2 Probabilistic Algorithms . 39

2.4.3 Counter-based Algorithms . 43

2.4.4 Distance-Aware Algorithms . 47

2.4.5 Discussion . 50

2.5 Summary . 53

3 A Power-Aware Broadcasting Algorithm 57

3.1 Pampa . 59

3.1.1 Delay Assignment . 61

3.2 Comparison with Related Work . 62

3.3 Simulation Results . 63

3.3.1 Test-bed . 64

3.3.2 Delivery Ratio . 65

3.3.2.1 Impact of the bounded delay 68

3.3.3 Number of Transmissions . 70

3.3.4 Coverage . 72

3.3.5 Delay . 73

3.4 Summary . 73

ii

4 Replica Management 75

4.1 System Model . 76

4.2 Initialisation . 77

4.3 Data Dissemination . 80

4.3.1 Power-Aware data DISsemination algorithm 81

4.3.2 Geographical Distribution of the Replicas 84

4.3.2.1 Expected Maximum Distance 87

4.3.2.2 Expected Reply Distance 88

4.3.2.3 Cluster Storage Space and Saturation Point 89

4.3.3 Decreasing the Impact of the Limited Storage 91

4.3.3.1 Hold period . 92

4.3.3.2 Storage Space Management 93

4.3.4 Illustration . 94

4.4 Data Retrieval . 96

4.4.1 Adaptation of the qTTL value . 99

4.5 Shuffling . 100

4.5.1 Effects of Movement in Data Placement 101

4.5.2 Herald Messages . 102

4.5.3 Characterisation of Shuffling Algorithms 103

4.5.4 Shuffling Algorithms . 104

4.5.5 Illustration . 108

4.6 Comparison with Related Work . 111

iii

4.7 Evaluation . 113

4.7.1 Dissemination Algorithm . 114

4.7.1.1 Sensitivity to Different Network Configurations 114

4.7.1.2 Message Overhead . 119

4.7.1.2.1 Dissemination 120

4.7.1.2.2 Queries . 121

4.7.1.3 Attenuation of the Dissemination Cost 122

4.7.2 Shuffling Algorithms . 124

4.7.2.1 Probability of Insertion 128

4.7.2.2 Convergence Tests . 129

4.7.2.3 Mitigation Tests . 137

4.8 Summary . 145

5 Application 147

5.1 Overview of SIP . 148

5.1.1 Decentralised SIP . 150

5.2 SIPCache . 152

5.2.1 Dissemination and Retrieval Using PADIS 152

5.2.2 Data Gathering Module . 154

5.2.2.1 Detailed Description . 156

5.3 Evaluation . 162

5.3.1 Test-bed Description . 162

5.3.2 Coverage . 164

iv

5.3.3 Traffic . 166

5.4 Summary . 171

6 Conclusions and Future Work 173

6.1 Future Work . 175

References 177

Index 185

v

vi

List of Figures

1.1 Architecture of data distribution middleware frameworks 6

2.1 Generic architecture of data distribution protocols 10

2.2 A taxonomy of data dissemination algorithms 15

2.3 Intersection of trails and queries in rumour routing 17

2.4 Storage and query circles in Double Ruling storage 26

2.5 Network region partitioning in GLS . 28

2.6 Home node and perimeter in Data-Centric Storage 30

2.7 Monitor nodes in Resilient-Data-Centric Storage 32

2.8 Flooding algorithm . 38

2.9 GOSSIP1(p) algorithm . 39

2.10 GOSSIP1(p, k) algorithm . 41

2.11 GOSSIP2(p1, k, p2, n) algorithm . 42

2.12 RAPID algorithm . 42

2.13 Probability adaptation function in RAPID 43

2.14 Enhanced RAPID algorithm . 44

2.15 GOSSIP3(p, k,m) algorithm . 45

vii

2.16 Counter-based scheme . 46

2.17 Hop Count-Aided Broadcasting algorithm 47

2.18 Overlap of the coverage between two nodes 48

2.19 Distance-based scheme . 49

2.20 Self-Adaptive Probability Broadcasting Algorithm 51

3.1 Deployment and transmission range of some nodes 58

3.2 Pampa algorithm . 60

3.3 Function delay . 62

3.4 Delivery Ratio of Counter Based algorithms 66

3.5 Delivery Ratio of Distance Based algorithms 68

3.6 Comparison of the delivery ratio of Pampa with the “counter-based

scheme” . 69

3.7 Comparison of the delivery ratio of Pampa with Pampa
2
. 70

3.8 Transmissions ratio . 71

3.9 Hops to the source of the message (Speed 0) 72

3.10 Average latency (Speed 0) . 73

4.1 Initialisation procedure of the algorithms 78

4.2 Auxiliary modules of the distribution and query algorithms 79

4.3 Example of dissemination of an item . 81

4.4 Data dissemination algorithm . 83

4.5 Recursive reverse shortest path to a replica 86

4.6 An example of data propagation in the algorithm. 87

viii

4.7 Counter-examples to the general expected distance rule 87

4.8 Partitioning of the cluster in rings for DbC=4 88

4.9 Function τ(DbC) . 90

4.10 A run of the dissemination algorithm . 95

4.11 Retrieval algorithm - sender . 97

4.12 Retrieval algorithm - query handling . 98

4.13 Retrieval algorithm - replies handling . 99

4.14 Effects of movement in the distribution of the replicas 102

4.15 Format of HERALD message tuples . 103

4.16 Swap of data items between two nodes storage spaces 105

4.17 Distance evaluation of a worst case scenario simulation 108

4.18 Variation of the standard deviation of the number of copies 110

4.19 Average distance of the replies . 116

4.20 Average distance of the replies with variation of number of advertised

items . 120

4.21 Transmissions per registration . 120

4.22 Transmissions per query . 122

4.23 Ratio of transmissions per query/transmissions per registration 123

4.24 Snapshot of the Manhattan Grid movement model with 7 by 3 streets . . 125

4.25 Average distance of the nodes to the closest replica for two configura-

tions of the Probabilistic algorithm . 130

4.26 Convergence tests when DbC=2 and transmission range=200m 131

4.27 Convergence tests when DbC=2 and transmission range=250m 132

ix

4.28 Convergence tests when DbC=2 and transmission range=300m 133

4.29 Convergence tests when DbC=4 and transmission range=200m 134

4.30 Mitigation tests with 200m transmission range, 2m/s average speed, 700

items and DbC=4 . 137

4.31 Mitigation tests with 200m transmission range, 2m/s average speed, 400

items and DbC=2 . 138

4.32 Mitigation tests with 250m transmission range, 2m/s average speed, 700

items and DbC=2 . 139

4.33 Mitigation tests with 200m transmission range, 2m/s average speed, 700

items and DbC=2 . 140

4.34 Mitigation tests with 200m transmission range, 5m/s average speed, 700

items and DbC=4 . 141

4.35 Mitigation tests with 200m transmission range, 5m/s average speed, 400

items and DbC=2 . 142

4.36 Mitigation tests with 250m transmission range, 5m/s average speed, 700

items and DbC=2 . 143

4.37 Mitigation tests with 200m transmission range, 5m/s average speed, 700

items and DbC=2 . 144

5.1 Simplified logical message flow in SIP . 149

5.2 Software architecture for decentralised SIP 150

5.3 Simplified logical message flow in dSIP 151

5.4 Software architecture for SIPCache . 153

5.5 Simplified logical message flow in SIPCache 154

5.6 Binding dissemination in SIPCache . 154

x

5.7 Query handling in SIPCache . 155

5.8 Propagation of gathering messages and replies 157

5.9 Bootstrap of the data gathering operation 158

5.10 Policies for filling data gathering messages with known data items . . . 159

5.11 Data Gathering message dissemination 161

5.12 Reply handling . 162

5.13 Auxiliary functions . 163

5.14 Coverage of the data gathering module 165

5.15 Retransmissions of the gathering message 166

5.16 Average data gathering message size . 167

5.17 Average number of reply messages . 168

5.18 Average bytes per operation . 170

xi

xii

List of Tables

2.1 Comparison of the data dissemination algorithms surveyed 34

2.2 Comparison of the broadcast algorithms surveyed 52

3.1 Comparison of the broadcast algorithms surveyed with Pampa 63

4.1 Comparison of the characteristics of the shuffling algorithms 105

4.2 Comparison of the data dissemination algorithms surveyed with PADIS 112

4.3 Saturation Point Ratios for Convergence tests 126

4.4 Saturation Point Ratios for Mitigation tests 127

5.1 Proportion of the reply messages and total bytes per operation transmit-

ted by the “Not Filled” policy sent by the “Random” policy 169

xiii

xiv

1
Introduction

Advances in wireless network technology paved the way to the development of a

new generation of communication devices, like cell phones, wireless enabled laptops

and PDAs. The growing popularity of these devices has increased the demand for

mobile computing applications that can benefit from ubiquitous connectivity.

A common requirement for wireless devices is that they should be portable, so that

they can be easily carried by the users. Therefore, mobile devices tend to be small and

lightweight, trading of some functionalities by size. In comparison with, for example,

desktop computers, mobile devices present lower computing power and less memory.

Mobile devices are expected to be temporarily disconnected, due to drained batteries,

movement of the device to some location outside the network range or simply because

the user has requested it.

Mobile Ad hoc NETworks (MANETs) are one particular class of wireless networks

characterised by the lack of a support infrastructure. The network is composed only by

the mobile devices. MANETs are particularly useful for situations where the deploy-

ment of an infrastructure is expensive or impossible like catastrophe scenarios, search

and rescue, and military operations.

Application development is particularly challenging in MANETs. Contrary to

what is typical in wired or wireless infrastructured networks, it is not possible to cen-

tralise in some reliable and powerful server functions such as data storage, naming

service, etc. Instead, these services must be provided via the cooperation of the par-

ticipating devices. A notorious example is packet routing between two devices not in

1

2 CHAPTER 1. INTRODUCTION

transmission range, which must be supported by a sequence of intermediate devices

that forward the message.

Packet routing in ad hoc networks has received considerable attention in the last

few years and a number of interesting protocols have been proposed. With the routing

problem solved, it is time to identify and resolve other impairments to the develop-

ment of distributed applications in MANETs. Ideally, solutions should be provided as

middleware services, capable of masking the peculiarities of ad hoc networks to the

application.

Data dissemination is one of the key applications of MANETs. Teams of a search-

and-rescue operation may want to exchange photographs or up-to-date information of

the disaster scene, participants on a digital flea market may use a MANET to advertise

their products, and passengers waiting on an airport may try to find a partner for a

chess game. All these scenarios share a common data model: data is produced by

different nodes and is not frequently updated. Furthermore, there is not an a priori

known target node for consuming the data, nor it is possible to infer which nodes are

more likely to be interested on it.

The concentration of the data in a single node is unsuitable in MANETs due to

i) the low availability of the devices; ii) the overload of the device storing the data;

and iii) the mobility of the devices, which results in frequent network disconnections

and network partitions. Data availability may be improved if multiple replicas are

distributed through the participants. However, a data dissemination algorithm for

MANETs should balance the need to provide data replication with the need to avoid

excessive data redundancy (as nodes may have limited storage capability). Since in

wireless networks both bandwidth and battery power are precious resources, the al-

gorithm should also minimise the amount of data and control packets required to dis-

seminate data.

In MANETs, data replicas should be deployed as evenly as possible among all the

nodes that form the network, avoiding clustering of information in sub-areas. That is,

whenever a data item is requested by a node S, the distance to the node that provides

1.1. PROBLEM STATEMENT AND OBJECTIVES 3

the reply should be approximately the same, regardless of the location of S. Naturally,

the actual distance depends on multiple parameters, such as the number of nodes in

the network, the amount of memorymade available at each node, and the total number

of data items stored in the network.

The geographical distribution of the replicas can provide a valuable contribution

to the performance of the data dissemination applications. Packet transmission and

reception have been identified as some of the most resource demanding operations

for mobile devices (Feeney & Nilsson, 2001). If replicas are geographically distributed,

nodes are more likely to contact at least one of them using a small number of messages,

saving their battery reserves. Because replicas can be found close to any node, the

query time is reduced, what contributes to improve latency and reduce the traffic.

Due to its importance, data dissemination in MANETs has been a subject widely

studied. In particular, the development of data dissemination algorithms that aim at

a geographical distribution of items is not novel. However, most of previous work

assumes that nodes are aware of their geographical location. That is, these algorithms

can only be applied if mobile nodes have some location device available or perform

complex computations to determine their position. In addition, we note that at some

sites (for example indoors), location information may not be available or it may not be

possible to obtain it with sufficient accuracy. Therefore, the application domain of the

existing geographical data distribution algorithms is severely limited.

1.1 Problem Statement and Objectives

The goal of this thesis is to devise algorithms that distribute replicas of data items

by some of the mobile nodes in an ad hoc network. The thesis assumes that nodes are

unable to retrieve their geographical location. Still, replicas should be geographically

distributed so that any node in the network can retrieve the item from a location at

most a few hops away.

4 CHAPTER 1. INTRODUCTION

The thesis assumes that all nodes cooperate to the successful execution of the al-

gorithms. In particular, nodes are required to i) make some storage space available to

be managed by the algorithms; and ii) send all the messages that are required, for ex-

ample, by contributing to the propagation of the messages transmitted by other nodes

and by replying to queries.

An ideal data distribution algorithm should provide consistent updates of the

replicas, high availability and partition tolerance. Unfortunately, Gilbert & Lynch

(2002) have proven the Brewer’s conjecture, which stated that at most two of these

properties can be achieved simultaneously. In this thesis, replicas are used to improve

availability and tolerance to partitions. The lack of consistency support does not nec-

essarily limit the utility of the algorithms: this section has already presented some ex-

amples of applications where data is not frequently updated and which do not depend

of strict consistency requirements for their correct execution.

1.2 Contributions

The main contributions of this thesis are:

• A novel method for the selection of the most adequate nodes for retransmitting

a message in a broadcast. The method uses the Received Signal Strength Indi-

cator (RSSI) to select nodes that are more distant from the source of the previ-

ous retransmissions. The selection criteria improves previous work by requiring

a lower number of retransmissions for delivering the message to a comparable

number of nodes.

• A replication algorithm for mobile ad hoc networks. The algorithm places copies

at a bounded number of hops of any node in the network so that data can be

retrieved with a limited number of messages. In addition, the algorithm presents

a moderate use of the memory of the devices. The algorithm performs these tasks

without using location information.

1.3. RESULTS 5

• Four alternative shuffling algorithms to mitigate the impact of node movement

in the geographical distribution. The algorithms relocate replicas in the back-

ground and use the feedback provided by messages used for other operations.

The algorithms differentiate by the effort to preserve the number of replicas and

by the type of messages they use.

• A data gathering mechanism to retrieve multiple items satisfying some condi-

tion that benefits of the geographical distribution of the replicas to minimise the

number of transmissions.

1.3 Results

The thesis presents the following results:

• A middleware framework for replica distribution in MANETs. The framework

provides services for geographical distribution of the replicas, data retrieval and

shuffling.

• Extensive simulation results that confirm the properties claimed by the frame-

work.

• A proof-of-concept application to a framework that adapts the Session Initiation

Protocol (SIP) to mobile ad hoc networks.

1.4 Outline of the Thesis

In this thesis we present the components of a scalable middleware framework for

data distribution and retrieval in ad hoc networks. The framework replicates data

items so that nodes have one replica located in a bounded and predefined number of

hops. A general overview of the framework is presented in Figure 1.1. The framework

6 CHAPTER 1. INTRODUCTION

DisseminationRetrieval Shuffling

Data Management

Packet Dissemination

Application

Chapter 4

Chapter 3

Chapter 5

Data Distribution Middleware

Figure 1.1: Architecture of data distribution middleware frameworks

is composed by a Data Management and a Packet Dissemination module. The chapter

where each of the components is described is presented on the right.

The thesis is structured as follows. Chapter 2 presents a survey of the related work.

Our work combines a novel broadcast algorithm with data management algorithms.

Previously, these aspects have been addressed has two independent lines of research.

The chapter reflects this separation by presenting two major sections, each covering

some of the most significant contributions to the state of the art on these research

trends. Each section is concluded with a comparison of the algorithms surveyed and

an analysis focused on their limitations, which is used to motivate our work.

The broadcast algorithm is the focus of Chapter 3. The chapter begins with the

description of the algorithm, named“Pampa”, and then proceeds to compare it both

analytically and by the results of simulations with some of the related work.

Chapter 4 addresses the data management module. The chapter starts with a de-

scription of the dissemination, query and shuffling algorithms. The quality of the dis-

semination and the capability of the shuffling algorithms to keep an acceptable data

distribution in spite of node movement are evaluated in separate in the second part of

the chapter.

1.4. OUTLINE OF THE THESIS 7

The framework was integrated in an independent project aiming to adapt the Ses-

sion Initiation Protocol (SIP) to ad hoc networks. An overview of the project and of

the contribution of the algorithms described in the thesis is presented in Chapter 5.

The chapter also describes and evaluates the data gathering module of the project, that

benefits of the dissemination capabilities of the framework to retrieve the data items

satisfying some condition.

The most significant conclusions of the thesis and some directions for the continu-

ation of this work are presented in Chapter 6.

Related Publications

Preliminary versions of portions of this dissertation have been published in the

following:

• MIRANDA, HUGO, LEGGIO, SIMONE, RODRIGUES, LUÍS, & RAATIKAINEN,

KIMMO. 2006a (Sept. 11–14). A power-aware broadcasting algorithm. In: Pro-

ceedings of the 17th Annual IEEE International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC’06). University of Oulu, Helsinki, Finland.

This paper presents the Power-AwareMessage PropagationAlgorithm (PAMPA).

The performance of PAMPA is estimated using a network simulator and com-

pared with other message propagation algorithms.

• MIRANDA, HUGO, LEGGIO, SIMONE, RODRIGUES, LUÍS, & RAATIKAINEN,

KIMMO. 2006b (Dec. 12–15). An algorithm for distributing and retrieving in-

formation in sensor networks. Pages 31–45 of: Proceedings of the 10th International

Conference on Principles of Distributed Systems (OPODIS 2006) - part II - Brief An-

nouncements.

This brief announcement paper presents and evaluates a preliminary version of

Power-Aware data DISsemination algorithm (PADIS), the data dissemination al-

gorithm described in the dissertation.

8 CHAPTER 1. INTRODUCTION

• MIRANDA, HUGO, LEGGIO, SIMONE, RODRIGUES, LUÍS, & RAATIKAINEN,

KIMMO. 2007 (Aug. 28–31). An algorithm for dissemination and retrieval of

information in wireless ad hoc networks. Proceedings of the 13th International Euro-

Par Conference - European Conference on Parallel and Distributed Computing. Lecture

Notes in Computer Science. Rennes, France: Springer. (to appear).

The most up-to-date version of PADIS is described in this paper. The perfor-

mance of PADIS is estimated by varying multiple parameters using a network

simulator.

• MIRANDA, HUGO, LEGGIO, SIMONE, RODRIGUES, LUÍS, & RAATIKAINEN,

KIMMO. 2006c. Global data management. Emerging Communication: Studies in

New Technologies and Practices in Communication, vol. 8. Nieuwe Hemweg

6B, 1013 BG Amsterdam, The Netherlands: IOS Press. Chap. Epidemic Dissemi-

nation for Probabilistic Data Storage, pages 124–145.

This book chapter begins with a characterisation and overview of recent results

on gossip protocols. It then proceeds to describe and evaluate a preliminary ver-

sion of PADIS named PCache and the data gatheringmechanism that is presented

in this dissertation.

• LEGGIO, SIMONE, MIRANDA, HUGO, RAATIKAINEN, KIMMO, & RODRIGUES,

LUÍS. 2006 (July 17–21). SIPCache: A distributed SIP location service for mo-

bile ad-hoc networks. In: Proceedings of the 3rd Annual International Conference on

Mobile and Ubiquitous Systems: Networks and Services (MOBIQUITOUS 2006).

This short paper presents SIPCache, a Session Initiation Protocol (SIP) for ad hoc

networks. The paper focus on the integration of the three components that result

in SIPCache: dSIP, PADIS and the data gathering mechanism.

2
Related Work

The frequent disconnections, low reliability and limited resources of mobile de-

vices make efficient data dissemination and data retrieval challenging problems in

wireless networks. This chapter surveys research results on data dissemination pro-

tocols.

Wireless networks can be applied on a multitude of application scenarios, each

characterised by different data access patterns and device capabilities. The chapter

reflects this heterogeneity by surveying data dissemination protocols for sensor, infra-

structured, hybrid and ad hoc networks. The goal is to identify approaches that, inde-

pendently of the original application scenario, can be applied in MANETs. In addition,

from the survey will emerge an interesting and useful approach for MANETs which,

to the extent of our knowledge, has not been attempted before and will be the focus of

the thesis.

This chapter is organised as follows. Section 2.1 identifies themost relevant compo-

nents of a generic data replication service. Related work on these components, namely

local storage management, data distribution and packet dissemination is presented re-

spectively from Section 2.2 to Section 2.4. Themost relevant conclusions extracted from

the survey are summarised on Section 2.5.

9

10 CHAPTER 2. RELATEDWORK

Local Storage

Packet Dissemination

Data Management

Data Retrieval

Data Dissemination Replica Refreshment

Replica Location

Figure 2.1: Generic architecture of data distribution protocols

2.1 General Architecture of Data Distribution Protocols

Any data distribution protocol provides two complementary services: data dissem-

ination and data retrieval. The implementation of these services can be decomposed

in several modules, each providing a basic functionality. A possible decomposition,

which will be used throughout the rest of the chapter is presented in Figure 2.1.

The “local storage” module represents the storage space made available by each

device. The literature frequently assumes that data produced by the node is kept in

a separate region with unlimited size and that only data produced by other nodes is

managed by the local storage module. Most protocols assume that nodes make limited

storage space available for the storage space module. Section 2.2 describes the different

storage space management policies presented in the literature.

The “data management” module aggregates all the functions related with the dis-

semination and retrieval of the data items. Amyriad of algorithms have been proposed

in the literature. They are compared in Section 2.3.

Conceptually, the “data management” module is decomposed in four submodules.

2.2. LOCAL STORAGE MANAGEMENT 11

The algorithms supporting data replication are provided by the “data dissemination”

submodule. The “replica refreshment” submodule is present only in some of the proto-

cols surveyed. It is responsible for monitoring and correcting either the number or the

location of the replicas. The “data retrieval” submodule issues queries for data items

and collects and prepares replies.

Some protocols apply deterministic functions to decide the location or identity of

the nodes hosting the replicas. We assume that these protocols use a “replica location”

submodule. If available, the “Replica Location” submodule is used by the “data dis-

semination” and “data retrieval” submodules respectively to decide the location of the

replicas and the destination of queries.

Although conceptually independent, the algorithms implemented in the “data dis-

semination”, “data retrieval” and “replica location” modules are typically tightly cou-

pled. For clarity, these modules are aggregated in the description of the related work.

The “packet dissemination” module exports the message reception and dissemi-

nation primitives that interface the underlying network. Depending of the algorithms

implemented in the remaining modules, point-to-point, multicast and broadcast algo-

rithms may be required. Section 2.4 addresses this module, putting particular empha-

sis on broadcast algorithms as they will be one of the building blocks of the algorithms

presented in the thesis.

2.2 Local Storage Management

The “local storage” module manages a device’s storage space made available for

storing replicas of data items advertised by other nodes. When the storage space made

available by a device is full, an algorithm must be applied to decide which data items

should be kept and which should be discarded. This algorithm plays an important

role in the overall performance of data distribution protocols. Local storage manage-

ment has been previously addressed in different settings, such as operating systems,

12 CHAPTER 2. RELATEDWORK

databases and web caching. The Least Recently Used (LRU) algorithm is frequently

cited as an example of a policy offering good performance in different settings. The

literature has also shown that for wireless networks, it is possible to devise specialised

algorithms that provide a better performance than more general solutions.

Two different approaches, specifically addressing the wireless environment have

been proposed, namely: i) algorithms accounting with the popularity of the data ob-

jects aim at reducing the average reply time by keeping the most popular items, so that

queries can be replied faster. ii) Other algorithms privilege data availability, giving

preference to the diversity of the items in the collective storage space defined by the

union of the individual storage space of the nodes in some neighbourhood.

The Global-Cache-Miss initiated Cache Management (GCM) and the Motion-aware

Cache Management (MCM) (Wu & Tan, 2006) are examples of algorithms privileging

the popularity of the items. Both algorithms were devised for infra-structured wire-

less networks with a centralised, resourceful data server that repeatedly broadcasts

the data items. The goal of the algorithms is to reduce latency, by retrieving the data

items either from their local cache or from the cache of the nodes in their direct trans-

mission range (so that nodes do not have to wait for the next retransmission from the

data server).

In GCM, a node checks if the data item is stored in its local cache and then repeat-

edly probes its 1-hop neighbours until either the item is delivered by one of its neigh-

bours or broadcasted by the data server. Each node preferably populates its storage

space with data items ranked according to the formula presented in Equation 2.1.

NumAccess
NumGCM

NumLCM
(2.1)

where NumAccess is the number of requests for the object and NumLCM and

NumGCM count respectively the number of failed retrievals for the object from its

local cache and from the cache composed by all 1-hop neighbours. NumGCM is in-

cremented with each periodic retransmission of the query without a reply. A low

2.2. LOCAL STORAGE MANAGEMENT 13

NumGCM represents either an item that is popular in the cache of the neighbours or

frequently broadcasted by the data server.

MCM ranks the candidates for replacement in local storage according to a “PIX” (P

InverseX) score, originally described in Acharya et al. (1995). PIX score is given by the

ratio of the access probability (P) for the frequency with which the item is broadcast

by the data server (X). An interesting aspect of MCM is that the decision to cache an

item depends of the estimated availability of a replica stored on a node in proximity.

The future distance between two nodes is calculated by comparing their position, di-

rection and speed. Comparisons between GCM and MCM show that in general, GCM

outperforms MCM although at expenses of additional energy consumption.

In (Sailhan & Issarny, 2003), nodes in an hybrid network cache web pages, making

them available to other nodes. Each node ranks its cached web pages according to

their popularity and access cost. Popularity estimates the probability of future accesses

from past requests. The AccessCost estimates the cost of retrieving the web page from

another node, which may possible be located several hops away. Finally, the system

prefers to remove older and bigger documents.

Popularity is a relevant criteria when it is known that data will be available in

a bounded time. Other algorithms give priority to data availability, and therefore,

are more adequate for scenarios where such a bound does not exist. This is the most

expected scenario in MANETs. For example, in the algorithm described in (Lim et al.,

2006), a data item is only cached if the object was sent by a nodemore than a predefined

number of hops away. Cached data item are selected to be replaced by one of three Time

and Distance Sensitive (TDS) algorithms. TDS combines the distance to the closest node

known to also store a copy (δ) with the inverse of the time elapsed since the distance

was measured (τ). τ is used to estimate the accuracy of the distance measurement. The

three TDS algorithms are:

TDS D given by δ + τ . Because δ ≥ 1 and 0 ≤ τ ≤ 1, it can be said that TDS D selects

the item with the lower δ and uses τ for tie-breaking;

14 CHAPTER 2. RELATEDWORK

TDS T that selects the item with the lowest τ .

TDS N which selects the lowest value of δ × τ .

Simulation results concluded that in general, the three algorithms perform better

than the traditional LRU (Least Recently Used) cache update policy. Of the different

TDS policies, no clear winer can be found, as they present different results depending

of the network settings. TDS algorithms have a limited application as they require

nodes to be equipped with location devices.

2.3 Data Dissemination Algorithms

Intuition suggests that there is a tradeoff between the effort placed on the dissem-

ination of the data and the effort required to retrieve it. In principle, a strategy that

saves the resources during the dissemination, for example by placing the replicas in

nodes close to the producer will require the consumption of more resources for data

retrieval. This observation motivated the classification adopted in this section, which

is depicted in Figure 2.2. At first, algorithms are arranged according to the level of

awareness of the nodes on the location of the data. The term location is used in a broad

sense encompassing both geographical location and node addresses. In this taxonomy,

a node is aware of the location of some data item if it knows either a geographical

coordinate or the address of a node and one of them can be used to retrieve the data

item.

Algorithms that are unaware of the location of data items are arranged by their ef-

fort on the geographical distribution of the replicas in two classes: “location unaware”

algorithms completely ignore the state of other nodes in the strategies for keeping data

items in their storage space; “Improved location unaware” algorithms perform some

form of leveraging of the replicas to prevent excessive redundancy in the neighbor-

hood of each node.

2.3. DATA DISSEMINATION ALGORITHMS 15

Data Source
Known

Location
ReplicaKnown Unknown Replica Topological

Distribution
Yes No

Unknown

Query
AddressedYes No

Trial
and error

Server oriented Improved
location unaware

Location
aware unaware

Location

Figure 2.2: A taxonomy of data dissemination algorithms

On the opposite side of our classification are the algorithms that are aware of the

location of every replica. These algorithms have been grouped in a class named “lo-

cation aware”. The algorithms that are aware of only one copy are arranged by the

strategy used for performing the queries. The “server oriented” class groups the al-

gorithms that address the query to the location of the known copy of the data. As the

name implies, “trial and error” algorithms perform a preliminary step trying to find

some replica in a more favorable location than the one that is known.

2.3.1 Location Unaware Algorithms

Location unaware algorithms typically use the less efficient dissemination proce-

dures. Of the four algorithms described in this section, three perform on-demand repli-

cation, with nodes caching only the data that has been received in result of a query. An-

other common aspect of these algorithms is the absence of cooperative management of

the available distributed storage space.

A simple location unaware algorithm was used to estimate the equilibrium point

between the effort that should be placed on dissemination and retrieval (Krishna-

machari & Ahn, 2006). The goal is to determine the most adequate number of repli-

cas of a data item. In the algorithm, nodes disseminate data using point-to-point

messages addressed to random nodes. Queries progress in successive expanding-

ring search broadcasts with TTL increasing according to a dynamic programming se-

16 CHAPTER 2. RELATEDWORK

quence (Chang & Liu, 2004). The authors conclude that, in this setting, the optimal

number of replicas of each item is proportional to the square root of its query rate.

However, this result is of limited application because it assumes that the query ratio of

some item will be known by the producer. In addition, it should be expected that in

non-random deployment of the replicas, for example like those presented below, that

take into account the popularity of the data items, queries can use different sequences

of TTLs.

The Simple Search (SS) algorithm (Lim et al., 2006) was devised for hybrid networks.

It is assumed that nodes only keep items they have previously requested in their stor-

age space. Simple Search improves access latency for the cases where the requested data

is stored in some node closer than the data server, co-located with the base station.

In SS the queries are broadcasted to the network in a request message with a pre-

defined value in a Time-To-Live field. All nodes that receive the request packet and

do not store the object append their address to the request packet, decrement the TTL

field and, if the TTL field permits it, retransmit the packet. Instead of retransmitting

the request, nodes capable of replying to the request, including the data server, send

a point-to-point ack message to the source of the request. The ack message follows the

path accumulated in the request message. The querying node requests the object to

the source of the first ack message received using a confirm message and discards the

remaining. The data is delivered by the node that receives the confirmmessage.

In contrast with SS, the Rumour Routing, Static Access Frequency and Autonomous

Gossipping algorithms (described below) assume that nodes are simultaneously the

producers and consumers of data. Each assumes, however, a different networking

model. The Rumour Routing algorithm relies on the stability of the network links be-

tween the nodes and is therefore more adequate for sensor networks without node

movement. Autonomous Gossipping, instead, relies on the temporary links established

by moving nodes to disseminate data. Static Access Frequency considers that nodes are

in transmission range for some time interval.

Rumour Routing (Braginsky & Estrin, 2002) does not replicate data. Instead, it im-

2.3. DATA DISSEMINATION ALGORITHMS 17

Q

Figure 2.3: Intersection of trails and queries in rumour routing

plements an algorithm to facilitate the location of the producer of each data item. The

algorithm is based on the assumption, justified by the authors with Monte-Carlo simu-

lations, that the probability of two lines in a bounded rectangular region to intersect is

of approximately 69%. In addition, the probability of one line to intersect at least one

of five others is of 99.7%. Although it is impossible to define straight lines in sensor

networks, authors show that the algorithm still provides acceptable results. The algo-

rithm creates trails pointing to the node that owns the data. The trails are left on the

nodes by agents performing random walks. The agents are initialised by the producer

node. To prevent loops, agents record the path of the nodes that have been visited. The

agents accumulate the state of the storage space and trails previously recorded in the

nodes they visit. Information learned in previous visits is made available by the agents

to the nodes in the following steps of the random walk so that multiple trails can be

created and updated. Figure 2.3 shows in gray the nodes that store a trail for a data

object stored at the node in black.

A node performing a query begins by locally verifying if it knows a trail for the

data item. If no trail is found, the query is successively forwarded using a random

walk until a node in a trail is encountered or the TTL of the query expires. Nodes in

a trail forward the query to the respective source node. The Monte Carlo simulations

suggest that if a sufficient number of trails is defined, there is a good probability that

any query message forwarded in a random walk will intersect one of the trails created

by the agents. As a last resort, and if no reply is received after some number of retries,

18 CHAPTER 2. RELATEDWORK

the algorithm broadcasts the query.

The Static Access Frequency (SAF) algorithm (Hara, 2001) tries to improve data avail-

ability in the presence of network partitions by predicting future access by the appli-

cations to the data items. SAF progresses in rounds. At the beginning of each round,

nodes rank the data objects by access frequencies and try to populate their storage

space with the data items with the highest ranks. Storage space must be occupied by

the designated objects. If some object cannot be retrieved, the storage space will re-

main free until the object is retrieved from the network. SAF is a simple algorithm that

does not require coordination between the nodes. This uncooperative behaviour will

likely replicate the most popular items a large number of times, decreasing the number

of items that could be retrieved from the neighbours.

SAF was extended to address the case where the access pattern of the nodes dis-

closes some correlation between different data objects (Hara et al., 2004) and to handle

periodic updates of data items (Hara, 2002). For clarity, the improved versions of the al-

gorithms (respectively C-SAF and E-SAF) are discussed together with other algorithms

proposed by the same authors in Section 2.3.2.

Autonomous Gossipping (Datta et al., 2004) uses ecological and economical prin-

ciples as an alternative to classical access frequency definitions. Autonomous Gossip-

ping considers each host to be an habitat providing storage space for a limited number

of data items. The habitat may be more or less favourable to the data item, depending

on the relevance of the data item to the host.

Both hosts and data items have a profile, defining respectively the topics of rele-

vance for the host and the topics covered by the data item. A function similarity numer-

ically rates the proximity of the profiles of hosts and data items. In addition, data items

carry an attribute describing the geographical locations where the item is supposed to

reside and a scalar called the associated utility, measuring the utility of the item to the

host. The utility of an item can be incremented for example when the item is used by

some application and decremented otherwise. Hosts advertise a goal zone to let data

items learn about their intended destination.

2.3. DATA DISSEMINATION ALGORITHMS 19

The system partially implements a “survival of the fittest” model. Opportunistic

gossipping, defined by the temporary interaction made available by the movement of

the nodes, is used for data items to evaluate the conditions of their hosts, and consider

their migration for more favourable habitats. Inside each host, data items compete for

their survival, knowing that the hosts attempt to maximise the accumulated associated

utility of the data items they host. When an opportunity appears, data items decide to

stay, migrate or replicate to another host with a more suitable profile, according to the

following policies:

Migration A data item decides to migrate when the host provides adverse conditions,

defined by a similarity below some threshold and low utility. The decision to

migrate is taken without the data items becoming aware if the migration will

provide better conditions.

Replication A data item may decide to replicate if it has an high utility and similarity

above a threshold. To prevent an excessive population of some data item, and

again following the ecological model, the utility of the original data item and its

replica will be lower than its value before replication.

Replica reconciliation occurs when a data item finds a copy of itself in the host to

where it has migrated. The utility of the re-conciliated data item is higher than

the utility of both replicas.

Migration anyway Independently of the friendliness of its current habitat, a data item

may decide to migrate if the current host is outside its target location (if any).

Migration is attempted to hosts whose goal zone is the same of the data item.

Simulation results (Datta et al., 2004) confirmed that autonomous gossipping is ca-

pable of delivering messages to a large proportion of the interested nodes. However,

it leaves some questions unanswered. Intuition suggests that an high threshold may

result in nodes becoming excessively judicious about the hosted data items what may

endanger the message dissemination. This can be compensated either by increasing

20 CHAPTER 2. RELATEDWORK

the size of the habitat or the frequency of contacts so that the probability of finding an

interested node is increased. However, simulation results presented are not sufficient

to evaluate this tradeoff.

2.3.2 Improved Location Unaware Algorithms

Although unaware of their precise location, improved location unaware algorithms

use some form of topological information to distribute the replicas. This section

presents three examples. The first degrades the accuracy of the information with the

distance to the source. In the remaining, nodes in proximity cooperate to improve data

availability by coordinating the content of their storage space.

The concept of non-uniform information is introduced in Tilak et al. (2003) to describe

one application model for sensor networks where the relevance of the information de-

grades with the distance from the source to the consumer. In the non-uniform informa-

tion model it is assumed that instead of delivering data to powerful sink nodes, fixed

over the network, sensor nodes will deliver data to “passing by” sink nodes. Examples

are military applications, where the presence of enemies nearby is more relevant than

learning about a distant fight.

Two categories of algorithms are presented in the paper to limit the propagation of

the information: deterministic and randomised. In both, the goal is to progressively

reduce the number of forwarders of every message by successively applying at each

hop a mechanism that only propagates some of the messages it receives. In the Fil-

tercast deterministic algorithm, each node forwards every nth message received from

the same source. However, if all nodes are configured with the same constant, all will

propagate the same message from each source. If this synchronisation is removed, the

accuracy of the information propagated is improved. This is addressed in the RFilter-

cast deterministic algorithm, where although forwarding every nthmessage, each node

initially peaks a random number that will decide which of the nmessages is transmit-

ted. Simulation results showed that using RFiltercast, nodes transmit more messages

2.3. DATA DISSEMINATION ALGORITHMS 21

than with Filtercast. Both deterministic algorithms present some scalability problems

as they require that each node keep a counter for each source.

Randomised algorithms are stateless and therefore scale better with the size of the

network. In the unbiased algorithm, each packet is retransmitted with an independent

probability. The biased algorithm, in turn, improves the probability of retransmission

for packets with an higher Time-To-Live field, what corresponds to an higher proximity

to the source.

Non-uniform information algorithms effectively reduce the number of retransmit-

ted messages and therefore, contribute to increase the network lifetime by saving

node’s batteries. However, the lack of semantic interpretation of the filtered data raises

concerns of the utility of these algorithms.

The Dynamic Access Frequency and Neighbourhood (DAFN) and the Dynamic Con-

nectivity based Grouping (DCG) algorithms (Hara, 2001) predict the items that will be

accessed by each node in the future from previous accesses. Like in SAF (described in

Section 2.3.1), the estimation is used to improve data availability in the presence of net-

work partitions. Both algorithms progress in rounds. At each round, nodes re-evaluate

their access pattern to the data and negotiate with their neighbours the data items that

should be stored so that data availability is improved for the group.

In DAFN, nodes negotiate with their 1-hop neighbours. Each round begins with

the broadcast of a message by every node. The message notifies the neighbours about

the presence of the node and includes information about the node’s access frequency to

the data items. Nodes then follow a deterministic algorithm to populate their storage

space. For each 1-hop neighbouring set of nodes, the algorithm is sequentially applied

from the one with the lowest ID to the one with the highest. If two neighbouring nodes

intend to store the same data item, the algorithm dictates that:

• If one of the nodes is the producer of the object, the other node will not store it;

• If none of the nodes is the producer of the object, the item is stored by the node

with the highest access frequency.

22 CHAPTER 2. RELATEDWORK

The storage space made available by duplicate elimination will be filled by the next

objects in the node’s rank. If some node cannot retrieve an object from the network, the

space will be temporarily filled with some other object until the node is able to retrieve

a replica of the preferred object.

Although DAFN improves replica distribution over SAF, it still allows some re-

dundancy between nodes two or more hops away. However, it should be noted that

the major goal of replication is to improve availability. Therefore, some tradeoff must

be found between the number of replicas of each data item that can be reached by

the nodes and the probability of, in the future, none of the nodes storing them to be

reachable. DCG estimates this probability by counting the number of links that must

be broken between any two nodes. Instead of using 1-hop neighbours, DCG groups

nodes connected by at least two disjoint paths and removes replica redundancy among

them. Each group estimates their access frequency to the data items by summing the

access frequency of all its members. Data items are allocated to the node with the

highest access frequency for the item.

DCG is the most effective of SAF, DAFN and DCG algorithms in the removal of

redundancy. However, it is also the one requiring the more power consuming oper-

ations. In dense networks, i.e. those where a large number of nodes can be reached,

DCGwill require the transmission and forwarding of a large number of messages. An-

other benefit of replication, not considered in DCG, is the improvement of the access

latency to the data. DCG may increase latency in large scale networks because it will

likely increase the average distance of each node to the replicas of the items.

Simulations assumed a random movement of the nodes and experimented differ-

ent access patterns to the data. DCG showed to be the best performing one for every

scenario at the expenses of the highest number of messages. The most interesting re-

sults are presented with increasing levels of randomness in the queries. The more

random the queries, the more the performance of the three algorithms approximates.

However, DCG continuously increases traffic while the traffic in DAFN tends to be

reduced and in SAF it is constant and significantly lower. Finally, simulations con-

2.3. DATA DISSEMINATION ALGORITHMS 23

firm that the performance of all the algorithms is highly by the number of neighbours

and the storage space at each node. In extreme cases, any of the algorithms performs

equally. The availability of the data can be differentiated only for the intermediary

cases. However, the same conclusions do not apply to the traffic, being even impossi-

ble to establish a correlation between the traffic and the data availability results.

SAF, DAFN and DCGwere extended respectively to C(Correlation)-SAF, C-DAFN

and C-DCG to address the case where the access patterns discloses some correlation

between independent data items (Hara et al., 2004). The strength of correlation is de-

fined for each node and pair of items as the frequency of access to the two items by

the node. It is assumed that the strength of correlation between each two data items

is known and does not change. In these algorithms, the access frequency is replaced

by the data priority, estimated by each node from the access frequency of the item and

from the sum of the strength of the correlations of the item with all other items.

Evaluation was performed by comparing the original methods with those using

correlation in a network where nodes request data items with a correlation predefined

by the authors. The performance of each algorithm relative to each other mimics the

results presented in the original version. In this scenario, correlation-aware methods

provide better accessibility than non-correlation methods while increasing the traffic

at the nodes.

E(xtended)-SAF, E-DAFN and E-DCG handle periodic updates of the data ob-

jects (Hara, 2002). The algorithms assume that items are periodically updated with

a known and constant rate. The access frequency metric for each item is replaced by a

PT value representing the average number of access requests which are issued for an

item until its next update. PT is given by pij.τj , where pij is the access frequency of

nodeNi to itemDj and τj denotes the time remaining until the next update of itemDj .

Preference is given to replicate data objects with higher PT values as they represent the

objects that will be valid for more time and with an higher access ratio.

Simulation results show that when the frequency of the updates is significantly

higher than the frequency of the rounds, the rapid invalidation of the caches attenuates

24 CHAPTER 2. RELATEDWORK

the gains of the extended algorithms. However, the frequency of the rounds can not be

excessive because previous results (Hara, 2001) showed that it significantly increases

traffic.

2.3.3 Trial and Error Algorithms

In the “trial and error” and “owner oriented” classes of algorithms, nodes are

aware of the ID or location of the primary copy of the data but not of the replicas.

These classes are distinguished by the effort put by the querying node in retrieving the

data from the replicas. In general, trial and error algorithms weight the cost of address-

ing the query to the server or perform a preliminary round probing a limited number

of nodes for the data and select the most advantageous option. In some algorithms,

and in the absence of failures, the preliminary round always succeeds and is the de-

fault mode of operation. The examples below show the application of trial and error

algorithms in two distinct types of networks: hybrid networks and sensor networks

where nodes are equipped with location devices.

A simple example of a trial and error algorithm for hybrid networks is 7DS (Pa-

padopouli & Schulzrinne, 2001). In 7DS, each node can be in one of two modes: infra-

structured or ad hoc. If the node is in range of a base station, queries are directly ad-

dressed to it. Otherwise, queries are broadcasted to the node’s 1-hop neighbours and

replied by those having the resource in their local cache. Resources are only cached by

nodes that have previously requested them.

The 1-hop query propagation of 7DS limits the probability of successful retrieval of

the data. The algorithm described in (Sailhan & Issarny, 2003) removes this limitation.

It aims specifically at caching web information in hybrid networks but could be easily

extended for other application domains. In this algorithm, nodes create profiles of

other nodes. A profile describes the interests of a node and are created by observing

the queries the node sends.

The algorithm is tightly integrated with the Zone Routing Protocol (ZRP) (Haas,

2.3. DATA DISSEMINATION ALGORITHMS 25

1997). The ZRP combines reactive and proactive mechanisms. Each node pro-actively

collects routing information for the nodes in its neighbourhood (the “zone” of the

node). Routing information for nodes outside its zone is collected on-demand.

The algorithm operates in two phases: replica location and data retrieval. Replicas

are located by successively performing a sequence of steps from the one with the low-

est cost for retrieving the data to the one with the highest cost. The steps performed

are:

1. If an access point is located in its zone, the data is retrieved from the access point;

2. The node broadcasts a query to the nodes in its zone;

3. The node sends point-to-point queries to some nodes outside the zone but at

a lower distance than the data server. The nodes selected are those known to

have a profile matching the requested web page, ordered according to a rank

that weights the node’s profile and the distance, in hops, between them.

4. The query is sent to the closest access point.

Only positive replies are sent to the querying node. If several replies are received,

what may happen in Steps 2 and 3, nodes are ranked by weighting the distance (in

hops), the freshness of the data and the resources available on the node for each reply.

The resource is requested to the most suitable node.

Double rulings algorithms are an example of trial and error algorithms for sensor

networks where the devices are aware of their location. These algorithms use sphere

projections to determine the location of the replicas so that they form a circle as de-

picted in Figure 2.4. The work described in (Sarkar et al., 2006) uses stereographic

projections.

In this algorithm, the area of the sensor network is considered as a finite region of

the plane. Since the stereographic projection maps a plane in a sphere, the sensor net-

work is mapped in a region of the sphere. The rationale for this algorithm comes from

26 CHAPTER 2. RELATEDWORK

Q

Figure 2.4: Storage and query circles in Double Ruling storage

noticing that in a sphere, any two great circles intersect. Double rulings algorithms

use one such great circle for determining the location of the replicas and another for

forwarding the queries.

In double ruling all nodes can derive the location of the primary copy from a map-

ping of the key or type of the data in a geographical coordinate inside the network

perimeter. This mapping is usually referred as Geographical Hash Tables (GHTs) due

to its similarities with Distributed Hash Tables (DHTs), which map the key of a data

item on an address.

Every data object is stored along the projection on the plane of the great circle pass-

ing by the producer and the hash of the data type given by a GHT. Storage is performed

by nodes forwarding the object along the circle. A property of the storage circle is that,

independently of the location of the source, it necessarily includes the hash point and

its antipode point in the sphere. The nodes closer to these locations perform aggre-

gation functions that speed up and reduce the amount of energy required to retrieve

data summaries. Figure 2.4 shows two storage circles and represents in black these two

points.

Data summaries can be retrieved by addressing the queries using any geographical

routing algorithm (like GPSR (Karp & Kung, 2000) or other) to the hash point or to its

antipode. Data can be retrieved by having the query to follow any closed curve that

separates the two hash points, knowing that the curve finds a replica of every data

2.3. DATA DISSEMINATION ALGORITHMS 27

object stored.

The trial and error classification of this algorithm comes from noticing that any

data item will eventually be found if the query is forwarded along a query curve. A

query curve is depicted in a dashed circle in Figure 2.4. The curve is determined by

an algorithm that first rotates the sphere so that the hash point is placed at the top of

the sphere and then deriving a latitude circle over the sphere. It is shown in the paper

that, if the distance between the producer of the item and the querying node is d, the

distance to the closest replica is in the order ofO(d). Double ruling algorithms have the

desirable property of avoiding traffic concentration at the hash points, thus improving

fairness and load balancing.

The Geographical Location Service (GLS) (Li et al., 2000) was designed to facilitate

the mapping of node identities on their current location but can be applied in other

domains. All nodes have an unique identity, selected from a circular identity space.

The goal of the algorithm is to facilitate the retrieval of the approximate location of

any node from its identity, so that a geographical routing algorithm like GPSR (Karp &

Kung, 2000) can be used for packet forwarding.

The algorithm assumes that all nodes are aware of a geographical partition of the

networked region. A simple example is to partition the network in squares, as depicted

in Figure 2.5. An hierarchy is established with squares of order n being successively

grouped in squares of order n+1with sides that double the size of the squares of order

n. A fundamental requirement of the algorithm is that each square of order n is part of

precisely one square of order n + 1. Figure 2.5 shows 16 order 1 squares, grouped in 4

order 2 squares and in one order 3 square.

The algorithm geographically distributes the information by the network. Some

node S, updating its location, registers the information with progressively lower den-

sity of replicas as the size of the squares increases. The location of S will be stored at

each square of order 1 in the square of order 2 where S is located. One copy will be

stored at each of the remaining squares of order 2 that share the same order 3 square,

etc. In practice, S stores 3 replicas at each level of the hierarchy. Figure 2.5 depicts

28 CHAPTER 2. RELATEDWORK

Figure 2.5: Network region partitioning in GLS

in gray a possible deployment of the replicas. Replicas of the location of S are stored

at the node with the least identity greater than the identity of S on the target region.

However, the effective identity of the nodes storing the replica is unknown to S. In-

stead, the packet is forwarded to some point in the target square using geographical

routing. The first node in the respective square that receives the packet will use the

same algorithm followed by queries (described below) to find the target node.

A node issuing a query for S and not locally storing S’s location will forward it to

the node with the closest identity of which it stores the location. Nodes successively

perform a similar operation until a reply to the query is found. It should be noted that

this algorithm converges by approximating the query to some node storing the replica.

It was shown that the number of forwardings is not more than the order of the square

on which the querying node and S are co-located (Li et al., 2000).

2.3.4 Owner Oriented Algorithms

In owner oriented algorithms, queries are addressed to the node known to hold the

item. This section presents two variations of owner oriented algorithms. One imple-

ments a transparent caching mechanism in hybrid networks. In the second, queries are

always replied by the owner node. Replicas are made available to tolerate faults and

node movement.

In the Cache the Data (CacheData) protocol (Yin & Cao, 2006) requests are always

2.3. DATA DISSEMINATION ALGORITHMS 29

addressed to the access point of the hybrid network. Nodes cache data when receiving

it as a result of a query or after repeatedly forwarding the same data item to different

next hops. Subsequent queries for the same data item are replied by the node instead

of forwarded to the access point. Notice that the decision to cache is based on the next

hop of the reply not the destination. This prevents multiple nodes in a frequently used

route from caching the same data item.

The data-centric storage (DCS) algorithm described in (Ratnasamy et al., 2002; Rat-

nasamy et al., 2003) relies on the Greedy Perimeter Stateless Routing (GPSR) (Karp &

Kung, 2000) geographical routing protocol. GPSR uses two routing algorithms. The

preferred one is greedy forwarding, where each node forwards the messages to the node

in its 1-hop neighbourhood that is closer to the target location. The perimeter forward-

ingmode is activated whenever greedy forwarding can not be used. In particular, when

some node N is not at the destination but can not find any node closer to the target

location to forward the packet. In this case, the packet enters the perimeter forwarding

mode and begins to circle the region until it is able to resume greedy forwarding. If it

is not possible to resume greedy forwarding, the packet is again delivered to N after

circling the target location using the closest nodes.

The home node for some data object is the node closer to the target location given

by the GHT mapping.1 It is the node responsible for storing the primary copy of the

data. The home perimeter for some data object is composed by the nodes that forward

a packet, sent by the home node, addressed to the target location in perimeter forwarding

mode. Nodes in the home perimeter store a backup copy of the object. These concepts

are illustrated in Figure 2.6. The target location is represented with an X. The nodes

composing the home perimeter are depicted in gray and the home node in black.

Periodically, the home node initiates a refresh algorithm which consists in sending a

Refresh Packet addressed to the target location of the data object. Refresh Packets carry

the data objects stored by the node. GPSR ensures that Refresh Packets will traverse

the home perimeter of the object. In the absence of node movement or failure, Refresh

1Geographic Hash Tables (GHTs) were introduced in Section 2.3.3.

30 CHAPTER 2. RELATEDWORK

X

Figure 2.6: Home node and perimeter in Data-Centric Storage

Packets are equally used to signal the availability of the home node.

Nodes receiving a Refresh Packet enter or update the data object in their caches.

Therefore, nodes that recently joined the home perimeter are implicitly included in the

list of replicas. Additionally, each node in the home perimeter compares its distance

to the target location with the distance of the home node to the target location. If

closer, the node elects himself as the new home node. Others (including the previous

home node) will be notified by an updated Refresh Packet. It should be noted that this

procedure implicitly addresses the case where the home node moves away from the

home perimeter.

Nodes in the home perimeter may also initiate the refresh algorithm if they do not

receive a refresh packet after a predefined amount of time. This procedure triggers the

replacement of a failed home node and will trigger the election of a new one.

An interesting case occurs when a home node issues a refresh packet for a data object

but never receives it. This implicitly indicates to the node that it is no longer included

in the home perimeter what may occur either because the node moved away or because

some other node became closer to the target location. After a predefined timeout with-

out receiving any refresh packet, nodes purge the data object from their caches.

2.3. DATA DISSEMINATION ALGORITHMS 31

2.3.5 Location Aware Algorithms

In location-aware algorithms, nodes know the location of both the primary copy of

the data and its replicas. This section presents three examples of these algorithms. The

first two are designed for hybrid networks. The third extends DCS by geographically

distributing the replicas and uses a deterministic algorithm to derive their location.

The Cache the Data Path (CachePath) (Yin & Cao, 2006) algorithm was designed

for hybrid networks. Nodes store the replies to their queries. Intermediary hops that

forward the reply record the key of the item and the destination of the message.

Queries are always addressed to the access point. However, a node forwarding a

query may redirect it, if it is aware of a replica of the item in a node located closer than

the access point. Nodes rely on the underlying routing protocol to learn the distance (in

hops) to the access point and to the caching node as well as to forward the messages.

In comparisonwith CacheData (presented in Section 2.3.4), CachePath requires less

storage space because only an address, not the object is stored. In addition, the algo-

rithm implements some mechanisms to prevent nodes from storing useless informa-

tion. Nodes that are closer to the access point than to the destination of a reply do not

record information because it is more cost efficient to forward the query to the access

point. Also, because node movement can rapidly invalidate distance information, ad-

dresses are cached only if the replica is stored up to a maximum predefined distance.

Nodes that redirect queries are responsible for confirming the availability of the data

item or to retransmit the query to the access point if the object is not provided.

Analytical comparisons showed that CachePath and CacheData present advan-

tages over a baselinemethodwhere all queries are forwarded to the data centre. Cache-

Data outperforms CachePath when the storage space available at the nodes is larger,

when data items are frequently updated or the topology changes. In the opposite

situations, CachePath is preferable. HybridCache (Yin & Cao, 2006) selects the most

favourable of CachePath and CacheData on a per-query basis according to three rules:

32 CHAPTER 2. RELATEDWORK

X

X
X

X

Z1 Z2

Z4 Z3

Figure 2.7: Monitor nodes in Resilient-Data-Centric Storage

• CacheData is used if the data item is small;

• CacheData is used if the object is frequently updated. CachePath is used other-

wise;

• CachePath is used when the gains (in hops) are significant, i.e. when the distance

to the data centre is high in comparison with the distance to the caching node.

Simulation results showed that HybridCache outperforms CacheData and CacheP-

ath.

Storing the replicas of each data item in proximity is considered undesirable be-

cause such a system is unable to tolerate localised failures which may result for

example from interference (Ghose et al., 2003). Resilient Data-Centric Storage (R-

DCS) (Ghose et al., 2003) improves data availability by geographically partitioning the

network in zones and storing at most one replica on each zone (see Figure 2.7). R-DCS

implements a two layer architecture, with some nodes storing replicas of the data and

others keeping summaries of the cached information. R-DCS extends the GHT func-

tion with a zone parameter so that a different location, within the zone, is returned

for each zone. Like in DCS (described in Section 2.3.4), the node closer to the target

location in each zone is the home node for the object. In R-DCS, this node is named the

“monitor node”.

Data storage is optional for monitor nodes and depends of its available resources.

Amonitor node that simultaneously stores data is called a replica node. At aminimum,

2.3. DATA DISSEMINATION ALGORITHMS 33

any monitor node is required to store a map containing:

• A list of the zones containing replica nodes;

• A list of the zones containing monitor nodes;

• Event summaries, to facilitate summary-mode queries;

Data objects are stored by forwarding them to the corresponding monitor node in

the source’s zone. If the monitor node is not storing data, it will forward the object

to the closest replica node. All queries are also addressed to the monitor node in the

region of the source. Depending on the type of the query, the monitor node will either

reply directly (if it is a summary query) or forward the request to all other monitor

nodes so that each can reply with the information stored locally.

Monitor nodes coordinate to keep updated versions of the map using a virtual ring

(depicted in Figure 2.7). Each monitor node receiving the map updates it with the

information it collected since the last visit and forwards the map to the next node in

the ring.

2.3.6 Discussion

This section surveyed different algorithms for data dissemination in wireless net-

works. As depicted in Table 2.1, the algorithms cover a large number of combinations

of assumptions concerning the capabilities of the devices, their movement, the sup-

porting infrastructure and the predictability of the accesses to each data item.

The table shows some correlations among different algorithms. For example, the

absence of proactive dissemination of replicas can be found in all algorithms devel-

oped for hybrid networks (those with a small number of producers) but also in others

developed for wireless networks without infrastructure support. With the exception of

Rumour Routing, all these algorithms create copies of the data items by storing them

on the nodes performing the queries. Replication is justified, for example, to improve

34
C
H
A
P
T
E
R
2.
R
E
L
A
T
E
D
W
O
R
K

Class Protocol
Node

Movement

Location

Awareness

Access

Prediction
Producers

Replica

Refresh/

Leveraging

Geograph.

Distr.

Message type

Proactive

Dissem.
Query

L
o
ca
ti
o
n

U
n
aw
ar
e Simple Search • << n – B

Rumour Routing n rw rw

*-SAF • • n ◦ –

Aut. Gossipping • • n ◦ opp –

Im
p
ro
v
ed Non-Unif n local/degrad. B –

*-DAFN • • n ◦ coordination –

*-DCG • • n ◦ coordination –

T
ri
al
&

E
rr
o
r

7DS • << n – p2p/B

Sailhan et al. • << n – p2p

Double rulings • n deterministic p2p p2p

GLS • • n ◦ deterministic p2p p2p

O
w
n
er CacheData • << n local – p2p

DCS • • n • p2p p2p

L
o
c.

A
w
ar
e

CachePath • n – p2p

R-DCS • • n • deterministic p2p p2p

•: feature of the algorithm ◦: implicitly provided

n: approx. all nodes in the network, << n: small number of nodes

rw: random-walk, B: broadcast, p2p: point-to-point message, opp: opportunistic, –: not applicable

Table 2.1: Comparison of the data dissemination algorithms surveyed

2.3. DATA DISSEMINATION ALGORITHMS 35

availability (Hara, 2001) and to reduce of the number of transmissions (Sailhan & Is-

sarny, 2003).

Replica refreshment can be used to ensure that an adequate number of replicas exist

or that they are at the correct location. Some protocols offer this feature as a side effect

of the protocol’s normal operation. DCS and R-DCS are the only two protocols that

implement specific measures to ensure that replicas are kept at the correct location.

They send periodic messages, which are also used as keep alive messages, and that

trigger a reconfiguration in case of failure.

The geographic distribution of the replicas should be interpreted differently for

algorithms with and without proactive replica dissemination. Proactive algorithms

distribute the replicas by the networked region. Non-proactive algorithms are mostly

motivated by the savings in the resources of the nodes and aim to prevent that many

replicas are stored in a neighborhood. The non-uniform information algorithm (Tilak

et al., 2003) uses a particular case of geographic dissemination because it is the only

one that degrades the quality of the information with the distance to the source.

In the algorithms surveyed, proactive and geographic distribution of replicas is

an exclusive of the algorithms that benefit of location information. Geographical dis-

tribution is motivated, for example, by the improved resilience to localised failures,

like interference (Ghose et al., 2003). The three algorithms providing this feature ap-

ply deterministic functions (GHTs) to determine the location of the data. Deterministic

functions provide two advantages: i) they avoid expensive coordination operations

among the nodes to prevent redundancy, and ii) they allow all operations to be im-

plemented with point-to-point messages, which are expectedly less energy consuming

than broadcasts. A requirement typically neglected in the literature and affecting these

algorithms is that, to be useful, GHTs must first learn the topology of the entire net-

work so that all data keys can be mapped on coordinates inside the network.

Two methods are used for distributing replicas in non proactive replication algo-

rithms. In CacheData (Yin & Cao, 2006), the node selected for storing a replica is the

node located at the injunction of different routes to the access point. This implicitly

36 CHAPTER 2. RELATEDWORK

prevents multiple nodes in a single but frequently used route from redundantly stor-

ing the same data item. Nodes in DAFN and DCG (Hara, 2001) periodically initiate

rounds aimed specifically at negotiating the content of the cache of each node.

Point-to-point messages are the preferred method for message dissemination in al-

gorithms where the location of at least one copy is known. It should be noted that

point-to-point messages hide an implicit cost: these messages are typically delivered

to some underlying routing protocol which is responsible for finding the route to the

destination, or, in some cases, the most adequate next hop. To perform these oper-

ations, many routing protocols developed for networks where nodes are unaware of

their location, like DSR (Johnson et al., 2001) and AODV (Perkins & Royer, 1999) may

occasionally use broadcasts.

Location unaware algorithms cannot address point-to-point messages to a specific

node. However, even in this case, broadcast is used by a limited number of algorithms.

Alternatives are to rely on sequences of random point-to-point messages within neigh-

bours (randomwalks) or communicate onlywhen new nodes become in range (Oppor-

tunistic Gossipping). Node discovery is typically performed using limited broadcasts.

2.4 Packet Dissemination

The goal of the packet disseminationmodule is to propagate messages according to

the requirements of the query and dissemination algorithms. As shown in the previous

section (see Table 2.1), the preferred packet dissemination algorithm is point-to-point

what is typically provided by some routing protocol. Point-to-point routing protocols

for multi-hop wireless networks have received considerable attention in the literature.

The interested reader is referred to (Liu & Kaiser, 2003) for an extensive survey on the

subject.

Random-walks, opportunistic communication and broadcast have also been re-

ferred in the previous section as alternative mechanisms used for message propaga-

2.4. PACKET DISSEMINATION 37

tion. However, random walks and opportunistic communication are too restrictive

and show to be useful only in a limited number of scenarios. Both are probabilistic,

best effort mechanisms, that can not assure a timely message delivery or a successful

delivery of the messages even if it is possible to establish a communication channel

between two endpoints.

Broadcast does not suffer from the problems mentioned above but it is typically

avoided due to its considerable costs when compared with point-to-point messages.

However, due to the decentralised nature of Mobile Ad hoc NETworks (MANETs),

many services, like the location of some resource, are typically implemented using

broadcasts. Besides the data distribution protocols mentioned in the previous sec-

tion, examples of other applications implemented using broadcasts are route discov-

ery (Johnson et al., 2001; Perkins & Royer, 1999), reputation systems (Perich et al., 2004)

and the distribution of code updates for sensors (Levis et al., 2004).

This section focus on algorithms aimed to reduce the cost of broadcast operations.

We note that reducing the cost of broadcast operations indirectly helps to improve the

performance of the data distribution protocols that use point-to-point message deliv-

ery as many routing protocols use broadcast for determining the route for a node.

2.4.1 Broadcast Algorithms

The number of nodes required to retransmit a message so that it gets delivered

to every participant depends of several factors like the transmission range of the de-

vices, the location of the source, the size of the region covered by the nodes or their

geographical distribution. Furthermore, these factors may be permanently changing,

even between consecutive messages. In some cases, the underlying infrastructure may

provide the tools to efficiently broadcast messages. This is the case, for example, of

spanning trees provided by multi-cast routing protocols for ad hoc networks. How-

ever, in many cases, maintaining such structure is too costly or even impossible due

to the high mobility of the nodes. This section will focus on alternatives that do not

38 CHAPTER 2. RELATEDWORK

1: msgSet← {}

2: upon event RECEIVE(m) do
3: ifm 6∈ msgSet then
4: DELIVER(m)
5: msgSet← msgSet

⋃

{m}
6: SEND(m)
7: end if
8: end upon

Figure 2.8: Flooding algorithm

require an underlying infrastructure.

The most common implementation of broadcast is by flooding the network. In

flooding, each node keeps a log of the messages recently received. When a node re-

ceives a message for the first time, the node adds the unique identification of the

message to its log and retransmits it. Figure 2.8 shows an algorithm implementing

flooding. Flooding creates a large number of redundant transmissions. Many nodes

receive multiple copies of the message, each transmitted by a different node. There-

fore, it wastes a non-negligible amount of bandwidth and power. Independently of

the contribution of each retransmission, it consumes resources at the sender. Further-

more, receivers also spend a non-negligible amount of energy at the reception (Feeney

& Nilsson, 2001) and CPU time to decide if the message should be discarded or re-

transmitted. Finally, flooding may generate collisions and contention because most of

the Medium Access Control (MAC) protocols for ad hoc networks, like the one used

in the IEEE 802.11 (IEEE 802.11, 1999), lack a coordination function able to completely

avoid collisions of concurrent transmissions.

In a flooding procedure, the redundant reception of messages can not be com-

pletely avoided. Elsewhere (Tseng et al., 2002), it was shown that a retransmission

necessarily overlaps at least 39% of the region already covered by a previous transmis-

sion. Themotivation for devising algorithms that improve the performance of flooding

comes from noticing that this value increases significantly with the number of retrans-

missions listened by a node. The same paper shows that after listening to four trans-

2.4. PACKET DISSEMINATION 39

Uses:
p: probability of retransmission

1: msgSet← {}

2: upon event RECEIVE(m) do
3: ifm 6∈ msgSet then
4: DELIVER(m)
5: msgSet← msgSet

⋃

{m}
6: if RANDOM(0,1)< p then
7: SEND(m)
8: end if
9: end if
10: end upon

Figure 2.9: GOSSIP1(p) algorithm

missions of the samemessage, a retransmission will overlap on averagemore than 95%

the region covered by the previous ones.

2.4.2 Probabilistic Algorithms

A simple approach to reduce the number of retransmissions of a broadcast is to

have each node to forward the first received copy of every message according to some

probability. This section describes a family of probabilistic algorithms named GOSSIP,

all presented in (Haas et al., 2002).

The simpler implementation of a probabilistic algorithm is GOSSIP1(p), where each

node, after receiving amessage for the first time retransmit it with some probability p ≤

1. GOSSIP1(p) is depicted in Figure 2.9. It should be noted that for p = 1, GOSSIP1(p)

becomes the flooding algorithm described previously.

GOSSIP1(p) presents some limitations that are better explained in a simplified

model assuming that the algorithm progresses in rounds. In this model, the source

of the message initiates the broadcast in round r = 0. A node receiving a message

for the first time in round r will possibly transmit it in round r + 1. Nodes receive a

transmission in the same round where it was transmitted.

40 CHAPTER 2. RELATEDWORK

An interesting property of probabilistic algorithms is that for the majority of the

broadcasts, either a large or a small proportion of the nodes receive the broadcast. This

property is usually referred as a bimodal behaviour and was studied in the context

of probabilistic algorithms for broadcasting in wireless networks in (Haas et al., 2002).

Let tr be the number of nodes that retransmit a message in round r and nr the number

of nodes that received it for the first time in the same round. In GOSSIP1(p), tr+1 is

expected to be close to nr× p < nr. Given that p is a constant, the probability of having

some nodes to retransmit the message in round r + 1, i.e. tr+1 > 0 increases with nr

which in turn depends of tr. Therefore, the broadcast is more likely to be delivered to

every node if, in all rounds, tr is high. The bimodal behaviour of GOSSIP1(p) comes

from the broadcast being initiated by a single node, so t0 = 1. If the number of neigh-

bouring nodes (nr) or the probability of retransmission (p) is also small, there is the risk

that after a few rounds, the broadcast dies because nr × p ≈ 0. However, with some

probability, it is also possible that nr increases rapidly in the first few rounds, ensuring

the delivery of the message to a large proportion of the nodes.

To avoid the bimodal behaviour one should therefore improve the operation of the

first few rounds. Because the number of neighbours (nr) does not depend of the algo-

rithm, an higher tr can only be achieved with an higher probability of retransmission p.

GOSSIP1(p, k) extends GOSSIP1(p) by setting p = 1 in the first k rounds of a broadcast.

In the remaining rounds, nodes retransmit with probability p < 1. The algorithm is

depicted in Figure 2.10.

Experimental results confirmed that for p > 0.7 and k = 4, GOSSIP1(p, k) does

not exhibit bimodal behaviour, meaning that only approximately 70% of the nodes

are required to propagate a broadcast to deliver it to a large proportion of the nodes

with high probability. For lower values of p, the delivery ratio of GOSSIP1(p, k) decays

rapidly. The problem was attributed to the irregular distribution of the nodes. In

regions with low density, the conditions that motivated GOSSIP1(p, k) may appear as a

result of a small number of nodes listening to the message for the first time, even after

a large number of rounds.

2.4. PACKET DISSEMINATION 41

Uses:
p: probability of retransmission
k: min number of hops

1: msgSet← {}

2: upon event RECEIVE({m,hops}) do
3: ifm 6∈ msgSet then
4: DELIVER(m)
5: msgSet← msgSet

⋃

{m}
6: if hops < k ∨ RANDOM(0,1) < p then
7: SEND({m,hops+1})
8: end if
9: end if
10: end upon

Figure 2.10: GOSSIP1(p, k) algorithm

The problem can be addressed by monitoring the network so that an higher

probability of retransmission is applied in regions where the node density is low.

GOSSIP2(p1, k, p2, n) is depicted in Figure 2.11. In this algorithm, p1 and k retain the

meaning described for GOSSIP1(p, k). p2 > p1 specifies the probability of retransmis-

sion for nodes receiving the message from a node with less than n neighbours. Sim-

ulations showed that for the same scenarios, GOSSIP1(0.8,4) presented a comparable

performance to GOSSIP2(0.6,4,1,6). However, GOSSIP2 required on average less 13%

transmissions than GOSSIP1.

An undesirable requirement of GOSSIP2 is that nodesmust be aware of their neigh-

bours. Due to node movement, the number of neighbours can only be known if all

nodes periodically transmit some control message to advertise their presence. How-

ever, the periodic sending of messages should be avoided in wireless networks because

it increases bandwidth and battery consumption. RAPID (Drabkin et al., 2006) reduces

this burden by having nodes to periodically broadcast an heartbeat message only if no

message has been sent for a predefined period of time. RAPID algorithm is outlined in

Figure 2.12.

In contrast with the previous algorithms, in RAPID the probability of retransmis-

42 CHAPTER 2. RELATEDWORK

Uses:
k: min number of hops
n: min number of neighbours
p1: probability of retransmission in the regular case
p2: probability of retransmission in special case

1: msgSet← {}

2: upon event RECEIVE({m,hops,nn}) do
3: ifm 6∈ msgSet then
4: DELIVER(m)
5: msgSet← msgSet

⋃

{m}
6: rnd←RANDOM(0,1)
7: if hops < k ∨ (nn < n ∧ rnd < p2) ∨ (nn ≥ n ∧ rnd < p1) then
8: myNeigh←COUNTNEIGHBOURS
9: SEND({m,hops+1,myNeigh})
10: end if
11: end if
12: end upon

Figure 2.11: GOSSIP2(p1, k, p2, n) algorithm

Uses:
NNEIGH: current estimated number of neighbours
β: reliability factor

1: msgSet← {}

2: upon event RECEIVE(m) do
3: ifm 6∈ msgSet then
4: DELIVER(m)
5: msgSet← msgSet

⋃

{m}

6: p← min
{

1, β

NNEIGH

}

7: if RANDOM(0,1)< p then
8: SEND(m)
9: end if
10: end if
11: end upon

Figure 2.12: RAPID algorithm

2.4. PACKET DISSEMINATION 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

P
ro

b
of

 R
et

ra
ns

m
is

si
on

Neighbours

Figure 2.13: Probability adaptation function in RAPID (β = 2.5)

sion is independently defined by each node. Nodes retransmit with a dynamic prob-

ability given by its number of neighbours and a reliability factor β related with the

number of nodes that should perform a retransmission in a one hop neighbourhood.

As Figure 2.13 shows, the probability of retransmission decreases with the number of

neighbours, to prevent an excessive number of redundant retransmissions to occur.

2.4.3 Counter-based Algorithms

Results from GOSSIP2(p1, k, p2, n) and RAPID show that probabilistic algorithms

do not adapt well to variations in node density because the number of retransmissions

is proportional to the number of nodes in the region. However, even without the ex-

change of dedicated control messages, it is possible to retrieve some information from

the network. Counter-based algorithms try to improve the efficiency of the broadcast

by requiring each node to check the usefulness of their retransmission. The test is used

both for preventing, to some degree, redundant retransmissions and to ensure a suffi-

cient number of retransmissions.

Enhanced RAPID (Drabkin et al., 2006) is a counter-based three step algorithm.

As depicted in Figure 2.14, after receiving a message for the first time, the algorithm

waits for a small random delay, while monitoring the network. The retransmission is

cancelled either by listening a retransmission by another node or by the same dynamic

44 CHAPTER 2. RELATEDWORK

Uses:
NNEIGH: current estimated number of neighbours
β: reliability factor
ds: small maximum timer delay
dl: large maximum timer delay

1: msgSet← {}

2: upon event RECEIVE(msg) do
3: ifmsg 6∈ msgSet then
4: DELIVER(msg)
5: msgSet← msgSet

⋃

{msg}
6: d←RANDOM(0,ds)

7: p← min
{

1, β

NNEIGH

}

8: SETALARM(d,{msg,p})
9: else
10: CANCELALARM(msg)
11: end if
12: end upon

13: upon event ALARM({msg,p}) do
14: if RANDOM(0,1)<p then
15: SEND(msg)
16: else
17: d←RANDOM(0,dl)
18: SETALARM(d,{msg,1.0})
19: end if
20: end upon

Figure 2.14: Enhanced RAPID algorithm

probability function used in RAPID (see Section 2.4.2). However, a node that decides

not to retransmit continues to monitor the network for an additional random time.

This second monitoring period has a larger interval. The node will retransmit with

probability 1 if it does not listen at least one retransmission of the message during this

period.

Like in GOSSIP1(p, k), in GOSSIP3(p, k,m) when a node receives a message for the

first time, it will retransmit it with probability p, with p = 1 if the source is less than k

hops away. However, each node that decided not to retransmit is required to confirm

that a sufficient number (m) of retransmissions occurs so that the broadcast does not

2.4. PACKET DISSEMINATION 45

Uses:
k: min number of hops
m: min number of retransmissions
p: probability of retransmission
d: timer delay

1: msgSet← {}

2: upon event RECEIVE({msg,hops}) do
3: ifmsg 6∈ msgSet then
4: DELIVER(msg)
5: msgSet← msgSet

⋃

{msg}
6: if hops < k ∨ RANDOM(0,1) < p then
7: SEND({msg,hops+1})
8: else
9: SETALARM(d,{msg,hops})
10: end if
11: else
12: Cmsg ← Cmsg + 1
13: end if
14: end upon

15: upon event ALARM({msg,hops}) do
16: if Cmsg < m then
17: SEND({msg,hops+1})
18: end if
19: end upon

Figure 2.15: GOSSIP3(p, k,m) algorithm

die. The node will retransmit if it does not listen to m retransmissions within a short

period of time. GOSSIP3(p, k,m) is depicted in Figure 2.15. The late retransmission

reduces the probability of the broadcast to die because of an inadequate selection of

the probability p. Experiments performed by the authors showed that in a particular

scenario, GOSSIP3(0.65,4,1) outperformed slightly GOSSIP1(0.75,4) although requiring

8% less transmissions.

The “counter-based scheme” (Tseng et al., 2002) is presented in Figure 2.16. In this

algorithm, a node receiving a message for the first time waits for a random time t

before retransmitting. During the wait period, the node counts the number of retrans-

missions it listens. The node will retransmit if, when the timer expires, the number of

46 CHAPTER 2. RELATEDWORK

Uses:
m: min number of retransmissions
maxDelay: maximum delay

1: msgSet← {}

2: upon event RECEIVE(msg) do
3: ifmsg 6∈ msgSet then
4: DELIVER(msg)
5: msgSet← msgSet

⋃

{msg}
6: delay←RANDOM(0,maxDelay)
7: SETALARM(delay,msg)
8: else
9: Cmsg ← Cmsg + 1
10: end if
11: end upon

12: upon event ALARM(msg) do
13: if Cmsg < m then
14: SEND(msg)
15: end if
16: end upon

Figure 2.16: Counter-based scheme

retransmissions listened is below a predefined threshold value.

Like in GOSSIP3(p, k,m), nodes in the “counter-based scheme” count the num-

ber of retransmissions listened to decide if they should retransmit. However, in

the “counter-based scheme” the transmissions are distributed over some time pe-

riod. This may be advantageous for wireless networks as it reduces the number

of collisions in multiple access MAC protocols like the IEEE 802.11 (IEEE 802.11,

1999). These algorithms differ also in the expected number of retransmissions, which

in GOSSIP3(p, k,m) depends of the network density but is a fixed constant in the

“counter-based scheme”.

In the “Hop Count-Aided Broadcasting” (HCAB) algorithm (Huang et al., 2006),

messages carry an hop count field (HC) set to zero by the source and incremented at

every retransmission. As depicted in Figure 2.17, nodes receiving the message for the

first time start a random timer and record the value of HC. Themessage will be retrans-

2.4. PACKET DISSEMINATION 47

Uses:
maxDelay: maximum delay

1: msgSet← {}

2: upon event RECEIVE({msg,HC}) do
3: ifmsg 6∈ msgSet then
4: DELIVER(msg)
5: msgSet← msgSet

⋃

{msg}
6: HCmsg ← HC
7: delay←RANDOM(0,maxDelay)
8: SETALARM(delay,msg)
9: else
10: if HC > HCmsg then
11: CANCELALARM(msg)
12: end if
13: end if
14: end upon

15: upon event ALARM(msg) do
16: SEND({msg,HCmsg + 1})
17: end upon

Figure 2.17: Hop Count-Aided Broadcasting algorithm

mitted by the node if, when the timer expires, no message with an HC higher than the

first was received. Implicitly, nodes in HCAB try to assure that each transmission is

forwarded by some node, hopefully covering additional regions of the network.

2.4.4 Distance-Aware Algorithms

When nodes are equipped with omni-directional antennas, each transmission per-

formed by a node S is propagated in every direction. The signal strength fades with the

distance to the source by a factor that depends of different physical aspects, such as ob-

stacles traversed by the signal. The transmission of a message by S will be received by

a node R if at R’s location the signal strength is above the minimum receiving thresh-

old of R’s interface. A simplified theoretical model commonly used in the literature

assumes that nodes are homogeneous. That is, all nodes transmit with the same power

48 CHAPTER 2. RELATEDWORK

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

S R

rr

(a) Small additional
coverage

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

S R

rr

(b) Maximum additional cov-
erage

Figure 2.18: Overlap of the coverage of the transmission range between two nodes

and have an equal minimum receiving threshold. It is also assumed that there is a

monotonously decreasing function that maps the distance to the source in the signal

strength.

In this model, the receivers of any message transmitted by some node S are those

lying within a circle centred at S and with a radius that depends of the transmission

power, the fading of the signal and the minimal reception threshold. If all these factors

are known, it is possible to map the power with which each message is received by

some node on its distance to the source. This section uses the model above to present

some algorithms that use the distance between the nodes as a criteria for the selection

of the nodes that will retransmit a message.

A node R that retransmits a message must have received it from some node S.

Therefore, R must be within transmission range of S. Since it is assumed that nodes

use omni-directional antennas, part of the coverage provided by the retransmission of

R will overlap with the region previously covered by the transmission from S. Fig-

ure 2.18 illustrates this by presenting two nodes S andR and their transmission ranges

as circles of radius r.

For the theoretical model presented above, it was shown in (Tseng et al., 2002) that

the additional coverage provided by a retransmission may increase between 0% and

61% the coverage of the previous retransmission. Figures 2.18(a) and 2.18(b) show

the additional coverage provided with a retransmission by R and the overlapped re-

gion. As it can be seen, the gains depend of the location of the node performing the

2.4. PACKET DISSEMINATION 49

Uses:
maxPwr: threshold transmission power
maxDelay: maximum delay

1: msgSet← {}

2: upon event RECEIVE(msg,P) do
3: ifmsg 6∈ msgSet then
4: DELIVER(msg)
5: msgSet← msgSet

⋃

{msg}
6: Pmsg ← P
7: delay←RANDOM(0,maxDelay)
8: SETALARM(delay,msg)
9: else
10: Pmsg ← max {Pmsg,P}
11: end if
12: end upon

13: upon event ALARM(msg) do
14: if Pmsg < maxPwr then
15: SEND(msg)
16: end if
17: end upon

Figure 2.19: Distance-based scheme

retransmission: a node closer to the source (Figure 2.18(a)) contributes with a smaller

additional coverage and a node more distant to the source (Figure 2.18(b)) with an

higher additional coverage.

Preventing nodes too close to a previous sender (and therefore providing a negli-

gible contribution to the coverage) from retransmitting is addressed in the “distance-

based scheme” described in (Tseng et al., 2002) and depicted in Figure 2.19. After re-

ceiving a message, nodes set a timer for a random time. During this period, nodes

computeM , the maximum received signal strength (RSSI) of the original message and

of all copies. A node will retransmit a message only if when the timer expiresM does

not exceed a predefined threshold.

Given that in the wireless media the signal strength decays with the distance to

the sender, it can also be said that this model prevents nodes within a minimal dis-

50 CHAPTER 2. RELATEDWORK

tance from a previous sender from forwarding the message. Like in the counter-based

algorithms presented in Section 2.4.3, the “distance-based scheme” adapts well to dif-

ferent network densities: the number of transmissions does not grow with the average

number of neighbours.

In the “Self-Adaptive Probability Broadcasting” (SAPB) (Huang et al., 2006), the

probability of a node to retransmit a message is given by an aggregation of three met-

rics. Figure 2.20 shows that like in many other algorithms described above, each node

sets a timer for a random time after receiving a message for the first time. When the

timer expires, the probability of retransmission will be given by:

P = K.f(n).g(Sx) (2.2)

where K is a constant defined so that 0 < P ≤ 1, n is the number of transmissions

received and Sx is the maximum of the Received Signal Strength Indicator (RSSI) of

all copies of the message received during the time interval. Functions f(n) and g(Sx)

should bemonotonously decreasing so that the probability of retransmission decreases

with the number of retransmissions listened and with their RSSI. SAPB combines the

three major topics that have been addressed in the other proposals discussed: a ran-

dom selection of the nodes, a bound on the number of retransmissions in the neigh-

bourhood of each node and a bound on the distance to the source of previous trans-

missions.

2.4.5 Discussion

A summary of the key characteristics of each algorithm discussed in this section

is presented on Table 2.2. The column “bounded transmissions” shows which algo-

rithms impose an absolute limit on the number of retransmissions in the neighbour-

hood of each node. This is an important aspect as it evaluates the adaptation of the

algorithms to different node densities. Of the surveyed algorithms, only the Enhanced

RAPID and “Counter-based scheme” prevent a node from retransmitting if it listens

2.4. PACKET DISSEMINATION 51

Uses:
K: constant multiplicative factor
f: function over the number of retransmissions
g: function over maximum transmission power
maxDelay: maximum delay

1: msgSet← {}

2: upon event RECEIVE(msg,P) do
3: ifmsg 6∈ msgSet then
4: DELIVER(msg)
5: msgSet← msgSet

⋃

{msg}
6: Nmsg ← 1
7: Smsg ← P
8: delay←RANDOM(0,maxDelay)
9: SETALARM(delay,msg)
10: else
11: Nmsg ← Nmsg + 1
12: Smsg ← max {Smsg,P}
13: end if
14: end upon

15: upon event ALARM(msg) do
16: p← K.f(Nmsg).g(Smsg)
17: if RANDOM(0,1) < p then
18: SEND(msg)
19: end if
20: end upon

Figure 2.20: Self-Adaptive Probability Broadcasting Algorithm

to more than a predefined number of retransmissions. The “distance-based scheme”

indirectly implies an upper bound on the number of retransmissions because a trans-

mission from a node implicitly prohibits those closer than a predefined distance from

retransmitting. A lower bound can be defined as a configuration parameter (this is the

case in GOSSIP3(p, k,m) and “counter-based scheme”) or be implicit (like in HCAB) by

having the nodes to retransmit if, when its timer expires, the retransmissions listened

do not satisfy some condition.

The “source aware” column shows the algorithms that identify a potential threat to

the broadcast at the early stages of the dissemination. Indirectly, this is also addressed

52 CHAPTER 2. RELATEDWORK

Algorithm
Bounded

transmissions
Source
aware

Progress
Collision
avoidance

Random
selection
of nodesUpper Lower

P
ro
b
ab

GOSSIP1(p) •
GOSSIP1(p, k) • •
GOSSIP2(p1, k, p2, n) • •
RAPID •

C
o
u
n
t Enhanced RAPID • • ◦ • •

GOSSIP3(p, k,m) • • •
Count-based • • ◦ • •
HCAB ◦ ◦ • • •

D
is
t Distance-based ◦ • • •

SAPB • •
•: feature of the algorithm ◦: implicitly provided

Table 2.2: Comparison of the broadcast algorithms surveyed

by all algorithms imposing a lower bound on the number of retransmissions because

this bound is also applicable in the neighbourhood of the source.

The “Distance-based scheme” and HCAB are the two algorithms that use the ex-

pectations of additional coverage in the selection of the nodes that will retransmit. The

former by estimating the distance to the source of the previous retransmissions while

the later uses a counter that compares the original reception of the message at the node

with other retransmissions performed in the neighbourhood.

Algorithms marked in the “collision avoidance” column are those that incorporate

a mechanism to separate the retransmissions performed by the nodes, using a random

delay locally decided at each node. This separation is fundamental in some medium

access protocols to prevent contention and an undesirable number of collisions result-

ing from the simultaneous retransmission of the message by multiple nodes in a neigh-

bourhood as a result of the reception of the same message. It should be noted that any

of the other algorithms can be easily adapted to address this issue by applying some

random delay before performing the retransmission of the message.

Although with some variations, all the algorithms surveyed use randomisation to

select the nodes that will perform the retransmission. The random selection may be ex-

plicit, like in GOSSIP algorithms where nodes peek a random number to decide if they

2.5. SUMMARY 53

retransmit, or can be implicit. In these, after receiving a message, each node chooses a

random delay, and decides to retransmit at the end of the delay if some criteria has not

been satisfied by previous retransmissions. Therefore, a node that randomly selected a

smaller delay is more likely to be required to retransmit.

Contrary to the remaining, RAPID, Enhanced RAPID and GOSSIP2(p1, k, p2,m)

adapt their probability of retransmission to the local node density. The former two us-

ing a linear variation and the later with a fixed threshold. This is an interesting feature,

which, although not explicitly bounding the number of retransmissions attempts to

adapt to the network conditions in the neighbourhood of each node.

HCAB and Enhanced RAPID prevent all nodes listening to one retransmission

from sending. This is a restrictive threshold that is based on the results presented

in (Tseng et al., 2002) that concluded that very limited additional coverage is gained

with the second retransmission. As Section 3.3 will show, simulations of HCAB do not

provide a delivery ratio comparable with other algorithms using an higher threshold.

However, it should be noted that RAPID runs in the background a gossip algorithm

allowing nodes to learn and retrieve messages they did not receive with the dissemi-

nation algorithm.

2.5 Summary

Data distribution protocols can be decomposed in different modules. The decom-

position proposed in this chapter uses threemodules: local storage spacemanagement,

data management and packet dissemination. From the survey of the related work for

each of these topics we extract the following conclusions.

Cache management policies that have proven to be successful in other domains are

not themost adequate to wireless networks. However, nomain trend in customised so-

lutions has been found. Apparently, the most adequate policy is likely to depend of the

application scenario and of the particularities of the wireless networking environment.

54 CHAPTER 2. RELATEDWORK

Data management uses replication algorithms to improve resilience to faults like

disconnection, interference and device failure. In addition, replication contributes to

reduce the number of messages and bandwidth required for data retrieval.

Two major types of replication algorithms have been found. In proactive replica-

tion, data is pushed to a subset of the nodes in the network, regardless of their interest

on that particular item. In non-proactive algorithms, nodes store the data they have

previously requested or forwarded and make it available to other nodes.

A particular variant tries to evenly distribute the replicas over the entire networked

region. It was argued that geographically distribution of the replicas provides the

biggest tolerance to failures. In scenarios where the access pattern of the nodes to

the data is not correlated with their location, geographical distribution can equally

contribute to reduce the access latency and the number of messages required to re-

trieve the data. To the extent of our knowledge, proactive geographical distribution of

the data has only been pursued in the context of wireless networks where the nodes

are aware of their location. In networks where devices do not have location informa-

tion available, geographical distribution has been addressed in a limited scope, where

neighbouring nodes cooperate to prevent an excessive redundancy of the data.

To replicate data, nodes exchange messages. The survey identified four mes-

sage passing mechanisms: point-to-point, randomwalk, opportunistic gossipping and

broadcast. A correlation between point-to-point message passing and dissemination

algorithms were nodes are aware of the location of at least one copy of the items was

found. In the remaining algorithms no clear trend can be identified.

Broadcast has been widely used by protocols for wireless networks and is one of

the cornerstones of different point-to-point routing protocols for MANETs. Therefore,

a reduction on the number of messages transmitted on each broadcast contributes to

the reduction of the cost of different data dissemination protocols, including some of

those using point-to-point messages. Different proposals have recently emerged to

reduce the cost of broadcast operations. The survey showed that although implement-

ing different policies, all randomly select some of the neighbours of the source of the

2.5. SUMMARY 55

previous transmission.

56 CHAPTER 2. RELATEDWORK

3
A Power­Aware

Broadcasting Algorithm

Section 2.4 presented different algorithms for message dissemination that generate

a much smaller number of retransmissions than flooding. The goal of these algorithms

is to devise, in run-time, a subset of participants that are required to retransmit so

that every node in the network receives at least one copy of the message. Due to the

movement of the nodes and to the different location of the sources, this subset may be

different for each message.

An important factor to improve the performance of broadcast algorithms for

MANETs and which has been previously neglected in the literature is the location

of the nodes performing a retransmission with respect to the source of the previous

transmissions. We provide a simple case study supporting this claim.

Figure 3.1 represents a region of a MANET with a source S of a broadcast message

and its neighbours. It is assumed that the network follows the simplified network-

ing model described in Section 2.4.4. In brief, that all nodes transmit with the same

power and are capable of receiving a message if the signal strength at the receiver is

above some minimum threshold. The figure assumes that the transmission range of all

nodes is r and that the minimal power threshold used by the “distance-based scheme”

described in Section 2.4.4 is r′. The transmission range of nodes S,B,C and F is repre-

sented by circles.

The region covered by a retransmission of a broadcast initiated by S growswith the

distance of the retransmitting node to S. Elsewhere (Tseng et al., 2002), it was shown

57

58 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

r’r r rr

r’

r

G S A B C D EF

Figure 3.1: Deployment and transmission range of some nodes

that if all nodes transmit with equal power, a retransmission can increase between 0%

and 61% the space covered by the previous transmission, depending on the location

of the retransmitting node. In this example, the most efficient retransmissions would

be performed by nodes C and F . The minimal number of transmissions required to

deliver a message broadcasted by node S to all other nodes is three: the message is

delivered to nodes A,B,C and F by the first transmission and nodes C and F could

retransmit to deliver it respectively toD and E, and G. We emphasise that, in runtime,

nodes do not have access to the information required for following the same rationale

presented above.

Section 2.4.5 showed that all algorithms surveyed in the related work randomly

select the nodes that perform a retransmission. Applying these algorithms to the sce-

nario depicted in Figure 3.1 shows that for all algorithms the random selection of the

nodes may result in at least four, instead of the optimal three retransmissions. With

exception of the “distance-based scheme”, all algorithms will randomly select one of

the nodes A, B or C to perform the first retransmission. The transmission by node

A, for example, satisfies the conditions of all these algorithms but provides a minimal

contribution to increase the number of nodes that received the message. Depending on

the algorithm and on its configuration parameters, a retransmission by node A would

either: i) require a retransmission by node D in order to have the message delivered

to node E, or ii) be useless, if nodes B or C retransmit as well. Therefore, if node A is

selected, the message can not be delivered to every node in the figure with less than

3.1. PAMPA 59

four transmissions.

The “Distance-based scheme” is configured with a fixed threshold. This threshold

can not be too close to the maximum transmission range to prevent the elimination

of good candidates for retransmission in the cases where nodes are not uniformly dis-

tributed. In the example of Figure 3.1, the threshold is represented using dashed circles

with radius r′ and excludes node A from the list of candidates for retransmission of a

message sent by S. However, the “distance-based scheme” does not rank differently

the nodes located outside the circle defined by r′. After the transmission by node S,

both nodes B and C are candidates to retransmit. This algorithm would require four

transmissions if the timer of node B expires before the timer of node C. It should be

noted that the retransmission by B would even inhibit node C from retransmitting.

This chapter proposes a novel algorithm to reduce the resources consumed by the

nodes and the bandwidth required by broadcasts in MANETs. This is a challenging

problem because we want to minimise the signalling overhead and we do not want to

enforce the use of special hardware (e.g. nodes are not required to use a GPS receiver

to become aware of their location). Like in the “distance-aware scheme” (Tseng et al.,

2002), our algorithm only assumes that nodes are able to retrieve the power with which

each message is received. The algorithm, named Power-Aware Message Propagation

Algorithm (Pampa) is distinguished from the previous proposals by removing some

of the randomness associated with the decision on the nodes that will retransmit a

message. Simulation results, to be presented in Section 3.3 experimentally confirm that

the selection of the nodes can be improved to prevent the occurrence of these cases.

3.1 Pampa

As mentioned before, the increment in the coverage provided by a retransmitting

node may vary between 0% and 61%. This ratio grows with the distance to the source.

The key idea of Pampa is to run a fully distributed algorithm that makes nodes more

distant to the source to retransmit first, instead of relying on the random selection of

60 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

Uses:
m: min number of retransmissions
delay(P): function over the signal strength P

1: msgSet← {}

2: upon event RECEIVE(msg,P) do
3: ifmsg 6∈ msgSet then
4: DELIVER(msg)
5: msgSet← msgSet

⋃

{msg}
6: Cmsg ← 0
7: del← delay(P)
8: SETALARM(del,msg)
9: else
10: Cmsg ← Cmsg + 1
11: end if
12: end upon

13: upon event ALARM(msg) do
14: if Cmsg < m then
15: SEND(msg)
16: end if
17: end upon

Figure 3.2: Pampa algorithm

the nodes. In an ideal environment, and independently of the node’s distribution,

this would ensure that each retransmission would be providing the highest additional

coverage possible, what would be achieved by the other algorithms only in the fraction

of the cases where the more distant node is randomly selected for retransmission.

The algorithm of Pampa is depicted in Figure 3.2. When receiving a message for

the first time, the algorithm stores the message and sets a timer for a delay d, given by

a function delay to be addressed later. During this period, the node counts the number

of retransmissions listened. The message is transmitted if when the timer expires, the

node did not listen to a sufficient number of retransmissions.

Central to Pampa is a function delay which gets the received signal strength (RSSI)

of a transmission and outputs a delay. This function is expected to map an increasing

distance to the source (corresponding to a smaller RSSI) in a smaller return value. Be-

3.1. PAMPA 61

cause the RSSI will be different for each node, the function delay will return a different

value for each node receiving the same transmission. Implicitly, the function orders the

nodes according to the distance to the source, with nodes more distant to the source

expiring their timers first. It should be noted that the function is fully distributed: the

algorithm is triggered exclusively by the transmission of the broadcast message and

it does not require any coordination between the nodes. Like in the “counter-based

scheme” (Tseng et al., 2002), the algorithm prevents excessive redundancy by having

nodes to count the number of retransmissions listened. However, Pampa bias the de-

lay such that the nodes refraining from transmitting are usually those that are closer to

the source.

3.1.1 Delay Assignment

The selection of a good delay function is key to the performance of Pampa. We es-

timate that a delay function that varies linearly with the distance to the source would

provide the best results. However, such a function would require complex computa-

tions unsuitable to be performed by mobile devices for each received message.

In our tests, we defined two simpler delay functions that multiply the RSSI by a con-

stant k to return the number of seconds that the node should wait before retransmit-

ting. Analysis of an adequate value for k was performed using the Two Ray Ground

propagation model as defined in the ns–2 network simulator version 2.28. We have

found 300 × 106 to be an adequate value for obtaining distinct wait times for nodes

close to each other. The behaviour of the function delay(p) = 300× 106 × p for the Two

Ray Ground propagation model is presented in Figure 3.3.

As expected, the function follows the logarithmic decay of the reception power of

a message. For short distances, the function returns excessively large delay values.

However, nodes at these distances from the source have a large probability of not be-

ing required to retransmit. A careful implementation of the algorithm can free the

resources consumed by the messages on hold as soon as the threshold number of re-

62 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

 0

 2

 4

 6

 8

 10

 12

 80 100 120 140 160 180 200 220 240 260

D
el

ay
 (

s)

Distance to the source (m)

delay(p)
delay2(p)

Figure 3.3: Function delay

transmissions is listened. Section 3.3.2.1 will show that these excessive delays do not

significantly influence the propagation of the message.

However, to better assert its impact in the performance of Pampa, a second delay

function delay
2
was defined. This function, also depicted in Figure 3.3 defines a maxi-

mum delay of two seconds with an additional random variation of 500ms to prevent

an excessive number of collisions.

3.2 Comparison with Related Work

In Pampa, the instant at which each node forwards a message is locally determined

from its distance to the sender. In the absence of abnormal effects on the signal prop-

agation, Pampa assures that the first nodes to perform a retransmission are those that

provide the higher possible additional coverage. In the example presented in Fig-

ure 3.1, node C would be the first to retransmit, delivering the message to both nodes

D and E. Although slightly later, node F would also be required to retransmit and

therefore, guarantee the coverage of nodeG. In this example, Pampa reduces the prob-

ability of requiring four instead of the minimal three transmissions for delivering the

message to every node.

Table 3.1 extends to Pampa the comparison of the related work of Table 2.2 (see

3.3. SIMULATION RESULTS 63

Algorithm
Bounded

transmissions
Source
aware

Progress
Collision
avoidance

Random
selection
of nodesupper lower

P
ro
b
ab

GOSSIP1(p) •
GOSSIP1(p, k) • •
GOSSIP2(p1, k, p2, n) • •
RAPID •

C
o
u
n
t Enhanced RAPID • • ◦ • •

GOSSIP3(p, k,m) • • •
Counter-based • • ◦ • •
HCAB ◦ ◦ • • •

D
is
t Distance-based ◦ • • •

SAPB • •
Pampa • • ◦ • •

•: feature of the algorithm ◦: implicitly provided

Table 3.1: Comparison of the broadcast algorithms surveyed with Pampa

page 52). Of those compared, Pampa is the only algorithm that does not randomly

select the nodes performing the retransmission, selecting instead, those that are more

distant to the original source of the transmission. Also, Pampa presents an interesting

combination of features from counter-based and distance-aware algorithms. It imposes

an upper and lower bound on the number of retransmissions, therefore, being indepen-

dent of the node density. The selection of the nodes that are more distant from previous

retransmissions tries to extend the coverage to more distant locations, thus putting an

effort on the selection of the nodes that favour the progress of the broadcast.

3.3 Simulation Results

We have implemented the “counter-based scheme” (Tseng et al., 2002), “distance-

based scheme” (Tseng et al., 2002), HCAB (Huang et al., 2006) and Pampa algorithms

in the ns–2 network simulator v. 2.28. Each implementation was tested with different

parameters. For the “counter-based” and Pampa, we tested different thresholds for the

number of times that the same message is received after which a retransmission is dis-

carded. This threshold is shown as the number following the name of each algorithm

64 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

in the captions of the figures. In addition, Pampa was tested with the two delay func-

tions introduced in Section 3.1.1. In the figures that follow, Pampa with the unbound

delay function is identified as “Pampa” while Pampa using function delay
2
is depicted

as “Pampa
2
”. The “distance-based scheme” was tested with different threshold dis-

tances, identified (in meters) in the captions of the figures. HCAB does not have any

configuration parameters.

Each algorithm had some parameters immutable for all simulations. The maxi-

mum random delay used by the “counter-based scheme”, “distance-based scheme”

and HCAB was set to 0.75s. As described in Section 3.1.1, both Pampa and Pampa
2

multiply the Received Signal Strength Indication (RSSI) by 300 × 106. The maximum

delay in Pampa
2
is 2s and the additional jitter is randomly selected between 0 and

500ms.

3.3.1 Test-bed

Different node densities have been experimented by changing the size of the simu-

lated space. Eight simulated regions were tested: 250m× 250m, 500m× 250m, 1000m×

500m, 1000m × 1000m, 2000m × 1000m, 1500m × 1500m, 2000m × 1500m and 2000m ×

2000m, providing ratios between 625m2/node and 40000m2/node. All simulations are

run with 100 nodes. Nodes were configured to emulate a 914MHz Lucent WaveLAN

DSSS radio interface running an IEEE802.11 protocol at 2Mb/s. Network cards present

a transmission range of 250m using the Two Ray Ground propagation model.

Each test combines different traffic sources and movement of the nodes. Traffic

in each test is composed of 1000 messages, generated at a pace of one message per

second. The source of each message is selected at random. The size of each message is

1000 bytes.

At the beginning of each test, nodes are uniformly deployed over the simulated

region. In one set of tests, nodes do not move for the entire duration of the simulation.

These tests have been named “Speed 0”. In the remaining two sets nodes move using

3.3. SIMULATION RESULTS 65

the Random Waypoint Movement Model (Johnson & Maltz, 1996). In this movement

model nodes select a random location in the simulated region and move in a straight

line to it at a speed randomly defined between a minimum and a maximum value.

When the location is reached, nodes stop for a predefined amount of time and initiate a

new cycle by selecting another random location. In our tests, minimum and maximum

speeds are respectively 4m/s and 6m/s for one test set and 9m/s and 11m/s for the

other. Nodes never stop. These sets have been named respectively “Speed 5” and

“Speed 10”.

For each simulated region and speed, 100 different tests were defined and experi-

mented with each of the algorithms. Each point in the figures presented below aver-

ages the result of the 100 runs. The evaluation will focus on four metrics: the propor-

tion of nodes receiving each message; the number of transmissions used; the latency of

the delivery and the number of hops required to deliver the message to the nodes.

3.3.2 Delivery Ratio

This section evaluates the efficiency of the algorithms. The metric used is the aver-

age of the proportion of the nodes that receive each message. Figure 3.4 compares the

performance of the counter based algorithms with Pampa. A comparison between the

three plots of the figure shows that the performance of all algorithms improveswith the

movement of the nodes. This behaviour is attributed to a reduced number of partitions,

which results from the concentration of nodes at the centre of the simulated space. This

is a well-known effect of the random way-point movement model (Bettstetter et al.,

2003). This conclusion is supported by counts of the average number of nodes receiv-

ing each message in the 2000m × 2000m tests. The values were of 4.30, 5.91 and 5.92

respectively for tests in Speeds 0, 5 and 10.

The figure shows that for high densities, all the algorithms are capable of delivering

every message to all nodes. As the area of the simulation increases, so does the average

distance between the nodes and the gains provided by Pampa becomemore clear. This

66 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2
pampa, 3

count, 1
count, 2
count, 3

HCAB

(a) Speed 0

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2
pampa, 3

count, 1
count, 2
count, 3

HCAB

(b) Speed 5

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2
pampa, 3

count, 1
count, 2
count, 3

HCAB

(c) Speed 10

Figure 3.4: Delivery Ratio of Counter Based algorithms

becomes more evident in the cases where the message threshold is lower. For a thresh-

old of one message, the delivery ratio of the “counter-based scheme” begins to decay

at a much faster pace than Pampa. We attribute this behaviour to the randomness as-

sociated with the node selection in the “counter-based scheme”. In Pampa, the nodes

forwarding the message have an higher probability of reaching more distant locations.

When the simulated space is of 2000m×2000m (40000m2/node) network partitions be-

gin to affect message dissemination. The benefits of using Pampa can be more clearly

observed in these extreme conditions: for the same thresholds, Pampa always presents

an higher delivery ratio. The unique node selection criteria of Pampa helps to have

the messages delivered to distant nodes improving its delivery ratio. HCAB presents

a delivery ratio comparable to the “counter-based scheme” with threshold one.

3.3. SIMULATION RESULTS 67

The delivery ratio of the “distance-based scheme” with thresholds corresponding

to 125m, 175m and 225m (respectively, 50%, 70% and 90% of the transmission range)

is compared with Pampa in Figure 3.5. The figure shows that the “distance-based”

scheme is particularly sensitive to its threshold. The “distance-based scheme” exhibits

less tolerance to lower node densities than Pampa. Again, this behaviour can be par-

tially attributed to the random selection of nodes. In sparse networks, each message is

received by a small number of nodes. The propagation of the broadcast is affected if

either, all nodes receiving the message are closer to the source than the minimal thresh-

old or if the node whose timer expires first is one of the nodes closer to the source. It

should be noted that in this case, the retransmission by this node is likely to prevent the

retransmission from other nodes whose additional contribution to the coverage space

could be higher. Due to their poor performance, the rest of the evaluation omits results

for the “distance-based scheme” with thresholds corresponding to 225m and 175m.

Figure 3.6 presents a more conclusive comparison between the two best per-

forming algorithms presented before: Pampa and the “counter-based scheme”. Fig-

ures 3.6(a), 3.6(b) and 3.6(c) divide the delivery ratio of Pampa by the delivery ratio of

the “counter-based scheme” for the same threshold. Results clearly show the benefits

of using Pampa. In lowest densities, Pampa is capable of delivering up to 30% more

messages than the “counter-based scheme”. The “counter-based scheme” outperforms

Pampa only in a few densities and speeds and always with marginal gains.

It is interesting to notice that the gains increase for lower thresholds. This be-

haviour is attributed to the fact that, with higher thresholds, the probability of the

“counter-based scheme” to select the most adequate nodes for retransmission in-

creases, while Pampa tends to select these nodes even when the threshold is low. This

conclusion is supported by the results presented in Figure 3.6(d) which divide the de-

livery ratio with a threshold of 4 by the delivery ratio with a threshold of 3. The figure

shows that the “counter-based scheme” is the one that most benefits from the increased

redundancy.

The overlap between the lines for Speeds 5 and 10 is due to the similar number

68 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2
pampa, 3

distance, 125
distance, 175
distance, 225

(a) Speed 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2
pampa, 3

distance, 125
distance, 175
distance, 225

(b) Speed 5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

D
el

iv
er

y
R

at
io

m2/node

pampa, 1
pampa, 2
pampa, 3

distance, 125
distance, 175
distance, 225

(c) Speed 10

Figure 3.5: Delivery Ratio of Distance Based algorithms

of neighbours counted in these simulations. A second conclusion to be derived from

Figure 3.6(d) is that independently of the network density and speed, in general, the

increment of the threshold above 3 provides only marginal gains in the delivery ratio

(below 4%). This is an important conclusion, given that it provides an upper bound

on the number of retransmissions and therefore, on the battery consumption required

for broadcast delivery. However, results presented before have shown that smaller

thresholds present considerably lower delivery ratios when the density increases.

3.3.2.1 Impact of the bounded delay

A similar comparison between Pampa and Pampa
2
is presented in Figure 3.7. Re-

call from Section 3.1.1 that the only difference between these algorithms is that in

3.3. SIMULATION RESULTS 69

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ai

ns

m2/node

pampa/count, 1
pampa/count, 2
pampa/count, 3
pampa/count, 4

(a) Speed 0

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ai

ns

m2/node

pampa/count, 1
pampa/count, 2
pampa/count, 3
pampa/count, 4

(b) Speed 5

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ai

ns

m2/node

pampa/count, 1
pampa/count, 2
pampa/count, 3
pampa/count, 4

(c) Speed 10

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 20000 25000 30000 35000 40000

G
ai

ns

m2/node

Pampa, Speed 0
Pampa, Speed 5

Pampa, Speed 10
Count, Speed 0
Count, Speed 5

Count, Speed 10

(d) Gains using threshold 4 over threshold 3

Figure 3.6: Comparison of the delivery ratio of Pampa with the “counter-based
scheme”

Pampa
2
, nodes closer than 120m (approximately) to the source are randomly sorted

by the jitter delay. Therefore, Pampa
2
should consume less memory of the mobile de-

vices than Pampa because messages will be holden for a smaller period of time. The

figure shows that in general, Pampa slightly outperforms Pampa
2
by small margins

that do not exceed 1.6%. Such a small value shows that Pampa
2
can be used as a less

resource demanding version of Pampa without significantly reducing its performance.

The highest improvements of Pampa are for the less dense networks what confirms

the relevance of the node sorting operation performed by Pampa, even when nodes

are close to the source.

70 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 1.006

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ai

ns

m2/node

pampa/pampa2, 1
pampa/pampa2, 2
pampa/pampa2, 3
pampa/pampa2, 4

(a) Speed 0

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 1.006

 1.007

 1.008

 1.009

 1.01

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ai

ns

m2/node

pampa/pampa2, 1
pampa/pampa2, 2
pampa/pampa2, 3
pampa/pampa2, 4

(b) Speed 5

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 1.014

 1.016

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ai

ns

m2/node

pampa/pampa2, 1
pampa/pampa2, 2
pampa/pampa2, 3
pampa/pampa2, 4

(c) Speed 10

Figure 3.7: Comparison of the delivery ratio of Pampa with Pampa
2

3.3.3 Number of Transmissions

The ratio of messages sent per node and per broadcast is depicted in Figure 3.8. To

make the figures more readable, we omit to depict the results for the algorithms that

exhibit very low reliability values.

All algorithms exhibit a similar pattern, even if the absolute values differ. The

decay in the number of messages, depicted in Figure 3.8(a), is again attributed to net-

work partitions which are less likely to occur when nodes move. Nodes in a partition

other than the one where the sending node is located are unable to receive the message

and therefore, can not retransmit it. Pampa and the “counter-based scheme” use the

same algorithm at each node for deciding whether to retransmit or not. Therefore, for

the same threshold, both algorithms present a similar number of messages. However,

3.3. SIMULATION RESULTS 71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
es

sa
ge

s
se

nt
/N

od
e/

B
ro

ad
ca

st

m2/node

pampa, 2
pampa, 3
pampa, 4

pampa2, 2
pampa2, 3
pampa2, 4

count, 2
count, 3
count, 4

distance, 125
HCAB

(a) Speed 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
es

sa
ge

s
se

nt
/N

od
e/

B
ro

ad
ca

st

m2/node

pampa, 2
pampa, 3
pampa, 4

pampa2, 2
pampa2, 3
pampa2, 4

count, 2
count, 3
count, 4

distance, 125
HCAB

(b) Speed 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
es

sa
ge

s
se

nt
/N

od
e/

B
ro

ad
ca

st

m2/node

pampa, 2
pampa, 3
pampa, 4

pampa2, 2
pampa2, 3
pampa2, 4

count, 2
count, 3
count, 4

distance, 125
HCAB

(c) Speed 10

Figure 3.8: Transmissions ratio

it was shown before that Pampa achieves an higher delivery ratio, what justifies the

small increment in the number of messages transmitted for low node densities.

The figure also confirms the advantages of the counter based and distance aware

algorithms over pure probabilistic ones. The GOSSIP algorithms presented in (Haas

et al., 2002) required a probability of retransmission above 60% to ensure an high prob-

ability of delivery to every node. Our experiments suggest that such a high retrans-

mission rate is only required for sparse networks, where the number of neighbours is

low.

72 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000 25000 30000

H
op

s

m2/node

pampa, 2
pampa, 3

count, 2
count, 3

distance, 125
HCAB

Figure 3.9: Hops to the source of the message (Speed 0)

3.3.4 Coverage

In principle, the criteria used for selecting retransmitting nodes in Pampa should

improve the utility of each retransmission, measured by the number of nodes receiving

amessage for the first timewith each retransmission. To confirm this intuition, we have

counted, for each message, the number of hops travelled until it is delivered for the

first time to each node. The results are presented in Figure 3.9, which omits the results

for the networks with 2000m× 2000m because it was considered that the low delivery

ratio presented does not allow the interpretation of this metric. The figure shows that

Pampa delivers messages in less hops than the remaining algorithms, confirming the

utility gains expected for Pampa.

The figure also shows that contrary to the “counter based scheme”, the number of

hops in Pampa is independent of the threshold. This behaviour is attributed to the ran-

domness of the “counter-based scheme”: when its threshold is lower, the probability of

having the most adequate nodes selected is reduced and some nodes will only receive

the message after an additional retransmission. This conclusion is also supported by

the good performance of the “distance-based scheme” in this metric. By prohibiting

nodes too close to the source from retransmitting, the algorithm inherently favours the

selection of the nodes that are capable of providing the highest coverage. On the con-

trary, the random selection of the nodes that retransmit in HCAB does not provide any

guarantee that the node that retransmits will provide a good additional coverage.

3.4. SUMMARY 73

 0

 0.5

 1

 1.5

 2

 2.5

 0 5000 10000 15000 20000 25000 30000

D
el

ay
 (

s)

m2/node

pampa, 2
pampa, 3

pampa2, 2
pampa2, 3

count, 2
count, 3

distance, 125
HCAB

Figure 3.10: Average latency (Speed 0)

3.3.5 Delay

To conclude the evaluation, Figure 3.10 presents the average time interval between

the initial transmission of a message and its delivery to each node. Results show that

for high densities, messages in Pampa have a latency comparable with the remaining

algorithms.

In sparse networks, the difference between Pampa and the remaining algorithms

becomes significant. However, as shown before, it is in these networks that Pampa

more significantly outperforms the remaining algorithms. Results for Pampa
2
high-

light an implicit trade-off of Pampa: an excessive delay can be mitigated using a delay

function that puts an upper bound on the delay of each nodes. However, as shown in

Section 3.3.2.1, a lower latency implies a small degradation in the delivery ratio.

3.4 Summary

In Mobile Ad Hoc Networks, broadcasting a message to every node is an oper-

ation that consumes a non-negligible amount of resources at all participants. How-

ever, broadcast is a basic mechanism often required by protocols at different levels of

the network stack. The most simple implementation of broadcast consists in having

each node to retransmit each message after receiving it for the first time. This imple-

74 CHAPTER 3. A POWER-AWARE BROADCASTING ALGORITHM

mentation, usually referred as flooding, creates a large redundancy of messages in the

network and unnecessarily wastes resources at the participating nodes.

This chapter presented a new algorithm that uses information locally available at

each node to reduce the redundancy of the broadcast operation. The novelty of the

algorithm, named Pampa, is the ranking of the nodes according to their distance to

the source. Pampa does not require the exchange of control messages or specialised

hardware.

The algorithm was compared with previous proposals and it was shown to im-

prove their performance, particularly in more adverse conditions like sparse networks,

at the expenses of a small increase in the latency of the delivery.

4
Replica Management

Chapter 2 surveyed different data dissemination and retrieval algorithms designed

for a large variety of networking models. We have observed that some dissemination

algorithms attempt to place the replicas in a geographically distributed manner. There

are two main reasons to promote a geographical distribution of the replicas:

Improved resilience to failures. If replicas are geographically distributed, the proba-

bility of having all of them being affected by some localised malfunction of the

network, such as interference, is reduced. If the network becomes partitioned,

geographical distribution may also increase the probability of having replicas

available in the different partitions of the network.

Decreased cost of data retrieval. Assuming that there is no relation between the loca-

tion of the nodes and the data they query, geographical distribution of the repli-

cas reduces both the cost (in number of messages) and the time to access the data,

because the probability of finding the data item in some close neighbour of the

client increases.

Algorithms that promote a geographical distribution of replicas have been de-

signed under different assumptions. Some algorithms provide a limited form of ge-

ographical distribution by preventing replicas from being close to each other (Hara,

2001). Others effectively distribute the replicas but require the nodes to be aware of

their location. These alternatives have been discussed in Section 2.3.6, where we had

the opportunity to note the absence of protocols that perform a proactive geograph-

ical distribution of the replicas for scenarios where the nodes are not aware of their

75

76 CHAPTER 4. REPLICA MANAGEMENT

location. This chapter proposes to fill the gap by presenting a protocol with these char-

acteristics.

In our work, we assume that either: i) there is no predictable (biased) access pat-

tern to the objects or; ii) that this access pattern cannot be derived a priori or even dur-

ing the lifetime of the system. Therefore, we aim at distributing data items as evenly as

possible among all the nodes that form the network, avoiding clustering of information

in sub-areas. An uniform dissemination of data items should leverage access latency

to any item from any node in the network, i.e, whenever a data item is requested by a

node S, the distance to the node that provides the reply should be approximately the

same, regardless of the location of S. Naturally, the actual distance depends on mul-

tiple parameters, such as the number of nodes in the network, the amount of memory

made available at each node, and the number of data items.

The chapter is organised as follows. Section 4.1 formalises the assumptions of the

system model used by the algorithm. The protocol is described in four sections. Sec-

tion 4.2 introduces the configuration parameters and the auxiliary modules. The dis-

semination algorithm, named Power-Aware data DISsemination algorithm (PADIS) is

presented in Section 4.3. An algorithm for data retrieval well suited to the dissemina-

tion algorithm is described in Section 4.4. Section 4.5 discusses different algorithms for

correcting the data distribution in the presence of node movement. Section 4.6 analyti-

cally compares our work with the algorithms surveyed in the related work. Evaluation

was performed using a network simulator. The results are presented in Section 4.7. Fi-

nally, Section 4.8 summarises the results of the chapter.

4.1 SystemModel

Our work makes no assumption on the distribution of the nodes or on the size of

the network (both in number of nodes and dimension). Devices communicate using

omni-directional antennas and are able to establish bidirectional links. That is, if some

node A is able to receive messages from one neighbour B, then node B is also able to

4.2. INITIALISATION 77

receive messages transmitted by node A. Nodes are not aware of their location or of

the location of their neighbours.

To prevent trivial solutions to the data dissemination problem, we require the net-

work to be large enough, avoiding all nodes from being within direct communication

of each other. To be able to deliver data to every participating node, we assume that

the network density is such that partitions are rare.

Nodes are producers and consumers of a (a priori unknown) number of data items,

composed of a key and a value. The key is required to uniquely identify each data

item. The algorithm does not interpret the content or structure of the key but assumes

that the application provides a function allowing to determine if two keys are equal.

Data items are short so that a few can fit in a single frame at the link layer level. Nodes

always store the items they produce in a separate region of the memory with unlimited

size.

Nodes are required to cooperate. Nodes must adhere to the protocol by i) forward-

ing messages, ii) keeping the items they produce in memory, iii)making some storage

space permanently available for keeping data advertised by other nodes and iv) reply

whenever listening for a query for a data item they store. Typically, the storage space at

each node is enough for keeping only a fraction of the total amount of data produced.

The system model above shares many assumptions with those presented for some

of the frameworks surveyed in the related work. A remarkably similar set of assump-

tions is presented for SAF, DAFN, and DCG, although we remove the assumptions

on the predictability of the data access (Hara, 2001) and on the correlation of the

queries (Hara et al., 2004).

4.2 Initialisation

Bootstrap of the dissemination and query algorithms require the setting up of a

number of variables depicted in Figure 4.1. The same figure also presents the configu-

78 CHAPTER 4. REPLICA MANAGEMENT

1: procedure INIT
2: addr←GETLOCALADDR
3: lmsgid← 0 ⊲ Local message counter
4: recvdMsgs← {} ⊲ Records the messages previously received by the node
5: STORAGE.INIT
6: netDiameter←GETNETWORKDIAMETER
7: qTTL←1 ⊲ ttl for first query
8: ⊲ Configuration parameters constants
9: firstQTimeout←2.5 ⊲ Timeout before considering that no reply was received
10: maxQryRetries← 5 ⊲Number of retries before giving up
11: prevQWeight← 0.5 ⊲Weight of past queries for qTTL update
12: occupThresh← 0.7 ⊲Minimal level to bias Pampa hold time
13: holdFactor←2.0 ⊲ Bias limit multiplier
14: DbC←2 ⊲ Distance between Copies
15: end procedure

16: function CREATEMSGID ⊲ Generation of unique identifiers for messages
17: id←(addr,lmsgid)
18: lmsgid←lmsgid+1
19: return id
20: end function

Figure 4.1: Initialisation procedure of the algorithms

ration parameters with the values used for the simulations presented in Section 4.7.

The algorithms interface with modules named PAMPA, STORAGE and TIMER pro-

viding respectively an implementation of the Pampa broadcast algorithm, data storage

and an alarm service. Their interfaces are depicted in Figure 4.2. Pampa has been de-

scribed in detail in Chapter 3. The purpose and functionality of the other modules is

self-explanatory.

Data dissemination is triggered by some node, who is said to be the producer of the

item. Dissemination and retrieval are implemented using three types of messages. In

the dissemination, nodes cooperate to provide an adequate distribution of the replicas

of new or updated versions of data items. Pampa is used to broadcast REGISTRATION

and QUERY messages. Nodes that receive the QUERY message and store the corre-

sponding value send a point-to-point REPLY message to the source of the query.

Pampa is not used as a black-box. Instead, every time Pampa decides to forward

4.2. INITIALISATION 79

Pampa

+ relay(id,msg,ttl)
+ send(addr,id,msg,ttl)
+ decide(id):bool
+ drop(id)

Timer

+ setAlarm(time,id)

Storage

+ add(key,value)
+ addLocal(key,value)
+ hasValue(key):bool
+ getValue(key):value
+ occupRatio():real

Figure 4.2: Auxiliary modules of the distribution and query algorithms

or drop a message, it first issues a call-back: the dissemination and query algorithms

may then update the contents of the message, or overrule Pampa’s decision on the fate

of the message. In particular the algorithms may opt to force the transmission of a

message that would be otherwise dropped by Pampa.

The module PAMPA exports the methods RELAY for retransmitting a message;

DROP to discard a message; and SEND for point-to-point delivery to a node in trans-

mission range.1 The Pampa’s decision to forward or drop a message is retrieved using

the method DECIDE. Additionally, PAMPA notifies the algorithms by delivering events

when new messages or duplicates arrive. The notification includes the suggested hold

time for the message, i.e. the time the receiver should wait for other retransmissions

before relaying the message.

Data is kept in the STORAGE module. The module allows to differentiate data gen-

erated at the node (using the ADDLOCAL method) and which can not be erased from

data provided by other nodes (the ADD method) which can be overwritten by later

entries if the storage space fills. Nodes always try to keep their storage space full, oc-

cupying all free space before beginning to overwrite other entries. Each data item is

stored together with a flag replacewhose purpose will be described later.

1Point-to-point message passing is associated to PAMPA only to keep on this module all network
related activities.

80 CHAPTER 4. REPLICA MANAGEMENT

4.3 Data Dissemination

To briefly introduce its rationale, we present in Figure 4.3 an illustrative example

of one run of PADIS. The figure depicts in black the nodes that store a replica of the

item. Nodes that forwarded a REGISTRATION message but did not store the data item

are depicted in gray.

The dissemination begins with the broadcast of a REGISTRATION message by the

producer of the data item. The item is stored at the producer and included in the

message (Figure 4.3a). REGISTRATION messages carry a Time From Storage (TFS) field

which records the distance (in number of hops) from the node transmitting themessage

to the known closest copy of the item. The TFS that would be putted in a message

forwarded by the node as part of the propagation algorithm is depicted at its centre.

Notice that this value may change with the reception of other copies.

Figures 4.3b and 4.3c show the progress of the dissemination. Nodes use Pampa

to propagate the broadcast. Pampa provides two important contributions for the ef-

ficiency of the algorithm: i) a small number of nodes is required to retransmit the

message; and ii) it selects for retransmission the nodes that are geographically more

distant from the previous transmitters, an advantage that will become more clear with

the explanation of the algorithm. Recall from Chapter 3 that Pampa imposes a small

delay on all nodes before they retransmit a message. During this delay nodes count

the retransmissions they listen. In PADIS, each node is also required to keep track of

the value of the TFS field of the retransmissions it has received. The minimum TFS

observed is kept in a variable named mTFS. When forwarding a REGISTRATION mes-

sage, a node sets the TFS field to mTFS+1, accounting with the additional hop needed

to reach the closest copy of the item.

Central to our algorithm is a constant Distance Between Copies (DbC). The DbC dic-

tates the maximum value of the TFS field and, implicitly, the degree of replication of

the items. This example uses DbC=2. Figure 4.3d shows that a node with mTFS=2 at

the end of the hold period stores a copy of the item and retransmits the message. The

4.3. DATA DISSEMINATION 81

0 0

1

1

1

1

1

a) b)

2

2

2

22
2

0

1

1

1

1

2

21

2

2

2

2

2

2
2

0

1

1

1

1

2

2

0

0

21

c) d)

2

2

2

1

2

2

0

1

1

1

1

2

1

0

0

1

1
1

1

1

1 1
2

2 1
2

2

2 2

2

2

2

2

0 1

1

1

2

1

0

0

1

1

1

1

1

1

e) f)

Figure 4.3: Example of dissemination of an item

TFS of the message is reset to 0 to let other nodes learn about the newly stored copy

and update their mTFS variables accordingly (see for example Figure 4.3e).

The final state of the system after the dissemination of the item is depicted in Fig-

ure 4.3f. Although only a small number of nodes have stored the item, a replica is

stored at no more than DbC hops away from any of the nodes.

4.3.1 Power-Aware data DISsemination algorithm

Dissemination of data items is initiated by the source node with the broadcast of

a REGISTRATION message using Pampa. The dissemination algorithm is depicted in

Figure 4.4. Function REGISTER (Figure 4.4, l. 1-9), shows that after receiving a call to

advertise some data, the node prepares a REGISTRATION message and uses Pampa to

82 CHAPTER 4. REPLICA MANAGEMENT

propagate it. In REGISTRATIONmessages, the time from storage (TFS) field indicates the

distance (in number of hops) from the sender to the closest node that is known to have

stored the items. Therefore, the source node sets the TFS field to zero to indicate that

the record is stored locally.

When a message is received for the first time, nodes initialise mTFS with the value

of the message’s TFS field. The message is then placed on hold for a period of time

which will be dictated by Pampa and biased by the storage space available at the node

(l. 11-20). Section 4.3.3.1 addresses the algorithm used for determining the hold period.

Retransmissions listened by the node during the hold period are used by Pampa

to decide if the message should be retransmitted and by PADIS to update mTFS to the

lowest observed value of the TFS field (l. 23). The algorithm tries to keep a replica

of each item at most DbC (Distance Between Copies) hops away of every node in the

system. DbC is a configuration parameter that should be set according to the network

conditions.2 We assume that DbC> 0, given that DbC= 0 dictates a trivial solution to

the dissemination problem which consists in having the items stored at every node.

When the hold period expires (l. 28-44), the nodes decide if the message is retrans-

mitted and if the item is stored. The decision takes as input the following parame-

ters: i) the output of the Pampa’s algorithm (the return value of the call to the DECIDE

method), that accounts with the number of retransmissions listened; and ii) the mTFS

computed during the hold period. There are three possible outcomes:

• The message is dropped and the item is not stored if mTFS<DbC and Pampa decides

not to retransmit. The combination of these conditions suggests that the dissem-

ination has been ensured by other nodes and that a copy of the item is stored at

an acceptable distance.

• The message is retransmitted but the item is not stored if mTFS<DbC but Pampa de-

cides to retransmit. The message is retransmitted with TFS=mTFS+1 to let other

2Section 4.7 shows how different values of DbC affect the performance of the algorithm.

4.3. DATA DISSEMINATION 83

1: procedure REGISTER(data)
2: STORAGE.ADDLOCAL(data)
3: tfs← 0
4: ttl←netDiameter
5: mid←CREATEMSGID
6: msg←(REG,data,tfs)
7: PAMPA.RELAY(mid,msg,ttl)
8: recvdMsgs←recvdMsgs

⋃

{mid}
9: end procedure

10: upon event PAMPA.RECEIVE(mid,(REG,data,tfs),ttl,holdTime) do
11: ifmid 6∈ recvdMsgs then
12: decidedmid ←false
13: recvdMsgs←recvdMsgs

⋃

{mid}
14: mTFSmid ←tfs
15: datamid ←data
16: ttlmid ←ttl
17: if tfs=DbC ∧ STORAGE.OCCUPRATIO>occupThresh then

18: holdTime←holdTime×
(

1 +
STORAGE.OCCUPRATIO−occupThresh

1−occupThresh
× holdFactor

)

19: end if
20: TIMER.SETALARM(holdTime,mid)
21: else
22: if ¬decidedmid then
23: mTFSmid ← min{mTFSmid,tfs}
24: end if
25: PAMPA.DROP(mid)
26: end if
27: end upon

28: upon event TIMER.ALARM(mid) do
29: ifmTFSmid ≥DbC then
30: STORAGE.ADD(datamid)
31: tfs← 0
32: forward←true
33: else
34: tfs←mTFSmid + 1
35: forward←PAMPA.DECIDE(mid)
36: end if
37: if forward ∧ttlmid > 0 then
38: msg←(REG,datamid,tfs)
39: PAMPA.RELAY(mid,msg,ttlmid − 1)
40: else
41: PAMPA.DROP(mid)
42: end if
43: decidedmid ←true
44: end upon

Figure 4.4: Data dissemination algorithm

84 CHAPTER 4. REPLICA MANAGEMENT

nodes learn about the additional hop to the closest known replica of the data

item.

• The message is retransmitted and the item is stored when mTFS=DbC, regardless of

the outcome of Pampa’s DECIDE method. The message is retransmitted with

TFS=0.

4.3.2 Geographical Distribution of the Replicas

The principal goal of PADIS is to put a replica a bounded number of hops away

from any node in the network. If replicas are within a bounded number of hops, the

retrieval of any data item should be possible using a limited number of messages and

therefore requiring modest power and bandwidth consumption.

This section discusses different limits for the distance of the items to any node in

the network. It assumes an ideal execution environment with a perfect wireless me-

dia, without message loss, collisions, or attenuation of the signal strength not resulting

exclusively of the distance between the source of the message and the receivers. There-

fore, Pampa is expected to always select for retransmission the nodes that are more

distant to the source of the message. Node deployment is such that Pampa is able to

deliver every message to every node in the network. In particular, it is assumed that

there are no network partitions. Nodes do not move. The relocation of the replicas to

mitigate the effect of node movements in these properties is the focus of Section 4.5.

Message propagation follows the Unity Disk Graph (UDG) model. In brief, UDG

considers that each transmission is delivered to all nodes within a circle with a radius

of 1 unit centred at the source. Because the transmission radius is equal for every node,

if some node n receives a transmission performed by node n′ then n′ will also receive

the transmissions performed by node n.

In this analysis, the algorithm is divided in two periods. The hold period is trig-

gered by the reception of the first transmission advertising the data item. The duration

4.3. DATA DISSEMINATION 85

of the hold period is dictated by Pampa. At the end of the hold period, nodes enter the

decision period, where the local outcome of the algorithm is decided.

The maximum number of hops of distance between any node and a replica is dic-

tated by the DbC constant. We show it by emphasising the combination of two aspects

of the algorithm:

1. The mTFS variable of each node is related with the distance, in hops, from the

node to some copy of the item. In particular, if mTFS=n, then a copy is located

n + 1 hops away of the node.

We begin the proof by noting the relation between mTFS and the value of the

TFS field of the messages the node receives during the hold period. mTFS is

initialised with the TFS field of the first transmission of the message received

(l. 14) and updated on the reception of every retransmission (l. 23). The update

will always be to the minimum between the previous value of the variable and of

the TFS field of the retransmission. Therefore, mTFS will necessarily be: i) equal

to the value of the TFS field of some retransmission it listened; and ii) lower or

equal to the value in the TFS field of every retransmission it listened.

In a direct application of the previous results, we note that if mTFS=0 for some

node p, then at least one of p’s neighbours forwarded the registration with TFS=0.

Lines 1 to 9 and 29 to 32 in Figure 4.4, show the two only cases where registra-

tions are broadcast with TFS=0. These correspond respectively to the broadcast

initially performed by the producer and by other nodes that also store the item.

Therefore, if mTFS=0 then some node one hop away has stored the item.

The result can be extended by induction for other values of mTFS. Notice that if

the item is not stored, nodes that retransmit the message set TFS=mTFS+1 (l. 34).

This transmission puts an upper bound on the value of themTFS of the receivers,

which are the one hop neighbours of the node. The bound is one unit above the

mTFS of the sender, thus correctly reflecting the additional hop required to reach

the replica.

86 CHAPTER 4. REPLICA MANAGEMENT

2

1
3

0

1
2 3 4

2 3

3
1

Figure 4.5: Recursive reverse shortest path to a replica

In practice, this result shows that it is possible to define a path from any node q to

a copy of the item located mTFS+1 hops away. The path is defined by recursion,

starting at step 0 with node q. Let r be the node added on step i, i ≥ 0. The

recursive step i + 1 adds to the path one of r’s neighbours, selected from those

that transmitted with a TFS value equal to r’s mTFS.

The recursion is exemplified in Figure 4.5. Solid arrows in the figure represent

the dissemination of a data item, with the number close to each node showing

the value of the TFS field in the message it broadcasts. The dashed arrows repre-

sent the reverse path that can be followed by the nodes to reach the copy at the

expected distance. Note that a node broadcasting a message with TFS=n needs

to make n reverse hops to reach the node that stored the data item.

2. A node with mTFS=DbC stores the item and retransmits with TFS=0.

This feature trivially results from lines 29 to 32 of Figure 4.4.

The second aspect imposes an upper bound on the possible values of TFS, which

can not be greater thanDbC. However, as shown by the first, this value is closely related

to the number of hops from each node to some copy. Therefore, it can be concluded

that the DbC constant effectively imposes a maximum distance from each node to a

copy of the data item: at the end of the hold period, all nodes with a known distance

to a copy greater than DbC store the item.

4.3. DATA DISSEMINATION 87

0 2tfs: 3 4

1 hop 2 hops 3 hops 2 hops 1 hop

1

Figure 4.6: An example of data propagation in the algorithm.

A

B

0

1

1

2 3

2

3

Figure 4.7: Counter-examples to the general expected distance rule

4.3.2.1 Expected Maximum Distance

In general, the upper bound presented above can be further reduced by approxi-

mately half. For themajority of the nodes, a copywill be found notmore than
⌈

DbC+1

2

⌉

hops away. The rationale is intuitively demonstrated by observing Figure 4.6. The

figure shows the increasing TFS field of the retransmissions for a configuration with

DbC= 4 and the distance at which the nodes will be able to find a copy. Nodes that

forwarded the item are depicted in gray and nodes that forwarded and stored the item

in black. Notice that for each node, the closest copy may be located in some node that

has already retransmit the message or in a node that will eventually retransmit it.

The exceptions to this rule are cases where the propagation of the data item dies

before the TFS of the successive retransmissions reach DbC. We identify two particular

cases, both depicted in Figure 4.7, where DbC=3 is assumed. Node A is close to the

geographical boundaries of the network. There is no node to receive its transmission

and store the data item after it. Node B is surrounded by retransmissions with a lower

TFS that prevent mTFS from growing on its neighbours as it would expect.

88 CHAPTER 4. REPLICA MANAGEMENT

r/2 r/2 r/2 r/2 r/2

Figure 4.8: Partitioning of the cluster in rings for DbC=4

4.3.2.2 Expected Reply Distance

The same rationale used for determining the expected maximum distance can be

used to derive the expected average distance from any node to a data item, under

two assumptions: i) that the exceptions mentioned are not frequent, and therefore do

not significantly contribute for biasing the average, and ii) that nodes are uniformly

deployed in the network.

Average is estimated by considering each node storing the data item as a cluster

head. The cluster is composed by this node and by all nodes closer to this node than

to any other cluster head. The analysis above suggests that the nodes are those located

at less than
⌈

DbC+1

2

⌉

hops away from the cluster head. However, as Figure 4.6 shows,

when DbC is even, some nodes are equidistant in number of hops but not in metric

distance of the two cluster heads. Therefore, the estimation must account with the

metric distance and not the hops so that each half of these nodes is attributed to one

cluster head.

The estimation considers the proportion of the nodes located at each number of

hops from the cluster head. We assume that all nodes have the same transmission

range r. To encompass the cases for an odd and even DbC, the cluster is partitioned in

DbC+1 rings, centred at the cluster head andwith a r/2width, as depicted in Figure 4.8.

Since we assume that nodes are uniformly distributed, the proportion of nodes on

each ring to the total number of nodes in the cluster is equal to the proportion of the

area of each ring to the area of the cluster. The later is given by Equation 4.1.

4.3. DATA DISSEMINATION 89

π
(

i+1

2
r
)2

− π
(

i
2
r
)2

π
(

DbC+1

2
r
)2

, i = 0 . . .DbC (4.1)

The number of hops required by each node to reach the cluster head depends of

the ring where the node is located and is incremented at every two rings. This is given

by Equation 4.2.

⌈

i + 1

2

⌉

, i = 0 . . .DbC (4.2)

The function τ(DbC) gives the expected average distance from any node to the

cluster head. The function combines Equations 4.1 and 4.2.

τ (DbC) =
DbC
∑

i=0











⌈

i + 1

2

⌉ π
(

i+1

2
r
)2

− π
(

i
2
r
)2

π
(

DbC+1

2
r
)2











=

∑DbC
i=0

(⌈

i+1

2

⌉

(2i + 1)
)

(DbC + 1)2
(4.3)

Figure 4.9 depicts a plot of function τ . The figure shows that the algorithm moder-

ately increases the average distance between any node and the closest copy of an item

with the DbC constant. This suggests that when we consider the limited storage space

made available by the nodes, the algorithm will scale well with the number of items

by increasing DbC.

4.3.2.3 Cluster Storage Space and Saturation Point

The storage capacity of a subset R of the nodes in the network can be determined

by adding, for each node n ∈ R, the storage space it makes available for keeping items

produced by other nodes (RSn) with the storage space occupied by the items the node

90 CHAPTER 4. REPLICA MANAGEMENT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10

τ(
D

bC
)

DbC

Figure 4.9: Function τ(DbC)

has produced (LSn). That is, the total storage space for the subset is given by:

SS(R) =
∑

n∈R

(RSn + LSn) (4.4)

Assuming that all nodes produce an equal number of data items and make avail-

able an equal amount of storage space for keeping items advertised by other nodes,

Equation 4.4 can be approximated to:

SS ′
R = |R| ×

(

RS +
|I|

|N |

)

(4.5)

where |R| is the cardinality of the set R, RS is the storage space made available for

data items produced by other nodes, |I| is the total number of items produced by all

nodes in the network and |N | the total number of nodes in the network.

Previously, we showed that for each data item, our algorithm divides the network

in clusters, each composed of the node storing a copy of the item and those that are

closer to this node than to any other node also storing a copy of the item. If we again

assume an uniform deployment of the nodes and ignore those at the boundaries, each

cluster should have approximately the same number of nodes. Each run of the algo-

rithm defines a possibly different partition of the network in clusters. Because nodes

are uniformly distributed and each node generates approximately the same number

4.3. DATA DISSEMINATION 91

of data items, each node will be elected as a cluster head for approximately the same

number of data items. Therefore, each cluster will define the total capacity of the net-

work for encompassing new items without degrading the properties of the algorithm.

We define the saturation point (SP) of the algorithm as the multiple solutions of

equation 4.6

SS ′
C = |I| (4.6)

for a generic cluster C composed by an average number of nodes. That is, the

SP gives the multiple combinations of storage space on each node, number of items

and number of nodes in the cluster that are theoretically sufficient for storing all data

items advertised in a single cluster. The number of nodes in a cluster depends of the

DbC. Therefore, Equation 4.6 shows that the algorithm can be tailored to networking

environments with different number of items and storage space at the nodes. Recall

that Section 4.3.2.2 has already shown that a small growth in DbC does not represent a

significant increase in the average distance to the closest copy of a data item.

For each network, the saturation point ratio (SPR) is defined as the ratio between the

storage space made available in a cluster and the total number of items.

SPR =
SS ′

C

|I|
=
|R| ×

(

RS + |I|
|N |

)

|I|
(4.7)

In the theoretical model, the algorithm should be able to provide its properties for

all values of SPR ≥ 1. Section 4.7 will use the SPR to evaluate the performance of the

algorithm in a simulated environment.

4.3.3 Decreasing the Impact of the Limited Storage

We assume that nodes make available limited storage space for keeping data items

advertised by others. This can pose a problem to the performance of the algorithm

92 CHAPTER 4. REPLICA MANAGEMENT

given that nodes elected as cluster heads for some data items may not have storage

space available for keeping the item. This section shows how the problem is addressed

in the algorithm. It first presents a mechanism to improve the selection of the nodes

that store the data items, possibly sacrificing the best possible deployment of the repli-

cas. Next, the section briefly discusses storage space managing policies, to be imple-

mented locally at each node.

4.3.3.1 Hold period

In a broadcast, Pampa selects the most adequate nodes for retransmission using

the gains in the coverage of each retransmission as the single criteria. Pampa is unfair,

because it does not attempt to leverage the number of retransmissions among neigh-

bouring nodes. Depending on the deployment of the nodes and of the location of the

producers, some nodes may have their probability of being required to retransmit in-

creased. It was shown before that the probability of being required to store a data item

is related with the order of timer expiration among the nodes, as dictated by Pampa.

Therefore, some nodes may be more frequently requested to store data. As a result,

these nodes may exhaust their local storage space significantly before the other nodes

in the neighbourhood.

Figure 4.4 (l. 17-19) show that PADIS compensates this effect by biasing the hold

time so that it depends also on the available storage space of the node. The biasing

mechanism is triggered locally at the node by the combination of two factors: i) the

reception of a REGISTRATIONmessage with TFS=DbC, and ii) an occupancy ratio of the

storage space above some constant threshold. Notice that the first criteria is justified

by knowing that if some message, and in this case, the first, was not received with

TFS=DbC then the item will not be stored by the node.

As shown in Equation 4.8, the hold period dictated by Pampa (represented as

hPampa) is used until the node reaches an occupancy ratio threshold (thresh). Above

this threshold, the hold time is increased proportionally to the occupancy ratio. The

4.3. DATA DISSEMINATION 93

weight of the additional delay in the hold period is dictated by a configuration param-

eter bias.

holdPeriod =











hPampa ,TFS < DbC ∨ occup < thresh

hPampa×
(

1 +
occup−thresh

1−thresh
× bias

)

, otherwise

(4.8)

4.3.3.2 Storage Space Management

The algorithm tries to distribute data items as evenly as possible by the nodes.

However, some nodes may see their storage space filled before its neighbours, either

because they are in a region with a low density or because the number of items adver-

tised exceeds the storage capacity of the region. Nodes are required to keep adding

items to their storage space until it is completely filled.

When the storage space fills, nodes are required to drop stored items to make room

for new items. Different policies could be adopted for the selection of the items to be

dropped, for example those surveyed in Section 2.2.

We note that PADIS should avoid deterministic policies. A deterministic criteria

applied to different nodes would likely select the same entry for replacement. This

would eliminate a large number of replicas of the same item resulting in an uneven

distribution of the item. Therefore, we adopted a policy where nodes randomly select

one of the existing entries for replacement. As it will be shown later, shuffling policies

that aim to mitigate the bias introduced by node movement in the item distribution

may also provide a valuable contribution to the leveraging of the number of replicas

of the items.

94 CHAPTER 4. REPLICA MANAGEMENT

4.3.4 Illustration

PADIS was experimented in a simulated environment. The networking environ-

ment is similar to the one used in Section 4.7 for an in-depth evaluation of the algo-

rithm. For illustrative purposes, Figure 4.10 shows the state of a network composed

by 100 nodes in a region with 1500m × 500m, after the dissemination of 10 data items,

identified by numbers between 0 and 9. In this run, the transmission range of each

node is of 250m and the configuration parameter DbC is set to 2.

The figure is used to illustrate how geographical distribution of the data items is

achieved and to develop an intuition on how the removal of the theoretical assump-

tions that have been presented before will affect the algorithm.

In the figure, rectangles present the items kept at the storage space of each node.

Items that have been produced by the node are presented above the dividing line of

the rectangle. Items produced by other nodes are presented below the line. Dotted

arrows show the propagation path followed for the dissemination of item 0.

PADIS replicated each item between 3 and 6 times, excluding the original, kept at

the producers. On average, items were replicated 4.9 times. Item 2 was the one less

replicated, possibly due to the central point where the dissemination started. Intuition

suggests that the replicas have been deployed in locations adequate to cover the entire

network.

The dissemination path for item 0 is a good example of the typical behaviour of

the algorithm. Retransmissions are preferably performed by the nodes more distant to

the source. This saves device resources (only 25% of the nodes transmitted the mes-

sage) and allows to define larger clusters, reducing the number of copies required.

The shaded area of the figure highlights an undesirable occurrence: the storage of two

copies of data item 0 in adjacent nodes. We attribute this behaviour to the small dif-

ference of the timers set by both nodes after the reception of the message. As a result,

nodes concurrently decided to store the item without being aware of the decision of

its neighbours. Unfortunately, this occurrence was not unique. A similar one can be

4.3. DATA DISSEMINATION 95

250m

9

3

0

3
7

5

4
8

6
2

7

0
5

9

9 0

7

0

3
5

5

1

8
3
44

6

3

0
7 2

9
6
2
9

80
6

5

1
8

7
4

5
3

1
1

0
5
7

7

4
6
8

1

3
4
8

2

Figure 4.10: A run of the dissemination algorithm

96 CHAPTER 4. REPLICA MANAGEMENT

found with data item 1 at the bottom of the figure.

The figure also shows that the replicas are evenly distributed. 35% of the nodes

were requested to store at least one item advertised by other nodes. Only one node

stored 4 items and two nodes stored 3 items. Even distribution is an important result

as it suggests that for uniform deployments, the algorithm tends to leverage storage

occupancy, adequately exploiting cluster size.

4.4 Data Retrieval

The data retrieval algorithm assumes that the items have been geographically dis-

tributed using PADIS. Therefore, it attempts to save the resources of the devices and

bandwidth by forwarding the QUERY message to nodes a limited number of hops

away. Only if this initial attempt fails the algorithm broadcasts the message to all

nodes in the network. The data retrieval algorithm uses Pampa for the dissemination

of the QUERYmessage. This section presents a detailed description of the data retrieval

algorithm.

Figure 4.11 depicts the part of the algorithm performed by the source of the query.

Nodes begin by looking for the key in their local storage. If the value is not found,

the node uses Pampa to first broadcast a QUERY message within a limited number of

hops, dictated by a variable qTTL (l. 6-8). The algorithm adapts the value of qTTL to

the network conditions following an algorithm described below.

Lines 11 to 18 show that if no answer is received, the query will be retransmitted

with a TTL large enough to reach all nodes in the network. This query will be retrans-

mitted at growing time intervals until a reply is received or a maximum number of

retries is reached.

Figure 4.12 shows how QUERY messages are handled by the nodes. A node re-

ceiving a QUERY message and that does not find the value locally (l. 41-45) pushes its

address in the route stack field of the message, in a route construction process similar to

4.4. DATA RETRIEVAL 97

1: procedure QUERY(key)
2: if STORAGE.HASVAL(key) then
3: value←STORAGE.GETVAL(key)
4: DELIVER(key,value)
5: else
6: ttl←ROUND(qTTL)
7: retrieskey ← 0
8: SENDQRY(key,ttl)
9: end if
10: end procedure

11: upon event TIMER.ALARM(key) do
12: if retrieskey < maxQryRetries then
13: ttl←NETWORKDIAMETER
14: SENDQRY(key,ttl)
15: else
16: DELIVER(key,NOTFOUND)
17: end if
18: end upon

19: procedure SENDQRY(key,ttl)
20: routeStack←{}
21: PUSH(routeStack,addr)
22: mid←CREATEMSGID
23: msg←(QRY,key,routeStack)
24: PAMPA.RELAY(mid,msg,ttl)
25: recvdMsgs←recvdMsgs

⋃

{mid}
26: retrieskey ←retrieskey + 1
27: qTimeout←firstQTimeout×retrieskey

28: TIMER.SETALARM(qTimeout,key)
29: end procedure

Figure 4.11: Retrieval algorithm - sender

98 CHAPTER 4. REPLICA MANAGEMENT

30: upon event PAMPA.RECEIVED(mid,(QRY,key,routeStack),ttl,holdTime) do
31: ifmid 6∈ recvdMsgs then
32: recvdMsgs←recvdMsgs

⋃

{mid}
33: if STORAGE.HASVAL(key) then
34: PAMPA.DROP(mid)
35: mid←CREATEMSGID
36: value←STORAGE.GETVAL(key)
37: tfs← 0
38: nextAddr←POP(routeStack)
39: msg←(RPLY,key,value,tfs,routeStack)
40: PAMPA.SEND(nextAddr,mid,msg,netDiameter)
41: else if ttl> 0 then
42: PUSH(routeStack,localAddr)
43: msgmid ←(QRY,key,routeStack)
44: ttlmid ←ttl
45: TIMER.SETALARM(holdTime,mid)
46: end if
47: else
48: PAMPA.DROP(mid)
49: end if
50: end upon

51: upon event TIMER.ALARM(mid) do
52: if PAMPA.DECIDE(mid) then
53: PAMPA.RELAY(mid,msgmid)
54: else
55: PAMPA.DROP(mid)
56: end if
57: end upon

Figure 4.12: Retrieval algorithm - query handling

the Simple Search (SS) algorithm (Lim et al., 2006). The retransmission of the message is

dictated by Pampa, as depicted in lines 51 to 57.

If the key is found (l. 33-40), the QUERY message is not retransmitted. Instead, the

node sends a point to point REPLY message to the source of the query. The TFS field of

the REPLY is set to 0 at the origin and incremented at every intermediate hop to reflect

the distance at which the data item was stored. The REPLY message follows the path

constructed in the routeStack field of the QUERY (Figure 4.13, l. 66-68). When the node

that issued the query receives the first reply, it cancels the pending timer and delivers

4.4. DATA RETRIEVAL 99

58: upon event PAMPA.RECEIVED(mid,(RPLY,key,value,tfs,routeStack),ttl,holdTime)
do

59: if routeStack={} then
60: if TIMER.EXISTS(key) then
61: TIMER.CANCELALARM(key)
62: DELIVER(key,value)
63: qTTL←prevQWeight×qTTL+(1−prevQWeight)×tfs
64: end if
65: else
66: nextAddr←POP(routeStack)
67: msg←(RPLY,key,value,tfs+1,routeStack)
68: PAMPA.SEND(nextAddr,mid,msg,ttl-1)
69: end if
70: end upon

Figure 4.13: Retrieval algorithm - replies handling

the (key,value) pair (l. 59-62).

4.4.1 Adaptation of the qTTL value

To save resources, it is desirable that most of the queries get a reply in the first

broadcast of the QUERY message. An early reply avoids the second broadcast which

is sent to every node in the network and therefore consumes a significantly higher

amount of power. The range of the first QUERY message presents an interesting trade-

off. It should be large enough to avoid a second broadcast in the majority of the cases

but it should be as small as possible to prevent the waste of energy that results from

the retransmissions of the QUERYmessage to nodes more distant than the closest copy

of the item. Previously, Section 4.3.2 showed that nodes should be able to retrieve any

data item within a bounded distance. In the algorithm, the TTL of the first QUERY

message is defined by a variable qTTL whose value is adjusted after each query. As

depicted in line 63, qTTL is tuned by weighting past experiences of the node with the

distance at which the reply was found, given by the TFS field of the REPLY. The weight

of past experiences and of the latest result is dictated by a constant prevQWeightwhich

can be initialised according to the expected conditions of the network, for example

by privileging the latest experience if it is expected that network conditions change

100 CHAPTER 4. REPLICA MANAGEMENT

rapidly.

4.5 Shuffling

PADIS performs the geographical distribution of the replicas of the items. Unfor-

tunately, node movement will cause distortions to the initial distribution. In addition,

the illustration of Section 4.3.4 also showed that the geographical distribution is not

perfect and may place replicas of the data items in nodes close to each other. There-

fore, a relevant problem is to find algorithms that are able to correct distortions in the

replica distribution. We call these “shuffling” algorithms. As their name implies, shuf-

fling algorithms operate by moving replicas from one node to the other, in an attempt

to improve the replica distribution. Shuffling algorithms can be used: i) as a corrective

measure, to restore an even replica distribution from an unbalanced initial scenario or;

ii) pro-actively, to counterbalance the effect of node movement, preventing the system

from ever reaching an uneven replica distribution.

Data shuffling is strongly related with the management of the storage space. The

shuffling algorithm must decide which items of the storage space it should replace

or deliver to other nodes. In our model, each entry of the storage space has a replace

boolean flag associated. When the replace flag is set, this means that the associated item

is a good candidate to be moved to another part of the network. Typically, the replace

flag may be set when a node notices that there are other copies of the same item in its

vicinity.

The reader may notice that if one has a perfect “shuffling” algorithm, the initial

placement becomes less relevant: no matter the initial distribution of replicas, the sys-

tem would always converge to an even distribution. However, as we will show, shuf-

fling algorithmsmay require some time to converge andmay benefit from a good initial

placement.

4.5. SHUFFLING 101

4.5.1 Effects of Movement in Data Placement

Intuition suggests that the movement of nodes tends to create scenarios where item

are unevenly distributed, even if initially replicas were placed using a perfect algo-

rithm. To assess if this intuition proves to be correct, we prepared a simple simulation

were 100 nodes are initially deployed according to one of the RandomWaypoint (RWP)

or Manhattan (Man) movement models in a region with 1500m× 500m. Nodes have a

transmission range of 250m and store a replica of each data item (DbC) every 5 hops.3

Initially, nodes do not move and used the dissemination algorithm to distribute 100

items. To remove any bias from this study, no storage constraints were applied to the

nodes: nodes can store all the items required by the placement algorithm. At the end

of the dissemination period, we measured the average and the standard deviation of

the distance (in meters) of each node to the closest copy of each item. These values are

depicted at time 0 in Figure 4.14 which presents the average and the standard deviation

of each node to each data item averaged from 10 runs with different movements of the

nodes. As it can be observed, at time 0, the algorithm places a copy of each data item

on average at 336.64m (resp. 354.81m) of each node, in the Manhattan (resp. Random

Waypoint) movement model. The ratio of the standard deviation to the average is at

this stage of 55.4% (resp. 56.6%).

After the placement, nodes moved according to the predefined movement models

for 1800s, without pausing and with a speed of approximately 10m/s. No messages

were exchanged during this period. The distance of each node to the closest node

storing a copy of each item was measured periodically, considering the location of

each node at that time instant.

The figure confirms that random movement does not provide an homogeneous

distribution of the replicas. Because nodes move at random in a delimited region, the

average distance can not vary significantly. In the random Waypoint simulations, the

average distance could even become below the value found after the placement due

3For additional details about the simulation environment see the baseline configuration described in
Section 4.7.

102 CHAPTER 4. REPLICA MANAGEMENT

 330

 340

 350

 360

 370

 380

 390

 0 200 400 600 800 1000 1200 1400 1600 1800

A
ve

ra
ge

 D
is

ta
nc

e
(m

)

Time since beginning of movement (s)

RWP
Man

(a) Average

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 280

 0 200 400 600 800 1000 1200 1400 1600 1800

S
ta

nd
ar

d
D

ev
ia

tio
n

(m
)

Time since beginning of movement (s)

RWP
Man

(b) Standard deviation

Figure 4.14: Effects of movement in the distribution of the replicas

to the well known tendency of the model to concentrate the nodes at the centre of the

simulated region (Bettstetter et al., 2003).

The large increase (up to 50%) in the standard deviation, however, shows that there

is a much more irregular distribution of the distance of the nodes to the closest copy of

each item. Node movement makes the ratio of the standard deviation to the average to

be between 65.6% and 73.7% in the Manhattan movement model and between 64.3%

and 66.3% in the RandomWaypoint. In both cases, 50s after nodes have began tomove,

the ratio has increased 10%. Relevant for our study is the property of the standard

deviation estimator stating that when comparing two standard deviations for the same

average, the higher one will include samples with higher distances to the average.

Therefore, any increment in the standard deviation is particularly harmful for the data

retrieval algorithm as it increases themaximumdistance at which an itemwill be found

with consequences on the stabilisation of the qTTL value.

4.5.2 Herald Messages

Shuffling algorithms require the exchange of control information among themobile

nodes. Control information is exchanged in HERALD messages. The precise purpose

of HERALD messages varies with the shuffling algorithm. For simplicity, we define

4.5. SHUFFLING 103

data item hops lifetime tfs store

Figure 4.15: Format of HERALD message tuples

a unique HERALD message format to be used by all the shuffling algorithms to be

presented. As it will be clear from the exposition, not all fields are relevant for ev-

ery algorithm. HERALD messages carry a set of records with the format presented in

Figure 4.15.

The field data item carries a data item. The field hops is initially set to zero and

incremented every time the HERALD message is forwarded. The field lifetime defines

the maximum value for the hops field; when a tuple reaches lifetime hops the tuple is

removed from the message. By setting the lifetime one can control how far an item is

announced in the network. For instance, by setting a lifetime of one, it is possible to

announce a data item to a direct neighbour only. If one or more records have reached

their lifetime, a node forwarding the message replaces them by new records, using the

same strategy as the source of the message.

The TFS field indicates howmany hops the record was forwarded without meeting

a replica of the data item. It is incremented every time a node forwards a tuple for a

data item it does not own in its local database, or reset to zero otherwise.

The boolean field store indicates the purpose of the dissemination of the item. If

store is set to “false”, the item is being disseminated with informational proposes, so

that other nodes learn that the item is stored at TFS hops away. A “true” value allows

nodes to store the data item in their storage space if some conditions discussed below

are met.

4.5.3 Characterisation of Shuffling Algorithms

The shuffling algorithm may cause the number of replicas of each data item to

change. For instance, if in order to create a new local replica of a data item a node

104 CHAPTER 4. REPLICA MANAGEMENT

needs to discard a replica of another item (due to space constraints) one is increasing

the number of replicas of one item and decreasing the number of replicas of another

item. Due to mobility, message losses and node disconnections, it is impossible to

design a shuffling algorithm that preserves exactly the original number of replicas in

the system. In addition, the most adequate number of replicas of each data item may

vary to attend to changes in the topology or simply to the location of the replicas.

Concerning the number of replicas, we present below two classes of algorithms: those

that try to keep a stable number of replicas and those that assume that the number of

replicas will be leveraged by random factors. The evaluation will compare them under

this perspective.

When a node forwards an HERALD message it may remove, add, or replace the

tuples carried in the message. Different algorithms may use different policies to per-

form these actions as well as to define the route of a HERALD message. For instance,

one node may send a HERALDmessage to a specific node in the system using point-to-

point routing. We may also avoid sending control packets explicitly for the operation

of the shuffling algorithm by piggybacking HERALD messages in data QUERY or RE-

PLY messages. In this case, the route of the HERALD message is constrained by the

route of the control message it is piggybacked with.

4.5.4 Shuffling Algorithms

This section proposes four independent shuffling algorithms that can be integrated

with the data retrieval algorithm. One possible classification of the algorithms, named

Default, Swap on Query, Advertise State and Probabilistic, considers the use of HERALD

messages and their effort on preserving the number of replicas of each data item. These

aspects are compared in Table 4.1. The algorithms work as follows:

Default A reply found far away from the source of the query signals an uneven dis-

tribution of the item, possibly due to the violation of some of the assumptions of

the theoretical model or to the movement of the nodes. In the Default algorithm,

4.5. SHUFFLING 105

Algorithm
Herald messages

Preserve replicas
Piggyback On-demand

Default
Swap on Query • •
Advertise State • • •
Probabilistic •

Table 4.1: Comparison of the characteristics of the shuffling algorithms

I1,I2,

I3,I4
I5,I6,

I7,I8
R S

Reply(I6)

Swap(I6->{I2,I3})

SwapReply(I2->I6)

I1,I6,

I3,I4

I5,I2,

I7,I8

Figure 4.16: Swap of data items between two nodes storage spaces

nodes use the TFS field of REPLYmessages to learn the distance at which the item

was found. To improve the distribution of the item, nodes update their storage

space when they receive a reply to a query from more than DbC hops away. The

data item received will occupy a random position of the storage space, replacing

the existing item. The Default algorithm does not use HERALD messages.

Swap on Query Like for the Default algorithm, a node R decides to store a data item

when the first reply is received from a node located at more thanDbC hops away.

The Swap on Query algorithm attempts to preserve the number of replicas of each

data item by performing a swap with the node S that sent the REPLY. The swap

process is summarised in Figure 4.16.

Instead of randomly selecting an item for being erased, node R sends a point-

to-point HERALD message to node S. The message follows the reverse path of

the REPLY. Each record in the message will contain one of the data items in R’s

106 CHAPTER 4. REPLICA MANAGEMENT

storage space. The TFS field of the records is set to zero and incremented or reset

to zero by the intermediate nodes that forward the HERALD message.

If the item sent in the reply was not produced by S, then node S selects one of

the items in the HERALDmessage and swaps it with the item initially sent to R in

the REPLY. The item is randomly selected among those with an highest TFS and

which is not present in S’s storage space. The details of the swap performed by

S are sent in a SwapReply HERALD message addressed to R. After receiving it, R

replaces the item selected by S with the reply to the query.

If S is the producer of the data item, it cannot remove the item from its storage

space. In this case, the SwapReply message will contain only the item that was

originally replied. When receiving the message, node R randomly selects one of

the items in its storage space and replaces it by the item in the REPLY. It should

be noted that in this case, the number of copies is not preserved: the queried

item gets one additional replica in the system while some other item randomly

selected will have one less.

Advertise State In Swap on Query, nodes select for swapping any data item satisfying

a simple set of constraints. Results should be improved if the items were selected

from those that are known to be redundant because another replica is stored in

some close neighbour. The Advertise State algorithm attempts to mitigate this

problem by piggybacking informative HERALD messages in QUERY messages.

HERALDmessages are filled with records up to the maximummessage size, thus

preventing fragmentation of the QUERY message. Data items are selected from

those in the storage space having the replace flag set to false. The TFS and hops

fields of the records are set to zero and the lifetime field is set to the DbC constant.

The store flag is set to false.

Nodes receiving the QUERY message compare the data items contained in the

HERALD message with those in their storage space. Data items present in both

have their replace flag set to true, thus signalling the availability of another replica

in the node’s proximity. In the Advertise State algorithm, the swap operation de-

4.5. SHUFFLING 107

scribed in the Swap on Query is changed to preferably select items with the replace

flag set to true.

This algorithm puts additional effort in the preservation of the number of repli-

cas. REPLYmessages include a flag which, if active, informs that the item can not

be swapped. In this case, the node that performed the query will not attempt a

swap and will not insert the item in its storage space.

Probabilistic The Probabilistic Shuffling algorithm continuously updates the storage

space of the nodes thanks to the exchange of HERALD messages piggybacked

in QUERY messages. Probabilistic shuffling does not require the transmission of

dedicated control messages.

Records of the HERALD message are filled with data items randomly selected

from the storage space. Data items in the storage space with the replace flag set to

false are advertised with the same purpose described in the Advertise State algo-

rithm. The lifetime of these records is set to DbC.

Data items with the replace flag set to true will have the store flag of their records

also set to true. In addition, these records will have the lifetime field set to the TTL

of the QUERY message. These records are used to create new replicas of the data

item. A new replica will be created in a node that receives the message if all the

following conditions are met:

1. the HERALD message record has the store flag set to true and TFS>DbC;

2. the node has some storage space entries with the replace flag set;

3. a random number generator selects a number with some probability pins.

The item replaces one of the entries with the replace flag set.

A second probability dictates the refreshment rate of the records in the HERALD

message. Besides the refreshment imposed by the lifetime field, nodes that re-

transmit the QUERY message may replace each of the records with a data item

they own in its storage space with probability prep.

108 CHAPTER 4. REPLICA MANAGEMENT

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 d
is

ta
nc

e
(m

)

Time (s)

Default, worst case
Swap on Query, worst case
Advertise State, worst case

Probabilistic, worst case
Default, early

Swap on Query, early
Advertise State, early

Probabilistic, early

(a) Average

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 th

e
D

is
ta

nc
e

(m
)

Time (s)

Default, worst case
Swap on Query, worst case
Advertise State, worst case

Probabilistic, worst case
Default, early

Swap on Query, early
Advertise State, early

Probabilistic, early

(b) Standard Deviation

Figure 4.17: Distance evaluation of a worst case scenario simulation

4.5.5 Illustration

To develop an intuition on the behaviour of each of the four algorithms, we pre-

pared a worst case scenario simulation and closely monitored the status of the storage

space of each node.

In the simulation, 100 nodes were randomly deployed in a region with 1500m ×

500m. Each node produced one data item. In the worst case scenario, four copies of

each data item were deployed: one in the node that produced it and each of the re-

maining on the three nodes that were geographically closer. This scenario was named

“worst case”. The “early” scenario was used for comparison. In the “early” scenario,

items were previously distributed using PADIS. In both cases, after the deployment of

the replicas, 3000 queries were performed, distributed by 6000s.

Figure 4.17 evaluates the metric distance of each node to the closest copy of each

data item. The average of these values is presented in Figure 4.17(a). In the “worst

case” scenario, all algorithms appear to converge to the same value, although at dif-

ferent speeds. The probabilistic algorithm is the one that converged faster. This is

expected, given that this is the algorithm that can shuffle more items on each query.

A comparison between the “worst case” and the “early” scenario suggests some

interesting conclusions. Apparently, these shuffling algorithms are unable to bring a

4.5. SHUFFLING 109

bad distribution to the average distance that can be achieved by the dissemination al-

gorithms. In addition, starting from a good distribution, the shuffling algorithms tend

to deteriorate it, although in a limited way. In “early” scenarios, the less aggressive al-

gorithms tend to benefit for a longer time of the good initial distribution. We note that,

as Section 4.7 will show, the number of items advertised is very low. Therefore, it is

possible that the shuffling algorithms are relocating some of the excessive redundancy

left during dissemination.

Figure 4.17(b) shows the progress of the standard deviation metric. As it can be

seen, although presenting a lower average, probabilistic algorithms tend to provide a

more uneven and unstable distribution of the items. Again, the convergence point is

far from the minimal value exhibited at the end of the dissemination in the “early”

scenario.

A second aspect considered in this evaluation addressed the impact of the algo-

rithms in the number of copies. The results presented in Figure 4.18 show the standard

deviation of the number of copies, calculated after every update to the storage space

of any node.

As expected, the probabilistic algorithm performs a more uneven distribution of

the number of replicas. However, there are two relevant aspects that deserve some

attention: i) like in the distance evaluation, the metric seems to stabilise. This sug-

gests that the algorithm does not continuously benefits some data items by increasing

its number of copies and ii) a comparison between Figures 4.17(a) and 4.18(a) shows

that, specially in the initial moments of the simulation, although presenting a more un-

even distribution of the number of copies, the algorithm presents the lowest average

distance.

The Advertise State algorithm is the only that effectively enforces the preservation

of the number of replicas. The pattern it exhibits in Figure 4.18(a) is explained by the

moment at which nodes replace items in their storage space during the exchange of

Swap and Swap Replymessages. Figure 4.17(a) shows that the Advertise State and Swap

on Query algorithms present a similar performance in the worst case but not in the

110 CHAPTER 4. REPLICA MANAGEMENT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000

C
op

ie
s

Time (s)

Default, worst case
Swap on Query, worst case
Advertise State, worst case

Probabilistic, worst case

(a) Worst case test

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000

C
op

ie
s

Time (s)

Default, early
Swap on Query, early
Advertise State, early

Probabilistic, early

(b) Early dissemination test

Figure 4.18: Variation of the standard deviation of the number of copies

4.6. COMPARISONWITH RELATEDWORK 111

early tests. This is inverted when we compare the stability of the number of replicas in

Figure 4.18. An important conclusion that can be withdrawn from these results is that

the number of copies should not be the unique factor for evaluating the quality of the

distribution.

4.6 Comparison with Related Work

Table 4.2 extends to PADIS and the shuffling algorithms the comparison of the

related work of Table 2.1 (see page 34). As it can be observed, PADIS provides a unique

combination of features and requirements.

PADIS characteristics suggest that the algorithm fits in the Improved Location Un-

aware category given that the source of the data is unknown although it performs ge-

ographical distribution of the replicas. In the same class, the DAFN and DCG also

provide geographical distribution without degrading the quality of the information, in

contrast with the non-uniform algorithm. However, they rely on a predictable access

pattern to the data.

Replica geographical distribution can also be found in some of the algorithms in

the Location Aware, Server Oriented and Trial and Error classes. However, all these algo-

rithms require devices to be aware of their location.

The shuffling algorithms associated with PADIS provide two alternatives for the

re-allocation of the replicas. The Shuffle On Query and Advertise State algorithms use

dedicated messages. Therefore, we consider that like DAFN and DCG, these algo-

rithms explicitly address the problem using a coordination mechanism. On the other

hand, the decision to shuffle is local to each node in the Default and Probabilistic al-

gorithms and does not require the exchange of explicit messages. This characteristic

is only shared by the CacheData algorithm, which assumes a small number of data

producers and by the non-uniform dissemination algorithm.

PADIS is the only algorithm using broadcast messages to disseminate data and

11
2

C
H
A
P
T
E
R
4.
R
E
P
L
IC
A
M
A
N
A
G
E
M
E
N
T

Class Protocol
Node

Movement

Location

Awareness

Access

Prediction
Producers

Replica

Refresh/

Leveraging

Geograph.

Distr.

Message type

Proactive

Dissem.
Query

L
o
ca
ti
o
n

U
n
aw
ar
e Simple Search • << n – B

Rumour Routing n rw rw

*-SAF • • n ◦ –

Aut. Gossipping • • n ◦ opp –

Im
p
ro
v
ed

Non-Unif n local/degrad. B –

*-DAFN • • n ◦ coordination –

*-DCG • • n ◦ coordination –

PADIS + Shuffle • n ◦/• local/coord B B

T
ri
al
&

E
rr
o
r

7DS • << n – p2p/B

Sailhan et al. • << n – p2p

Double rulings • n deterministic p2p p2p

GLS • • n ◦ deterministic p2p p2p

O
w
n
er CacheData • << n local – p2p

DCS • • n • p2p p2p

L
o
c.

A
w
ar
e

CachePath • n – p2p

R-DCS • • n • deterministic p2p p2p

•: feature of the algorithm ◦: implicitly provided

n: approx. all nodes in the network, << n: small number of nodes

rw: random-walk, B: broadcast, p2p: point-to-point message, opp: opportunistic, –: not applicable

Table 4.2: Comparison of the data dissemination algorithms surveyed with PADIS

4.7. EVALUATION 113

queries. Pampa is expected to contribute to the limited impact of this option on the

power consumption of the devices. However, we note that data is disseminated using

point-to-point messages only by location aware algorithms. Contrary to PADIS, many

of the remaining algorithms do not pro-actively disseminate replicas, thus degrading

their resilience to node or localised failures in the network.

The description of the SAF, DAFN and DCG algorithms omits the algorithm used

for locating the replicas. Therefore, it is not possible to perform a fair comparison be-

tween PADIS and the remaining. However, we note that the replica location unaware-

ness that characterises Location Unaware and Improved Location Unaware algorithms sug-

gests that the broadcast based, data retrieval algorithm presented in this thesis is a

good candidate for providing this service.

4.7 Evaluation

We have implemented a prototype of our algorithms in the ns-2 network simulator

v. 2.28. The simulated network is composed of 100 nodes using IEEE 802.11 network

interfaces at 2Mb/s. The nodes are uniformly deployed over a region with 1500m ×

500m.

In all tests, data items have 300 bytes. Measurements have been taken in number

of messages and number of data items stored at the nodes. Therefore, the size of the

data item is only relevant for estimating the traffic generated at the network.

Simulations are composed by an initial dissemination of the data items followed by

queries. The nodes performing the queries and the queried items are selected using an

uniform distribution. No warm-up period is used. All values presented below average

100 independent runs, combining different dissemination and query operations and

deployments of the nodes.

The evaluation is divided in two parts. Section 4.7.1 evaluates the data distribution

capabilities of PADIS. The capability of the shuffling algorithms to correct a biased

114 CHAPTER 4. REPLICA MANAGEMENT

distribution is the focus of Section 4.7.2.

4.7.1 Dissemination Algorithm

PADIS was evaluated by comparing its performance in different conditions. The

evaluation uses two metrics. The “average distance of the replies” measures the dis-

tance (in number of hops) from the querying node to the source of the first reply re-

ceived. The distance of a reply is 0 if the value is stored in the querying node. The

“average number of transmissions” measures the resource consumption of the devices.

The metric is defined for registrations and queries. Both sum the total number of mes-

sages of each type and divide it by the number of operations. For queries, both QUERY

and REPLY messages (initial transmissions and forwarding) performed by all nodes in

a simulation are accounted.

Runs are executed for 900s of simulated time. Each run consisted of 400 queries

over a variable number of disseminated data items to be presented below. Data items

are disseminated in time instants selected uniformly between 0 and 400s. Queries start

at 200s and are uniformly distributed until the 890s of simulated time. The simulation

ensures that only advertised records can be queried so that the evaluation does not

become obfuscated by bogus queries. The Default shuffling algorithm was used in

these tests. Recall that this algorithm does not require additional messages or increases

the original message sizes.

4.7.1.1 Sensitivity to Different Network Configurations

The performance of the algorithm is affected by the number of nodes in the neigh-

bourhood of each node, the storage size at every node and the number of items adver-

tised in the network. To evaluate the effect of the variation of each of these parameters

individually, we fixed a value for each in a baseline configuration. Each parameter was

then individually varied keeping the remaining consistent with the baseline configu-

ration.

4.7. EVALUATION 115

Network Density The number of neighbours was varied by configuring the nodes

with different transmission powers while keeping the size of the simulated space

constant. The transmission power was set such that transmission ranges varied

between 150 and 325 meters, using the Free Space propagation model defined

in the ns-2 network simulator. A transmission range of 250m was settled for the

baseline configuration.

Storage Size To evaluate the behaviour of the algorithm for nodes with different re-

sources, we varied the number of items that can be kept by each node between

2 and 16. In the baseline configuration, each node makes available room for 10

records advertised by other nodes.

Number of Items The number of items advertised was varied between 50 and 800, at

intervals of 50. Advertisements were uniformly distributed by the nodes. In the

baseline configuration, 200 data items are advertised.

The different tests are harmonised by the Saturation Point Ratio. Recall from Sec-

tion 4.3.2.3 that the saturation point ratio considers the storage space made available

by the nodes on each cluster, what depends of the storage space made available by

each node and of the number of nodes in the cluster. While the storage space of each

node is defined by the storage size and number of items, which are well known on each

simulation, the number of nodes in the cluster must be estimated.

Because the network is limited in both the number of nodes and dimensions, the

size of the cluster varies significantly between the nodes at the centre of the simulated

space and those close to its borders. Knowing in advance that the estimation would be

inaccurate, the number of nodes in each cluster was derived from the average number

of 1 hop neighbours of each node and by the transmission radius r. The number of

1 hop neighbours was counted by averaging the number of nodes that receive each

broadcast of a message on every simulation with the same transmission range. The

nodes in a cluster were derived from the number of 1 hop neighbours by proportion to

the increment of the area defined by a transmission radius of r to the radius required

116 CHAPTER 4. REPLICA MANAGEMENT

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 r
ep

ly
 d

is
ta

nc
e

Saturation point ratio

DbC=2
DbC=3
DbC=4

(a) Variation of number of neighbours

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 r
ep

ly
 d

is
ta

nc
e

Saturation point ratio

DbC=2
DbC=3
DbC=4

(b) Variation of storage size

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 r
ep

ly
 d

is
ta

nc
e

Saturation point ratio

DbC=2
DbC=3
DbC=4

(c) Variation of number of items

Figure 4.19: Average distance of the replies

by DbC+1

2
r, whose circle defines the cluster area.

Note that the baseline configuration has a saturation point ratio above one for all

values ofDbC, meaning that the storage capacity of the network has not been exceeded.

Figure 4.19 shows the average distance of the replies in the simulations. Error bars

show the highest and lowest average reply distance of a subset of 80% of the simula-

tions for the scenario that excluded the 10% with higher and lower values. To facilitate

the comparison with the theoretical model, the figures show the values of the theo-

retical expected average reply for every DbC tested given by function τ , previously

presented in Section 4.3.2.2. The values of function τ for the DbC values tested are

respectively τ(2) = 1.55(5), τ(3) = 1.75 and τ(4) = 2.2.

4.7. EVALUATION 117

Independently of the DbC or of the parameter that was varied, all tests show that

for large values of the saturation point ratio the average reply distance remains approx-

imately constant. Also, to higher DbC, always correspond increasing average reply

distances. These two observations confirm that the algorithm stores a limited number

of copies of each data item. A desirable feature because it shows that the algorithm is

capable to adapt to different loads by reserving space for other items and by providing

replies close to the average expected distance. However, when the system is below

the Saturation Point (SP), our algorithm exhibits a smaller average reply distance than

the computed for the idealised model. This confirms the intuition developed in Sec-

tion 4.3.4: our approach presents slightly more redundancy than expected. A side

effect, confirmed by the plots is that the average distance of the replies becomes above

the theoretical expected limited for saturation point ratios above one.

There are different reasons for the differences between the simulated and the the-

oretical results. Recall that function τ assumes an idealised networking environment.

In particular, the following assumptions are not satisfied by the simulations:

Collisions and Partitions. In some wireless medium access protocols, like the IEEE

802.11 used in these tests, broadcasts are not acknowledged by the receivers. At

some point, two transmissions may collide, preventing some nodes from receiv-

ing both of them. Although collisions may not affect the delivery of the message,

they may influence the storage or propagation decisions of the nodes.

Because the number of nodes and network size have been kept constant in all

simulations, partitions are more likely to occur when the transmission range de-

creases. The performance of the algorithm in a partitioned environment becomes

harder to predict, as the probability of having a query replied will depend of

the probability of the producer and querier nodes to be on the same partition.

It should be noted that the error bars in Figure 4.19(a) grow with a decreasing

number of neighbours. In addition, the bars are significantly smaller when the

number of items or storage size varies. Therefore, the large variation of that set

of results is attributed to partitions.

118 CHAPTER 4. REPLICA MANAGEMENT

Concurrency. Pampa may not provide a sufficiently distinct hold time for two nodes

to prevent them from taking a similar decision because they are not aware of the

decision of the other. Examples of this event that resulted in redundant storage

of some data items have been observed in the illustrative run presented in Sec-

tion 4.3.4.

Network boundaries. As discussed in Section 4.3.2.1, some nodes may not have the

closest copy of some data items at the expected theoretical limit of
⌈

DbC+1

2

⌉

as-

sumed by function τ . The most evident case are nodes close to the network

boundaries which lack the continuation of the propagation chain to get the item

eventually stored. An interesting aspect, that possibly justifies the increasing

degradation of performance for higher values of DbC is that, for the same net-

work, an higher DbC implies a small number of copies stored and, therefore, an

increase in the number of nodes affected by this condition.

Besides influencing the average distance, the estimation of the number of nodes

on each cluster is also more inaccurate at the network boundaries. Note that the

smaller number of neighbours results in significantly smaller clusters to what

correspond higher saturation point ratios.

Unlimited storage space. As discussed before, when the storage space of the nodes is

fully occupied, nodes may need to discard some of the old items to make room

for new ones. As we have seen, the algorithm does not provide a perfect replica

distribution and introduces some excessive redundancy. Therefore, it should be

expected that this effect appears when the saturation point ratio is above 1. When

the replica selected for replacement is not a redundant one, the random replacing

of replicas bias the item distribution because a cluster looses its replica of the item

significantly increasing the distance of the nodes in the cluster to the closest copy.

Node deployment. A fundamental assumption of the saturation point estimator is

that at every forwarding, there exists one node located precisely at the transmis-

sion radius from the previous source. Although Pampa favours the forwarding

of the messages by the nodes more distant to the source of the previous transmis-

4.7. EVALUATION 119

sion, it is only possible to assume that the node will be located at some distance

lower or equal to the transmission radius. These smaller distances in propagation

result in additional hops travelled by the REGISTRATION and QUERY messages

and reduces the area covered by each cluster.

Independently of the factors above, Figure 4.19 shows that the algorithm exhibits

the expected behaviour when the saturation point ratio approaches 1. As it becomes

theoretically impossible to store all the items in the target DbC, the average reply dis-

tance increases. Still, the system continues to provide acceptable results, suggesting

that in the majority of the cases copies are found within only a few hops in excess of

the theoretical limit.

Figure 4.20 present the same results than Figure 4.19(c) but using the number of

advertised items in the x axis. It confirms that the selection of an adequate DbC is cru-

cial for a good performance of the algorithm. It can be seen that the average distance of

the replies for the different values of DbC tend to approximate as the occupancy of the

storage space increases. In particular, the lines for DbC=2 and DbC=3 intersect around

the Saturation Point for DbC=2. This is an expected behaviour of the algorithm since

that above the Saturation Point it is not theoretically possible to store all information

in the nodes in the expected range. Therefore, it is preferable to extend the size of the

cluster, increasing its storage capacity, so that the algorithm can continue to apply its

fine dissemination capabilities.

4.7.1.2 Message Overhead

A second aspect that is relevant to assert on the performance of the algorithm is the

total number of messages required for disseminating and retrieving a data item. The

following subsections analyse individually each of these operations using the number

of transmissions per operation as the metric. The goal is to show that geographical dis-

tribution provides a good tradeoff, compensating the cost of the initial dissemination

of the data items with the gains given by the reduced number of messages required

120 CHAPTER 4. REPLICA MANAGEMENT

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 r
ep

ly
 d

is
ta

nc
e

Advertised Items

DbC=2
DbC=3
DbC=4

Figure 4.20: Average distance of the replies with variation of number of advertised
items

 20

 25

 30

 35

 40

 45

 50

 55

 1 1.5 2 2.5 3

M
es

sa
ge

s
fo

rw
ar

de
d/

re
gi

st
ra

tio
n

Saturation point ratio

Storage
Items

Neighbors

Figure 4.21: Transmissions per registration

for data retrieval. As expected, Pampa plays an important role in the reduction of the

number of messages required for data dissemination and retrieval.

4.7.1.2.1 Dissemination PADIS broadcasts a message to disseminate each data

item. In consistency with results for Pampa, the number of transmissions generated

by dissemination is strongly dependent of the network density, what can be confirmed

in Figure 4.21.

The figure shows that for variations of the storage space or number of items, the

number of messages per operation is approximately the same until close to the Sat-

uration Point. Interestingly, the number of messages required for the dissemination

increases for lower values of the saturation point ratio in the tests that varied the num-

4.7. EVALUATION 121

ber of items. We attribute this variation to the bias applied to the hold time when the

occupancy ratio of the nodes is above some threshold (see Section 4.3.3.1). Although

it promotes an even distribution of the items, the additional hold time also prevents

Pampa from using the most adequate (distant) nodes for message propagation. There-

fore, additional retransmissions will be required on each broadcast. This variation is

not visible when the storage space is varied due to the large granularity of the bias to

the hold time: when the storage space is small, all nodes rapidly commute from the

regular Pampa’s hold time to the biased version, attenuating any benefit of this delay.

4.7.1.2.2 Queries The average number of messages per query is presented in Fig-

ure 4.22. It is interesting to notice that, for each value of DbC, the lines that capture

the behaviour of the system with the size of the storage space and with the number of

items practically overlap. This confirms that, as expected, when the system is below

the Saturation Point, none of these factors influences the number of messages trans-

mitted per query. A feature that can be clearly attributed to Pampa.

Additionally, we compared the growing ratios of the curves for the average dis-

tance of the replies and for the number of messages forwarded/query in both sce-

narios. The difference between these ratios is less than 2% when the storage space is

changed and less than 7%when the number of items changes. These small values show

that the growing of the average distance implies an almost linear grow of the number

of messages. In practise, this confirms the efficiency of our mechanism for adapting

the TTL of the first QUERYmessage, which prevents the frequent retransmission of the

queries using a full broadcast.

On the other hand, we expect the number of messages to drop significantly when

the node density increases because we benefit from the properties of Pampa, which

adapts the proportion of nodes retransmitting a message to the network density. Com-

paring results depicted in Figures 4.19(a) and 4.22(c), it can be seen that although the

distance of the replies tends to stabilise with the grow of the network density, the num-

ber of messages continues to diminish. Here, the difference between the ratios is higher

122 CHAPTER 4. REPLICA MANAGEMENT

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16

M
es

sa
ge

s
fo

rw
ar

de
d/

qu
er

y

Saturation point ratio

Storage
Items

Neighbours

(a) DbC=2

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16

M
es

sa
ge

s
fo

rw
ar

de
d/

qu
er

y

Saturation point ratio

Storage
Items

Neighbours

(b) DbC=3

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16

M
es

sa
ge

s
fo

rw
ar

de
d/

qu
er

y

Saturation point ratio

Storage
Items

Neighbours

(c) DbC=4

Figure 4.22: Transmissions per query

than 36%.

These results show that network density is the dominating factor of the number of

messages per query what confirms previous results for Pampa.

4.7.1.3 Attenuation of the Dissemination Cost

The transmissions presented in Figure 4.21 are those required by Pampa to flood

the entire network. This would be the number of messages required in the majority of

the cases by queries if no early dissemination of the items was performed. A compari-

son with the number of messages required for data retrieval is depicted in Figure 4.23.

Results show that queries always require a non-negligible lower number of mes-

4.7. EVALUATION 123

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 1 2 3 4 5 6 7 8 9

M
es

sa
ge

s
fo

rw
ar

de
d:

 q
ue

ry
/r

eg
is

tr
at

io
n

Saturation point ratio

Storage
Items

Neighbours

(a) DbC=2

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 1 2 3 4 5 6 7 8 9

M
es

sa
ge

s
fo

rw
ar

de
d:

 q
ue

ry
/r

eg
is

tr
at

io
n

Saturation point ratio

Storage
Items

Neighbours

(b) DbC=3

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 1 2 3 4 5 6 7 8 9

M
es

sa
ge

s
fo

rw
ar

de
d:

 q
ue

ry
/r

eg
is

tr
at

io
n

Saturation point ratio

Storage
Items

Neighbours

(c) DbC=4

Figure 4.23: Ratio of transmissions per query/transmissions per registration

sages than dissemination. This suggests that the cost of dissemination can be absorbed

after a small number of queries. Not surprisingly, the gains of our algorithm are

smaller when theDbC is higher or with a lower saturation point ratio. This is explained

by noticing that the number of messages required for a registration is constant and in-

dependent of the DbC. On the other hand, an higher DbC implies an expected higher

average reply distance, thus requiring an higher TTL of the first QUERY message.

We note that these results are strongly dependent of the simulated scenario. Abso-

lute results determining the number of queries after which the use of this algorithm be-

comes advantageous in comparison with a strict pull model, where data items would

not be disseminated in advance will always depend of the simulated environment.

However, our algorithm provides the additional advantage of replicating the data

124 CHAPTER 4. REPLICA MANAGEMENT

items, making the network more robust against failures and departures of nodes.

4.7.2 Shuffling Algorithms

This section compares the performance of the four shuffling algorithms. Two

classes of tests were defined. Convergence tests evaluate the capability of the algorithms

to improve an initially biased distribution. Mitigation tests measured the capability of

the algorithms to attenuate the effects of the continuous node movement.

The test-bed for shuffling algorithms is similar, in number of nodes and network

dimension, to the one used for the dissemination algorithm. All tests begin with a

dissemination phase, where a variable number of items is advertised. Nodes do not

move during the dissemination phase.

In Convergence tests, the initial dissemination is biased by having the nodes tomove

during 300s with an average speed of 10m/s. Nodes then stop and perform 1000

queries, distributed by 2000s and randomly distributed by the data items using an

uniform distribution.

In Mitigation tests, nodes do not stop after the dissemination phase. Tests were

performed using average speeds of 2m/s and 5m/s. The number of queries and the

duration of the query phase is similar to the one used in convergence tests.

Themaximum storage space of each nodewas set to 10 items, excluding the items it

produces. New storage space entries are created only during the dissemination phase.

That is, the shuffling algorithmsmay only replace existing entries on the node’s storage

space.

We experimented two movement models frequently referred in the literature. Both

are briefly described here for self-containment of this text. In the Random Waypoint

Movement Model (Johnson & Maltz, 1996), nodes select a random location in the sim-

ulated region and move in a straight line to it at a speed randomly defined between a

minimum and a maximum value. When the location is reached, nodes stop for a pre-

4.7. EVALUATION 125

Figure 4.24: Snapshot of the Manhattan Grid movement model with 7 by 3 streets

defined amount of time and initiate a new cycle by selecting another random location.

In the Manhattan Grid movement model the region is traversed by vertical and

horizontal streets. Nodes move over the streets with a speed that can be varied within

some interval. When reaching an intersection, nodes decide to turn with some proba-

bility.

We note that, although not moving during the dissemination phase, nodes are ini-

tially deployed according to the movement model being tested. Both movement mod-

els consider pause times for the nodes. However, in our simulations, the nodes were

configured for not stopping. The Random Waypoint movement model was used in

convergence tests. Mitigation tests were run with both movement models. To pre-

vent anomalies on the average speed such as those identified in the Random Way-

point (Bettstetter et al., 2003), minimum and maximum speeds were always set 1m/s

respectively below and above the average. In the Manhattan Grid movement model,

the grid is composed of 7 × 3 streets spaced 250m. A snapshot of a node deployment

in a simulation using the Manhattan movement model with the configuration above is

presented in Figure 4.24.

To simulate different network conditions, we have varied the transmission range

of the nodes, the number of data items advertised and the DbC constant. Three trans-

mission ranges were tested: 200m, 250m and 300m permitting to evaluate algorithm’s

performance in sparser and denser networks. Nodes advertise 100, 400 or 700 items,

126 CHAPTER 4. REPLICA MANAGEMENT

DbC
Transmission

Items
Saturation

Range Point Ratio

2

200
100 4.30
400 1.37
700 0.95

250
100 6.03
400 1.92
700 1.33

300
100 7.87
400 2.51
700 1.74

4

200
100 11.93
400 3.80
700 2.63

250
100 16.75
400 5.33
700 3.70

300
100 21.87
400 6.96
700 4.83

Table 4.3: Saturation Point Ratios for Convergence tests

thus producing different storage space occupancy ratios. Finally, we testedDbC values

of 2 and 4. Like in the evaluation of the dissemination algorithm, all results average

100 different runs with independently generated sets of dissemination and queries and

node movements. To facilitate comparisons with the previous tests, Table 4.3 shows

the corresponding saturation point ratio estimations for each combination tested in

convergence tests.

For mitigation tests we opted by configurations with a smaller transmission range

to represent sparser networks were the need to move the items is higher. Table 4.4

shows that the node distribution of the movement models affects the saturation point

ratio. This is easily observed by noticing that, for the same configuration, the satura-

tion point ratio for the Manhattan Grid movement model is approximately 60% of the

value for the Random Waypoint movement model. Recall that the ratio is estimated

by counting the number of nodes that receive each broadcast message, what indicates

that each node has a significantly lower average number of neighbours in the Manhat-

4.7. EVALUATION 127

DbC
Transmission
Range

Items
Saturation Point Ratio
RWP Manhattan

2m/s 5m/s 2m/s 5m/s

2
200

400 1.36 1.37 0.78 0.78
700 0.94 0.94 0.54 0.54

250 700 1.31 1.32 0.81 0.81
4 200 700 2.60 2.61 1.50 1.50

Table 4.4: Saturation Point Ratios for Mitigation tests

tan Grid movement model. The table suggests that node movement in the Random

Waypoint model did not affect the node density, given that the saturation point ratio is

similar.

The performance of the algorithms is compared using two metrics. The “average

distance” considers the geographical distribution of the replicas of the data items. It is

calculated by measuring, for each node, the distance to the closest copy of each item.

The metric uses the average of all the distances. By itself, the average may not be a

good estimator given that the algorithms may privilege some of the items and provide

them with a very low average distance. Therefore, the standard deviation is presented

to confirm the quality of the geographical distribution. Together, lower averages and

standard deviations indicates a better performing algorithm.

We note that given the characteristics of the dissemination algorithm, values too

small are not achievable or desirable. Theoretically, the average distance and the stan-

dard deviation should be correlated, for each DbC, with function τ (defined in Sec-

tion 4.3.2.2) and with the transmission range. However, the differences to the theo-

retical model noted in the evaluation of the distribution algorithm are also applicable

to the case where nodes move. For example, the irregular distribution of the nodes

does not guarantee each next hop to be found exactly in the limit of the transmission

range of the node. In addition, we must also consider the bias introduced by the node

movement model.

A second aspect considered in the evaluation of the algorithms was the number of

replicas of each data item. We note that in all tests the average is constant given that

128 CHAPTER 4. REPLICA MANAGEMENT

the storage space and the number of items is also constant. The metric used was the

standard deviation of the number of copies of each data item. The average is plotted to

allow a visual estimation of its proportion to the standard deviation. Again, the ideal

value of the standard deviation may not be zero. This is because the most adequate

number of replicas will depend of their location. For example, data items with replicas

stored at the nodes closer to the centre of the simulated space may require a smaller

number of replicas.

The evaluation compares the performance of the algorithms with each other and

with the state that was initially found after the dissemination phase. To observe the

evolution of the algorithms with time, snapshots of the state and location of the nodes

are taken at periodic intervals of each test. The first snapshot occurs at the end of the

dissemination phase. Plots represent this moment as time 0. The second snapshot

is taken 300s after, thus being coincident with the moment at which nodes stop in

convergence tests and queries start. A snapshot is taken again every 400s, with the last

one being coincident with the end of the simulation.

4.7.2.1 Probability of Insertion

The Probabilistic algorithm use two constants: prep dictates the probability of a trans-

mitting node to replace a record in the HERALDmessage; pins the probability of an item

being inserted when the node has some storage space entries marked with the replace

flag set to true. In this evaluation, we assume that prep should be necessarily small: if

records are frequently replaced, the TFS field is always kept at a low value. This would

prevent nodes more distant from receiving records with an high TFS and therefore,

from inserting the data items. In the simulations, we used a constant probability of 0.2

for prep as we considered that it represents a good tradeoff between the refreshment of

the records in the message and their continuation for being used in latter updates.

A definitive value for pins however is harder to establish. Intuitively, an higher

value of pins should provide a more aggressive update policy, that converges more

rapidly for the leveraging of the items distribution. However, if pins is excessively

4.7. EVALUATION 129

high, different neighbour nodes, receiving the same message will store the same item,

creating an undesirable level of redundancy for the item in some locations. Figure 4.25

compare the performance of two versions of the Probabilistic algorithm using pins = 0.5

and pins = 0.8 in the convergence tests.

Contrary to our expectations, the performance of the algorithms is very similar. In

some cases, pins = 0.8 presents an average smaller by a few meters in the earlier stages

of the tests. The difference tends to be attenuated later. In the Probabilistic algorithm,

a 30% difference in the probability may provide an almost negligible contribution to

the speed at which the algorithm improves the item distribution. Such a smaller differ-

ence suggests that a comparison of both variants with the remaining algorithms would

not provide a valuable contribution to the evaluation. Evaluation of convergence and

mitigation tests omit the results for pins = 0.5.

The following analysis will also omit results for 250 and 300m when DbC= 4. This

is justified by observing that in Figure 4.25 there is a small increase of the average

distance between the end of the dissemination phase (t = 0s) and the end of the move-

ment period (t = 300s). With DbC= 4, the distance between the replicas at the end of

the dissemination phase is close to what is achieved after the randommovement of the

nodes in a closed region with the predefined dimension.

4.7.2.2 Convergence Tests

The simulation results for the convergence tests are presented from Figure 4.26 to

Figure 4.29. The figures show that, in general, the four algorithms reduce the “average

distance” metric, in a tendency to correct the bad distribution that can be found after

nodes have moved. The standard deviation and the average curves exhibit a similar

pattern, suggesting that the leveraging is being equally distributed by the data items.

Not surprisingly, the Probabilistic algorithm is the algorithm that reacts faster to the

biased distribution. This is due to the number of data items that can be shuffled on

each query. Algorithms that keep the number of replicas constant will shuffle at most

130 CHAPTER 4. REPLICA MANAGEMENT

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 D
is

ta
nc

e
(m

)

Time (s)

pins=0.5, 200m
pins=0.5, 250m
pins=0.5, 300m
pins=0.8, 200m
pins=0.8, 250m
pins=0.8, 300m

(a) DbC=2, 100 items

 190

 200

 210

 220

 230

 240

 250

 260

 270

 280

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 D
is

ta
nc

e
(m

)

Time (s)

pins=0.5, 200m
pins=0.5, 250m
pins=0.5, 300m
pins=0.8, 200m
pins=0.8, 250m
pins=0.8, 300m

(b) DbC=2, 400 items

 230

 240

 250

 260

 270

 280

 290

 300

 310

 320

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 D
is

ta
nc

e
(m

)

Time (s)

pins=0.5, 200m
pins=0.5, 250m
pins=0.5, 300m
pins=0.8, 200m
pins=0.8, 250m
pins=0.8, 300m

(c) DbC=2, 700 items

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 D
is

ta
nc

e
(m

)

Time (s)

pins=0.5, 200m
pins=0.5, 250m
pins=0.5, 300m
pins=0.8, 200m
pins=0.8, 250m
pins=0.8, 300m

(d) DbC=4, 100 items

 240

 260

 280

 300

 320

 340

 360

 380

 400

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 D
is

ta
nc

e
(m

)

Time (s)

pins=0.5, 200m
pins=0.5, 250m
pins=0.5, 300m
pins=0.8, 200m
pins=0.8, 250m
pins=0.8, 300m

(e) DbC=4, 400 items

 260

 280

 300

 320

 340

 360

 380

 400

 0 500 1000 1500 2000 2500

A
ve

ra
ge

 D
is

ta
nc

e
(m

)

Time (s)

pins=0.5, 200m
pins=0.5, 250m
pins=0.5, 300m
pins=0.8, 200m
pins=0.8, 250m
pins=0.8, 300m

(f) DbC=4, 700 items

Figure 4.25: Average distance of the nodes to the closest replica for two configurations
of the Probabilistic algorithm

4.7. EVALUATION 131

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic

(a) Distance, 100 items

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(b) Copies, 100 items

 120

 140

 160

 180

 200

 220

 240

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(c) Distance, 400 items

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, 400 items

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(e) Distance, 700 items

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(f) Copies, 700 items

Figure 4.26: Convergence tests when DbC=2 and transmission range=200m

132 CHAPTER 4. REPLICA MANAGEMENT

 80

 100

 120

 140

 160

 180

 200

 220

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic

(a) Distance, 100 items

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(b) Copies, 100 items

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(c) Distance, 400 items

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, 400 items

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(e) Distance, 700 items

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(f) Copies, 700 items

Figure 4.27: Convergence tests when DbC=2 and transmission range=250m

4.7. EVALUATION 133

 100

 120

 140

 160

 180

 200

 220

 240

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic

(a) Distance, 100 items

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(b) Copies, 100 items

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(c) Distance, 400 items

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, 400 items

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(e) Distance, 700 items

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(f) Copies, 700 items

Figure 4.28: Convergence tests when DbC=2 and transmission range=300m

134 CHAPTER 4. REPLICA MANAGEMENT

 120

 140

 160

 180

 200

 220

 240

 260

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic

(a) Distance, 100 items

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(b) Copies, 100 items

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(c) Distance, 400 items

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, 400 items

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(e) Distance, 700 items

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(f) Copies, 700 items

Figure 4.29: Convergence tests when DbC=4 and transmission range=200m

4.7. EVALUATION 135

two items. The default algorithm at most one while an undefined number of data items

can be shuffledwhen the Probabilistic algorithm is used. TheAdvertise State algorithm is

penalised by the frequent impossibility of swapping data items. As it can be observed,

the algorithm is particularly slower than the remaining when the average number of

copies is smaller. These are the cases where the probability of receiving a reply from

the producer of the item is higher.

In general, algorithms converge to some value between the average distance at

the end of the dissemination phase and at the end of the movement phase. That is,

although attenuating the impact of the node movement, the algorithms do not bring

the average distance to the low value that is achieved by the dissemination algorithm.

We attribute this behaviour to two interrelated factors.

1. The number of queries that may result in a shuffle of some data item decreases

with time. As a result of their operation, all algorithms progressively increase the

probability of finding a data item within the expected distance. Therefore, the

number of queries that will reach the conditions required by each algorithm for

shuffling is reduced. Not surprisingly, the “curve” that results from this effect is

more visible in the Probabilistic algorithm, the only one that can shuffle more than

one data item unrelated with the query.

2. Algorithms may be achieving a satisfactory distribution with a distance higher

than the one provided by the dissemination algorithm. This is expected given

that it was already shown that the dissemination algorithm induces excessive

redundancy. This claim is supported by noticing that the point to where the items

appear to converge is higher when the number of items is lower, that is, when

there is more space at the nodes for storing the redundant copies.

Results for the different algorithms are closer when there are less items adver-

tised. In particular, with 100 items, all algorithms presentmarginal differences between

them, with advantage for the algorithms that do not piggyback HERALD messages on

136 CHAPTER 4. REPLICA MANAGEMENT

queries. These algorithms tend to converge to an average distance lower than the re-

maining.

An observation of the graphics for the number of copies show that the algorithms

use different methods for achieving their goals. In particular, the Probabilistic algorithm

rapidly deteriorates the standard deviation of the number of copies while decreasing

the average distance. This indicates that the number of replicas of the items is less ho-

mogeneous in the Probabilistic algorithm. This can be attributed to i) a deviation of the

algorithm, if the preferred items are selected due to some possible random criteria; or

ii) an improvement of the geographical distribution that takes into account the location

of each replica. Results suggest that heterogeneity can be attributed to improvements

in the geographical distribution.

In general, the random algorithm presents the lowest average distance, even when

the standard deviation of the number of copies is significantly higher, what suggests

that the algorithm is improving the distribution. That is, the algorithm achieves a bet-

ter performance with a bigger deviation in the number of copies than the remaining,

which keep the number of copies close to what was determined during the dissemina-

tion. We interpret this result as a confirmation that the algorithm helps to remove the

additional redundancy that was already shown to be created by PADIS.

A particular case is observed in Figures 4.26(e) and 4.26(f), which is the only test

performed with a Saturation Point Ratio below 1. Recall that in this case, the algorithm

is unable to provide its properties given that the storage space made available by the

nodes is not sufficient for keeping the desired number of replicas. In this test, the Proba-

bilistic algorithm reduces the standard deviation of the number of copies, showing that

the grow that is visible in the remaining scenarios can be inverted in some cases. As a

result, the algorithm is able to improve the average distance to a value that is clearly

below the remaining and even below the one that was achieved by the dissemination

algorithm.

4.7. EVALUATION 137

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.30: Mitigation tests with 200m transmission range, 2m/s average speed, 700
items and DbC=4

4.7.2.3 Mitigation Tests

In the mitigation tests, the shuffling algorithms were compared using the Random

Waypoint and the Manhattan Grid movement models. The simulation results are de-

picted from Figure 4.30 to Figure 4.37. The figures have been arranged by average

speed and from the highest to the lowest saturation point ratio. The plots showing the

metric distance of the nodes to the closest copy of each item also present the results for

control tests. In these tests nodes move but no queries are made. Given that in the re-

maining, shuffling always results from queries, the tests evidence what would happen

if no shuffling was used.

Recall from Table 4.4 that using the same configurations, the Manhattan Grid

138 CHAPTER 4. REPLICA MANAGEMENT

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.31: Mitigation tests with 200m transmission range, 2m/s average speed, 400
items and DbC=2

movement model tests present a saturation point ratio that is approximately 60% of

the value for the Random Waypoint tests. The impact of the saturation point ratio is

clearly visible in side-by-side comparisons of both movement models.

The average distance of both movement models at the end of the dissemination

phase (in the plots corresponding to time 0s) and at the beginning of the query phase

(time 300s) present a similar pattern. At the end of the dissemination phase, and with

DbC=2, the Random Waypoint movement model presents an average distance that

is 55% ≈ 60% of the average distance exhibited by the Manhattan Grid movement

model. At the beginning of the query phase, the distributions become closer and are

in the interval 65% ≈ 69%. As expected, larger DbC’s also contribute to attenuate the

4.7. EVALUATION 139

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.32: Mitigation tests with 250m transmission range, 2m/s average speed, 700
items and DbC=2

differences between the movement models and the ratios become around 65% and 70%

respectively at times 0s and 300s.

A common trend that can be found in the Random Waypoint model tests is the

stabilisation of the average distance, aligned with the control tests. This suggests that

the shuffling algorithms are unable to keep the pace with the changes in the topology.

These difficulties are more evident when we compare the graphics for the different

speeds with the graphics presented for the same configuration in convergence tests. It

can be observed that the tests for nodes moving at 5m/s are those presenting the lowest

gains and that convergence tests always present the highest gains. However, we note

that the requirement that nodes never stop is particularly demanding. As convergence

140 CHAPTER 4. REPLICA MANAGEMENT

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.33: Mitigation tests with 200m transmission range, 2m/s average speed, 700
items and DbC=2

tests have shown, soon after the topology has stabilised, the algorithms are able to

improve the average distance. In a real scenario, we expect the algorithms to present

a behaviour that would be between the two extreme situations. We note also that

the pace of queries in these tests is constant. If the number of queries was increased,

the number of opportunities for the algorithms to improve the shuffling would also

increase and we should expect better results.

The Probabilistic algorithm is the one whose results tend to differentiate more from

the remaining. In some cases, it is even presenting results that are worst than those

observed in the control tests, suggesting that the algorithm is making more harm than

good to the distribution. This is consistent with the behaviour observed in the conver-

4.7. EVALUATION 141

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.34: Mitigation tests with 200m transmission range, 5m/s average speed, 700
items and DbC=4

gence tests where it was noticed that the algorithm tends to stabilise at some average

distance above the minimum, specially when the saturation point ratio is high. We

note that like before, Figure 4.33 shows that in the lowest saturation point ratio we ex-

perimented, the Probabilistic algorithm is again providing the lowest average distance,

although not so clearly distinguishable from the remaining algorithms.

The results for the Manhattan Grid movement model on the other hand contra-

dict the previous analysis by showing that even when nodes move it is still possible

to improve the average distance metric. The behaviour of each algorithm concerning

the average distance is comparable with the graphics presented for convergence tests.

We emphasise two aspects that are likely to justify these differences: i) the substan-

142 CHAPTER 4. REPLICA MANAGEMENT

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.35: Mitigation tests with 200m transmission range, 5m/s average speed, 400
items and DbC=2

tially smaller number of neighbours and corresponding saturation point ratio; and ii)

the highest average distance at the end of the dissemination phase, even with satura-

tion point ratios above one (see for example, the results for this movement model in

Figures 4.30 and 4.34 which have a saturation point ratio of 1.5).

In these tests, the Probabilistic algorithm clearly outperforms the remaining. The

algorithm rapidly makes the average distance converge to a value that is, in general,

below the achieved with the initial dissemination. It should also be noted that, con-

tradicting the rule observed in the majority of the convergence tests, the standard de-

viation of the number of copies also tends to decrease. This confirms that none of the

algorithms applies a particular bias to the number of copies of some item that could,

4.7. EVALUATION 143

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.36: Mitigation tests with 250m transmission range, 5m/s average speed, 700
items and DbC=2

in the long term, affect the distribution. In fact, the standard deviation adapts to the

networking environment and can either increase or decrease to improve the average

distance.

The Advertise State algorithm is the one that exhibits the worst performance. In the

Manhattan Grid tests it is in general coincident with the control tests. We attribute

this behaviour to two particular features of the algorithm: i) its strong commitment

on the preservation of the number of replicas and ii) an incorrect application of the

replace flag that results from node movement. Recall from Section 4.5.3 that this algo-

rithm only advertises items stored with the replace flag set to false, meaning that no

other replica is known to be in the neighbourhood. However, in the presence of node

144 CHAPTER 4. REPLICA MANAGEMENT

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
No Queries

(a) Distance, RandomWaypoint

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500

D
is

ta
nc

e
(m

)

Time (s)

(b) Distance, Manhattan

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

Default
Swap On Query
Advertise State

Probabilistic
Average

(c) Copies, RandomWaypoint

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 500 1000 1500 2000 2500

C
op

ie
s

Time (s)

(d) Copies, Manhattan

Figure 4.37: Mitigation tests with 200m transmission range, 5m/s average speed, 700
items and DbC=2

movement, nodes establish temporarily contact with others which also store replicas

of the same items. Due to the lack of refreshment of the flag, after some time, nodes

will cease to advertise their items, rendering the algorithm useless. The definition of

an adequate refreshment criteria for the flag will always depend of specific conditions

of the environment where the algorithm is going to be applied, removing generality to

the algorithm.

These results confirm the trend that emerged from the analysis of the convergence

tests. Shuffling algorithms can contribute to improve the distribution performed by the

dissemination algorithm, specially in the cases where the saturation point ratio is very

low. However, we note that in the general case, PADIS gives a valuable contribution to

4.8. SUMMARY 145

the overall performance of the framework. In particular, it provides an estimate of the

number of copies that are required and places them in adequate locations. Shuffling

algorithms help by refining the dissemination. However, they depend of the queries

and may suffer performance problems in some movement patterns.

4.8 Summary

This chapter presented PADIS, an algorithm for disseminating information in ad-

hoc networks. The algorithm is fully distributed as it does not assume the presence

of only a few data sources in the ad-hoc network; each node, instead, is expected to

advertise its own data items. The main goal of the algorithm is to ensure an even

geographical distribution of the disseminated data items, so that requests for a given

data item are satisfied by some nodes close to the source of the query. Data items are

disseminated with a counter to provide a minimal distance between the copies. The

use of Pampa reduces the number of messages required for propagation and increases

the geographical distance between the hops.

The chapter also presented a complement to PADIS, that consists on different al-

gorithms for leveraging item distribution in the presence of node movement. The four

algorithms described use different techniques and put different efforts in the preser-

vation of the number of replicas. The algorithms require a limited amount of power,

given that they either use point-to-point messages or piggyback their information in

messages used for data retrieval.

Simulation results show that PADIS achieves a fair dissemination of items through-

out the network although the results are slightly worst thanwhat could be theoretically

expected. The results are justified by the impossibility of providing an ideal network-

ing environment.

Comparative simulations of the shuffling algorithms have confirmed their capa-

bility to improve data distribution, particularly in the less favourable conditions for

146 CHAPTER 4. REPLICA MANAGEMENT

PADIS. The Probabilistic shuffling algorithm clearly stands, by lowering the average

distance from each node to each data item faster than the remaining.

5
Application

It is easy to find in the literature different applications for data distribution algo-

rithms in mobile ad hoc networks. Good examples are the support of cooperative

work performed by geological teams during their field studies (Hara, 2001) or the dis-

tributed caching of web pages (Sailhan & Issarny, 2003). In general, applications can

be arranged in two classes: those that provide innovative services that emerge from

the possibilities offered by the mobility of the devices and those that aim to extend the

different services typically provided by the Internet to the ad hoc networking environ-

ment. This chapter focus on the later.

Many of the services provided in the Internet are implemented using a client-server

model requiring well known and reliable servers. In MANETs, a comparable model

can only be achieved by replicating the service in multiple nodes. Therefore, a chal-

lenge that is posed in extending Internet applications to MANETs is to devise alter-

native implementations that are able to cope with the constraints of the networking

environment. Ideally, the alternatives should be able to mask the differences of the un-

derlying environment so that applications developed for the wired setting could run

transparently in MANETs.

This chapter shows how the algorithms described in this thesis have been applied

to support the Session Initiation Protocol (SIP) (Rosenberg et al., 2002) in ad hoc net-

works. The SIP architecture is network-centric (Schulzrinne & Rosenberg, 2000), as

SIP relies on network entities to assist end users in their operations. SIP deployment

in server-less environments, such as MANETs, is thus not straightforward. For self-

containment, the chapter begins by providing in Section 5.1 a short overview of SIP and

147

148 CHAPTER 5. APPLICATION

decentralised SIP (dSIP) (Leggio et al., 2005), a solution for deploying SIP in MANETs.

dSIP was initially proposed in the context of 1 hopMANETs: those where all nodes

are in the transmission range of each other. In addition, dSIP exhibited scalability

problems. Section 5.2 describes SIPCache, a combination of PADIS with dSIP and with

a data gathering module, developed to mitigate dSIP’s previous limitations.

Section 5.3 evaluates the data gathering module of SIPCache. The chapter is con-

cluded with a summary of the results in Section 5.4.

5.1 Overview of SIP

The Session Initiation Protocol (SIP) (Rosenberg et al., 2002) is a signalling proto-

col designed by the IETF to initiate and manage multimedia communication sessions

in the Internet. A signalling protocol negotiates all the parameters necessary for a

communication session, e.g., its type (VoIP call, video call, chat) and characteristics

(e.g, audio codecs) used. A most relevant characteristic of SIP is its flexibility: SIP can

transparently signal any type of media session and is easily extendable to support new

features.

A SIP network is composed of multiple domains, each independently administered

by some organisation. Each domain provides a Registrar Server and a Proxy Server. In

order to use SIP services, it is necessary to register a user’s own contact information

in a SIP domain. Usually, the information consists in the SIP address, that is, the SIP

unique user name, also referred to as Address of Records (AOR), and the current IP

address. An association between a user’s AOR and his contact IP address is called a

“binding” and is stored in the Registrar Server for the domain. Queries are addressed

to Proxy Servers, who forwards them to the Registrar Server if the query is addressed to

some AOR of the local domain. Queries for AORs of other domains are forwarded to

the corresponding Proxy Server.

Authorised users communicate their bindings to the registrar server using a SIP

5.1. OVERVIEW OF SIP 149

Bob’s ProxyAlice’s ProxyAlice’s UA Bob’s UABob’s Registrar

INVITE (M1)

INVITE (M2)

REGISTER (R1)

200 OK (R2)

INVITE (M3)

Bob’s IP?

IP of Bob

Figure 5.1: Simplified logical message flow in SIP

REGISTER message. Figure 5.1 shows that Bob has registered to his registrar server

(message R1) and that the server has acknowledged the registration (message R2).

In general, when contacting a SIP user, a SIP client only knows the AOR of the

person to contact. Similarly to what happens in e-mail systems, the contact IP address

is typically unknown. In the example of Figure 5.1, user Alice, whowants to begin a SIP

session with Bob, sends an INVITE message first to the SIP Proxy Server of her domain

(message M1). The role of the proxy server is to locate, on behalf of the authorised

users, the final recipient of a SIP request. Alice’s proxy, thus, contacts the proxy serving

Bob’s domain (message M2).

Bob’s proxy recognises that the INVITE request is addressed to a user belonging

to its domain and exploits the location service, querying the domain registrar about

the contact address of the target user, as indicated by the dashed line messages in

Figure 5.1. The registrar returns to the proxy the contact information, and the message

is forwarded to destination (message M3). The location service related messages are

depicted using dashed lines to signal that the distinction between proxy and registrar

is merely logical: it is not uncommon that operators co-locate their functionalities into

the same host. The IETF has not defined a standard protocol for exploiting the location

service.

150 CHAPTER 5. APPLICATION

New SIP
Application

Standard SIP
Application

IP

Proximity Extensions Proximity Extensions

Proximity Manager
Application

Enhanced
API

SIP API

User Agent Server

Cache

Figure 5.2: Software architecture for decentralised SIP

5.1.1 Decentralised SIP

Mobile Ad hoc Networks are by definition self-managed networks without the

support of an underlying infrastructure composed for example of SIP proxies or reg-

istrar servers, fundamental to the correct behaviour of the SIP protocol. Decentralised

SIP (dSIP) (Leggio et al., 2005) is an architecture that overcomes this limitation, al-

lowing the use of SIP also in server-less environments, such as MANETs. In addi-

tion, dSIP extends standard SIP features with proximity functionalities for discovering

which users are present in the MANET.

The key idea of dSIP is to embed in each enabled device a basic subset of SIP

proxy and registrar server functionalities, so that dSIP devices are self-capable to main-

tain and exploit the location service. Decentralised SIP is particularly suited for small

MANETs, with few dozens of nodes at most.

The software architecture of dSIP is shown in Figure 5.2: the modules bordered

with solid lines are standard SIP modules in a device. The dashed modules are the

extensions defined by dSIP. In a standard SIP client, only the user agent (UA) side

of the stack would be present. In dSIP, the server module is added, and the server

standard capabilities are enhanced with the proximity functionalities. The interested

reader is referred to (Leggio et al., 2005) for a complete description of the role of each

module.

dSIP does not require the modification of the existing software modules of SIP

5.1. OVERVIEW OF SIP 151

INVITE (M1)

INVITE (M2)

Bob’s IP?

IP of Bob

REGISTER (R2)

200 OK (R3)

Alice’s UA User’s UA User’s UA Bob’s UA

REGISTER (R1)

200 OK (R3)

200 OK (R3)

Figure 5.3: Simplified logical message flow in dSIP

clients. Extensions are enabled by adding new submodules. This choice allows inter-

operability of dSIP UAs with standard SIP clients: a standard SIP application can be

deployed on top of dSIP equally well as an application that exploits dSIP proximity

functionalities. A native SIP application is unaware of the presence of a modified SIP

stack in the device, since it only utilises the standard SIP features. Moreover, a native

application can be utilised in MANETs, since the underlying middleware is able to

handle all the SIP messages sent by the application in the proper way.

The working principle of dSIP is that the user agent registers with the co-located

registrar server, according to standard SIP procedures, by sending internally a REGIS-

TER message. The server then registers the SIP user to the network spreading a SIP

REGISTER message. The server modules in the network receive the REGISTER mes-

sage, update their cache entry with the binding, and may reply to the registering node

by sending a “200 OK” confirmation message. The registering node server module

updates its cache with the bindings received from the other nodes. With this proce-

dure, also referred to as general registration, the SIP location service is maintained in

a distributed way among all the nodes. Figure 5.3 illustrates dSIP’s handling of SIP

REGISTER and INVITE messages.

A native SIP application sends a REGISTER message to its predefined registrar

server. The dSIP modules transparently intercepts the message and routes it to the

local server, ensuring interoperability with standard SIP applications.

152 CHAPTER 5. APPLICATION

Inviting a peer to a SIP session is similar: the INVITE message is routed to the

co-located server, which checks in its cache for a binding for the queried user. The IN-

VITE message is forwarded to the correct address if a match is found. dSIP proximity

functionalities extend SIP’s standard services by supporting queries for the list of users

in the network. This allows the user to begin sessions also with previously unknown

users.

5.2 SIPCache

dSIP works well in small networks. The design of dSIP assumes that all the server

module instances know the bindings of all users, what is not scalable. Moreover, dSIP

makes no assumption about the mechanism used for the spreading of the bindings.

dSIP was combined with PADIS to address these issues. The key idea of the result-

ing framework, named SIPCache, is to perform a partial replication of the AORs. The

architecture of SIPCache is depicted in Figure 5.4. SIPCache benefits of the geograph-

ical distribution of the replicas provided by PADIS to keep a copy of the AORs in the

proximity of any node. PADIS uses the original dSIP’s cache as its storage space. To

fully encompass the original dSIP facilities, SIPCache includes a data gathering mod-

ule supporting the proximity functionalities.

5.2.1 Dissemination and Retrieval Using PADIS

In SIPCache, the dissemination and retrieval algorithms described in Chapter 4 are

used to perform respectively the dissemination and query of bindings. The integration

of PADIS with dSIP required some minimal changes. For example, data items were

complemented with an expire field and a version number to allow nodes to purge old

records and keep track of the most up-to-date binding.

Figure 5.5 shows the logical flow of the dissemination in SIPCache. In comparison

with dSIP, it can be observed that the message flow reflects the PADIS data distribution

5.2. SIPCACHE 153

New SIP
Application

Standard SIP
Application

IP

User Agent

Proximity Manager
Application

Cache

Server

Proximity Extensions Proximity Extensions

SIP API
Enhanced

API

PAMPA

PADIS Data Gathering

Figure 5.4: Software architecture for SIPCache

model. Registrations are conceptually delivered to a subset of the participants, with

the remaining contributing only for the message dissemination. Given that bindings

are stored on a subset of the participants, queries must be broadcast. However, the

fine geographical distribution capabilities of PADIS permit that, in the majority of the

cases, a copy of the binding is found in a limited number of hops from any node.

Crucial for the integration of PADIS in SIPCache are functions mapping SIP mes-

sages on the corresponding fields of PADIS. In particular, these functions are able to

map AORs, locations and user interests on the key and value fields of the data items

of PADIS. Figure 5.6 shows how the dissemination functions of PADIS and dSIP have

been integrated. In constrast with dSIP, SIPCache does not use acknowledgement mes-

sages. These are used in dSIP to synchronise the cache of the incoming users what

could affect the scalability of the algorithm in large scale networks, due to the large

number of acknowledgements that would be received. In SIPCache, nodes are not

expected to store every AOR and therefore, acknowledgements are not required. If

the probabilistic shuffling policy presented in Chapter 4 is used, the data items pig-

gybacked on the messages for data shuffling can also be used to populate the empty

154 CHAPTER 5. APPLICATION

INVITE (M2)

Bob’s IP?

IP of Bob

REGISTER (R2)

User’s UA Bob’s UA

REGISTER (R1)

User’s UA

INVITE (M1)

Alice’s UA User’s UA

Figure 5.5: Simplified logical message flow in SIPCache

1: procedure BINDING(SIPMessage)
2: binding← EXTRACTBINDING(SIPMessage)
3: PADIS.REGISTER(binding)
4: end procedure

Figure 5.6: Binding dissemination in SIPCache

storage spaces of the new nodes.

Depending of the type of query performed, SIPCache may use either the data re-

trieval algorithm described in Chapter 4 if the query is aimed to a specific AOR (tar-

geted queries) or the data gathering module, described below, if the goal is to retrieve

a set of AORs matching some criteria. The pseudo-code for query handling is outlined

in Figure 5.7. The figure uses an abstract monitor for representing the suspension of

the thread of execution until a reply is found. In the case of targeted queries, the key is

passed to PADIS’s query method who will search the local cache and trigger one run

of the query algorithm if the reply is not locally available.

5.2.2 Data Gathering Module

One of the facilities provided by dSIP was to allow an user to retrieve a list of the

participants whose AOR satisfied some criteria. For example, users may find interest-

ing to learn about all available printers or to find other users in the ad hoc network

matching a specified profile. A query for all the people interested, e.g., in sports, can

5.2. SIPCACHE 155

1: reply←” “
2: monitor

3: function QUERY(SIPMessage)
4: if GETQRYTYPE(SIPMessage)=TGTQRY then
5: AOR← EXTRACTAOR(SIPMessage)
6: PADIS.QUERY(AOR)
7: else
8: cond← EXTRACTCOND(SIPMessage)
9: DG.GATHER(cond)
10: end if
11: MONITOR.WAIT
12: return reply
13: end function

Figure 5.7: Query handling in SIPCache

be issued, and the application should return to the querying node a list of users and the

necessary contact information. In practice, instead of a key, queries will be performed

specifying a condition that must be satisfied by the key of the data item. Conditional

queries operations are referred to as “data gathering” operations.

Given that in dSIP each node kept a full list of the AORs advertised by other nodes,

data gathering was an operation local to each node. SIPCache performs only partial

replication of the AORs. Therefore, to perform a data gathering operation, a node can

not rely exclusively in the content of its storage space. Instead, it must also query some

other nodes to learn about the AORs it does not store locally.

It should be noted that when data items are distributed by several nodes, the data

gathering problem has some similarities with the problem of data aggregation, exten-

sively investigated in the scope of sensor networks (see for example (He et al., 2004;

Madden et al., 2002; Przydatek et al., 2003; Sharaf et al., 2004; Shrivastava et al., 2004)).

However, data aggregation algorithms typically assumes a different data distribution

model and could not fully exploit the fine geographical distribution capabilities of

PADIS.

Our data gathering module is well suited to the cases where replicas of the data

have been geographically dispersed over the network. The goal is to reduce the cost

156 CHAPTER 5. APPLICATION

of each operation by limiting the search to the nodes located a few hops away from

the source, benefiting of the Pampa message dissemination capabilities. Data gather-

ing operations run in two phases: query dissemination and data delivery. In the first

phase, queries are disseminated within a bounded number of hops using Pampa. In

the data delivery phase, each node replies to the source of the first transmission of the

query it has received. Nodes that receive multiple replies are responsible for removing

redundancy of the data items they collect and to forward the aggregate to the source

of the query. A detailed description of the module is presented below.

5.2.2.1 Detailed Description

In a process similar to the one used by PADIS, each data gathering operation par-

titions the nodes in the network in clusters. The partitioning is triggered by the broad-

cast of a data GATHERING message using Pampa. Nodes selected for retransmitting

the message become cluster heads. A node becomes a member of at most two clusters:

of the one it leads (if any) and of the cluster headed by the node that transmitted the

first copy of the message it has received.

The main characteristic of our clustering approach is that it is stateless and

message-driven, that is, clusters are formed based only on the propagation of received

messages, as dictated by Pampa. There is no need to implement a dedicated member-

ship protocol, or for the cluster heads to keep state information on the nodes belonging

to their cluster. Each cluster head is responsible for preventing the delivery of redun-

dant data items to the source node by locally aggregating replies from the remaining

cluster members. An example of a cluster partitioning of a network is depicted in

Figure 5.8.

The use of Pampa gives a significant contribution to the performance and adapt-

ability of the data gathering module. As emphasised in Chapter 3, in the absence

of abnormal propagation effects, Pampa selects for retransmission the nodes that are

more distant from the previous source. Therefore, and using the same assumptions,

the module selects for cluster heads the nodes that are more distant from the sources

5.2. SIPCACHE 157

S

Cluster Head

H

H

H

H

H

H

Reply

Route

Figure 5.8: Propagation of gathering messages and replies

of the previous transmissions. The advantages of this approach are:

• a geographical extension of the coverage of each retransmission, allowing to re-

duce the diameter (in hops) of the query;

• an increase in the number of nodes on each cluster, allowing to collect more infor-

mation on each cluster head. Because more nodes are reached, the probabilities

of collecting all data items satisfying the condition also increases;

• a simple adaptation to different network conditions, as it was shown in the eval-

uation of Pampa.

As shown in Figure 5.9, a data gathering operation is triggered by the broadcast of

a GATHERING message using Pampa and containing the condition to be satisfied by

the data items. The message accumulates the path to be followed by the replies in a

routeStack field.

Each data gathering operation is performed using a ring search. The radius of the

ring is defined at the source of the query in a field commonly identified as Time-To-

Live (TTL), decremented by each node that forwards the message.

To limit the number of redundant replies, the message is filled up with data items

up to a maximum message size. These data items are selected from those that are

known to satisfy the condition and have been received in a previous transmission of

158 CHAPTER 5. APPLICATION

1: procedure GATHER(cond)
2: mid←CREATEMSGID
3: knownSetmid ←STORAGE.SEARCH(cond) ⊲ Return items in local storage space
4: for (key,val) ∈ knownSetmid do
5: DELIVER(key,val)
6: end for
7: routeStack← {} ⊲ Prepare message
8: PUSH(routeStack,addr)
9: ttl←GETGATHERINGTTL
10: advSet←CREATEADVSET(cond,knownSetmid,knownSetmid)
11: msg←(GATHER,cond,routeStack,advSet)
12: PAMPA.RELAY(mid,msg,ttl)
13: recvdMsgs← recvdMsgs

⋃

{mid}
14: end procedure

Figure 5.9: Bootstrap of the data gathering operation

the data GATHERINGmessage or are stored in the node performing the retransmission.

These items are used to let the receivers learn about some of the items that are already

known by the cluster head and therefore do not need to be sent.

We have defined three different policies for selecting these items, and compare

them in the evaluation section. Figure 5.10 presents one implementation of function

CREATEADVSET for each policy.

The not filled policy (Figure 5.10(a)) is the control policy that will allow us to assert

the benefits of our approach. It disseminates the GATHERING messages without any

data items. We expect operations using this policy to present the highest number of

reply messages although the lowest size of the GATHERING message.

Of the Ordered and Random policies, the later is the one expected to occupy the

available space in a smaller number of hops. In the Ordered policy (Figure 5.10(b)),

each node forwarding the GATHERING message pushes the data items available in its

storage space and that satisfy the query until the message becomes filled. The data

items remain unchanged if a node retransmits a message already filled. Although sim-

pler, an expected side effect of this policy is the redundant advertisement of the same

data items by multiple nodes what may reduce its efficiency. Nodes do not reply with

items present in the message.

5.2. SIPCACHE 159

1: procedure CREATEADVSET(cond,firstSet,recvdSet)
2: return {}
3: end procedure

(a) Not filled

1: procedure CREATEADVSET(cond,firstSet,recvdSet)
2: set← firstSet
3: localSet← STORAGE.SEARCH(cond)
4: while ¬FULL(set) do
5: set← set

⋃

{x : x ∈ localSet ∧ x 6∈ set}
6: end while
7: return set
8: end procedure

(b) Ordered

1: procedure CREATEADVSET(cond,firstSet,recvdSet)
2: set← {}
3: localSet← STORAGE.SEARCH(cond)
4: bigSet← firstSet

⋃

recvdSet
⋃

localSet
5: while ¬FULL(set) do
6: set← set

⋃

{x : x ∈ bigSet ∧ x 6∈ set}
7: end while
8: return set
9: end procedure

(c) Random

Figure 5.10: Policies for filling data gathering messages with known data items

In the Random policy depicted in Figure 5.10(c), nodes snoop the network and col-

lect in a recvdSet set all the data items advertised in every retransmission they listen

of the GATHERING message. The items advertised are randomly selected from this set

and from those locally known by the node. The reply will not include any item that is

present in the recvdSet set. We expect this to be the most efficient redundancy removal

mechanism as it prevents the retransmission of data items known by several cluster

heads.

It should be noted that the selection of a policy does not imply a change in the

number of retransmissions of the GATHERING message, although it should affect the

number of bytes transmitted. The gains are expected to occur in the reduction of the

160 CHAPTER 5. APPLICATION

number of reply messages. We notice that the transmission of a frame implies both a

variable energy cost that depends of the number of bytes transmitted but also a fixed

cost (Feeney & Nilsson, 2001). In the fixed cost, one must account for example with

the collision avoidance protocol (which requires 3 link layer frames in IEEE802.11) as

well as the fixed sized headers of the lower level protocols. Therefore, policies that

require the transmission of more bytes may still provide non negligible energy savings

resulting from the transmission of a smaller number of messages.

Figure 5.11 shows the handling of a GATHERING message by the nodes. The prop-

agation strictly follows Pampa, which decides both the hold period and to forward or

not the message. The message will be replied if at the end of the hold period, Pampa

decides not to retransmit. A special case occurs when the dissemination phase is con-

cluded (signalled by the TTL field), in which the reply is immediately forwarded to the

cluster head.

If a node decides to retransmit, it decrements the TTL field of the message, updates

the data items to be forwarded according to the predefined policy and push its address

in the route stack, electing himself as cluster head. After retransmitting the message,

the node enters a second hold period defined by multiplying the value of the TTL field

by a constant. The value should be enough to permit the dissemination phase to be

concluded so that all replies can be successively collected by the cluster heads and

delivered to it before his timer expires.

Independently of being or not a cluster head, all nodes send a reply message only

when it is not empty. Figure 5.12 shows the pseudo-code of the reply phase of the data

gathering operation.

If a node receives a reply then it is either a cluster head or the source of the gather-

ing operation. Cluster heads collect all data items received in replies. The aggregate of

the replied data items, without duplicates, is forwarded to the previous cluster head.

A message may be delivered to a cluster head after its timer has expired. Nodes

do not keep any state about past operations. Therefore, when a node receives a reply

5.2. SIPCACHE 161

15: upon event PAMPA.RECEIVED(mid,(GATHER,cond,routeStack,advSet),ttl,holdTime)
do

16: ifmid 6∈ recvdMsgs then
17: recvdMsgs← recvdMsgs

⋃

{mid}
18: knownSetmid ← advSet
19: replySetmid ← {}
20: ttlmid ← ttl− 1
21: if ttlmid > 0 then
22: TIMER.SETALARM(holdTime,(FWD,mid))
23: else
24: PAMPA.DROP(mid)
25: SENDREPLY(mid)
26: end if
27: else
28: knownSetmid ← knownSetmid

⋃

advSet
29: end if
30: end upon

31: upon event TIMER.ALARM((FWD,mid)) do
32: if PAMPA.DECIDE(mid) then
33: FWDDG(mid)
34: TIMER.SETALARM(kTime× ttlmid,(RPLY,mid))
35: else
36: PAMPA.DROP(mid)
37: SENDREPLY(mid)
38: end if
39: end upon

Figure 5.11: Data Gathering message dissemination

for an unknown data gathering operation, it uses the route stack field to immediately

forward the message. Note that since the node does not keep any state, it can not re-

move redundant replies from the message. Redundancy could possibly be removed at

the next cluster head (if any) if it is delivered before its timer expires. In the worst case,

it is delivered to the source of the query, who is the ultimate responsible for purging

redundant replies before delivering the data to the application.

162 CHAPTER 5. APPLICATION

40: upon event PAMPA.RECEIVED(mid,(RPLY,replySet,routeStack),ttl,holdTime) do
41: if routeStack={} then ⊲ The node is the destination
42: for (key,val) ∈ replySet ∧ (key,val) 6∈ knownSetmid do
43: DELIVER((key,val))
44: end for
45: knownSetmid ← knownSetmid

⋃

replySet
46: else ⊲ Intermediate hop
47: if TIMER.PENDING(RPLY,mid) then
48: replySetmid ← replySetmid

⋃

replySet
49: else
50: nextAddr←POP(routeStack)
51: ttl←ttl-1
52: msg←(RPLY,replySet,routeStack)
53: PAMPA.SEND(nextAddr,mid,msg,ttl)
54: end if
55: end if
56: end upon

57: upon event TIMER.ALARM((RPLY,mid)) do
58: SENDREPLY(mid)
59: end upon

Figure 5.12: Reply handling

5.3 Evaluation

To evaluate the performance of the data gathering module, we have integrated it

with the prototype of PADIS, implemented in the ns-2 network simulator v 2.28. Ex-

periments were developed to confirm that, given a fine initial distribution of the data,

the module is able to retrieve a significant proportion of the data items requested using

a small number of messages. In addition, we wanted to compare the three policies for

filling GATHERING messages with known items to confirm if our intuition concerning

the performance of each was correct.

5.3.1 Test-bed Description

The simulated environment is similar to the one used in the preceding chapters.

Experiments used a simulated network composed of 100 nodes uniformly disposed

5.3. EVALUATION 163

60: procedure SENDREPLY(mid)
61: reply←STORAGE.SEARCH(condmid)

62: replySetmid ← replySetmid
⋃

{

x : x ∈ reply ∧ x 6∈ knownSetmid

}

63: if replySetmid 6= {} then
64: mid←CREATEMSGID
65: nextAddr← POP(routeStackmid)
66: msg← (RPLY,replySetmid,routeStack)
67: PAMPA.SEND(nextAddr,mid,msg,netDiameter)
68: end if
69: end procedure

70: procedure FWDDG(mid)
71: PUSH(routeStack,addr)
72: advSet← CREATEADVSET(condmid, advSetmid , knownSetmid)
73: msg← (GATHER,condmid, routeStack, advSet)
74: PAMPA.RELAY(mid,msg,ttlmid)
75: end procedure

Figure 5.13: Auxiliary functions

over a region with 1500m × 500m. 100 different random deployments of the nodes

were defined. Nodes do not move during the simulations. The simulated network

is an IEEE 802.11 at 2Mb/s. Network interfaces have a range of 250m using the Free

Space propagation model.

Runs are executed for 2400s of simulated time. Evaluation of data gathering is pre-

ceded by the dissemination of the data items, that takes place between 1s and 1600s.

The tests experimented different loads of the network. The number of items was var-

ied between 100 and 800 at intervals of 100. All nodes perform an equal number of

advertisements. Nodes make available storage space for accepting at most 10 items,

excluding the items they advertise. Each data item has a size of 300 bytes (50 for the

key and 250 for the value). The maximum message size was set to 1300 bytes. Due to

the size estimated for the condition and headers, a GATHERING message can contain

up to 3 data items and a reply up to 4 data items.

Each run consists of 400 random data gathering operations starting after the dis-

tribution of the data items and uniformly distributed at a pace of approximately one

operation every 2s. In the following, each data point averages 100 runs in similar

164 CHAPTER 5. APPLICATION

conditions but with a different combination of node deployment, moment of data ad-

vertising, sources of the gathering operations and items queried. The efficiency of the

data gathering operation is evaluated using two metrics.

Coverage Gives the proportion of data items satisfying each gathering operation that

are effectively delivered to the querying nodes. Only data items present in the

node’s storage space or delivered to it in the first 10 seconds after the query has

been issued are accounted. In the tests presented, each operation tries to collect

10 data items.

Traffic A second metric accounts with the number of gathering query and reply pack-

ets and bytes forwarded by the nodes. It should be noted that each forwarding

of a query or reply is accounted individually. Bytes are counted at the link layer

level, thus including the IEEE 802.11 MAC header.

PADIS was configured with Distance Between Copies (DbC) values between 2 and

4. Results presented in Chapter 4 suggest that if data was adequately distributed and

the saturation point ratio is above 1, in the majority of the cases data items should be

found in one of any node’s neighbours at most
⌈

DbC+1

2

⌉

hops away. This assump-

tion was used to experiment the data gathering module. For each value of DbC, two

initial values were tested for the TTL field of the GATHERING message:
⌈

DbC+1

2

⌉

and
⌈

DbC+1

2

⌉

+ 1. Therefore, for DbC values of 2, 3 and 4, the initial values of the TTL field

have been set respectively as 2 and 3, 2 and 3, 3 and 4.

5.3.2 Coverage

The proportion of items retrieved on each gathering operation is depicted in Fig-

ure 5.14. All the plots exhibit a common pattern. The best performing combination is

the one that extends the search one hop away of the expected distance for the prede-

fined value of DbC. Also, for each DbC and TTL, the “Not Filled” is the policy that

gives an higher coverage, followed by the “Ordered” policy. The differences between

5.3. EVALUATION 165

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600 700 800

C
ov

er
ag

e

Items

TTL=2, Not Filled
TTL=2, Random
TTL=2, Ordered

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

(a) DbC=2

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600 700 800

C
ov

er
ag

e

Items

TTL=2, Not Filled
TTL=2, Random
TTL=2, Ordered

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

(b) DbC=3

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 100 200 300 400 500 600 700 800

C
ov

er
ag

e

Items

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

TTL=4, Not Filled
TTL=4, Random
TTL=4, Ordered

(c) DbC=4

Figure 5.14: Coverage of the data gathering module

policies are more significant for a lower number of items advertised but never exceed

10%, corresponding to one queried item.

The plots confirm the efficiency of PADIS. Within a bounded number of hops, not

far from the expected average distance, nodes are able to find a large majority of the

items that have been advertised.

Chapter 4 referred that the number of nodes that would suffer from an ill dis-

tribution of the items in its neighbourhood and therefore would be likely to fail the

expected maximum distance should increase with the DbC. This explains the lowest

performance when DbC is 3 or 4 (in comparison with DbC=2) for a small numbers of

advertised items. Not surprisingly, the coverage decays more significantly for DbC=2.

This is due to the approximation to the saturation point, which occurs approximately

166 CHAPTER 5. APPLICATION

 6

 8

 10

 12

 14

 16

 18

 100 400 700

T
ra

ns
m

is
si

on
s/

op
er

at
io

n

Items

DbC=2, TTL=2, Not Filled
DbC=2, TTL=2, Random

DbC=3, TTL=2, Not Filled
DbC=3, TTL=2, Random

DbC=2, TTL=3, Not Filled
DbC=2, TTL=3, Random

DbC=3, TTL=3, Not Filled
DbC=3, TTL=3, Random

DbC=4, TTL=3, Not Filled
DbC=4, TTL=3, Random

DbC=4, TTL=4, Not Filled
DbC=4, TTL=4, Random

Figure 5.15: Retransmissions of the gathering message

at 650 items. Even in conditions beyond those that would permit to PADIS to main-

tain its properties, above 70% of the items are found within 2 hops and more than 80%

have one replica located at most 3 hops away. For the remaining values of DbC tested,

results do not decay so rapidly. This is justified by the lowest saturation point ratio

attained for these values of DbC. Notice that specially for DbC=4, there is an almost

constant performance, showing that the storage capacity of the nodes is far from being

exhausted. Because less copies of the items are stored, there is also less redundancy

and therefore the distribution of the items is improved.

5.3.3 Traffic

Figure 5.15 compares the number of retransmissions of each GATHERING message

for some of the scenarios presented above. The figure confirms that the number of re-

transmissions is dictated by the TTL and is independent of the DbC or the policy. A

close observation of the figure shows that different policies exhibit minor differences

on the ratio, which we attribute to negligible effects of the different message sizes on

Pampa. Depending of the value of the TTL, the dissemination of a GATHERING mes-

sage required on average between 6 and 17 transmissions.

While the number of messages is kept constant, Figure 5.16 confirms that their

sizes are affected by the policy used. Recall that in the “Not Filled” policy, the GATH-

5.3. EVALUATION 167

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700 800

B
yt

es
/M

es
sa

ge

Items

TTL=2, Not Filled
TTL=2, Random
TTL=2, Ordered

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

(a) DbC=2

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700 800

B
yt

es
/M

es
sa

ge

Items

TTL=2, Not Filled
TTL=2, Random
TTL=2, Ordered

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

(b) DbC=3

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700 800

B
yt

es
/M

es
sa

ge

Items

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

TTL=4, Not Filled
TTL=4, Random
TTL=4, Ordered

(c) DbC=4

Figure 5.16: Average data gathering message size

ERINGmessage only contains the query. Therefore, as expected, the “Not Filled” policy

presents a constant message size that is independent of the DbC or number of items

advertised.

The “Ordered” and “Random” policies are both affected by the number of items.

As the number of items increases, the probability of the nodes forwarding the mes-

sage to store one of the items satisfying the query decreases. Because in the “Random”

policy nodes can also append to the GATHERING message items listened on different

retransmissions, there is an higher probability of having items to include in the mes-

sage.

The number of reply messages also varies significantly, as depicted in Figure 5.17.

In the “Not Filled” policy, nodes are not aware of the items that are already known

168 CHAPTER 5. APPLICATION

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800

M
es

sa
ge

s/
O

pe
ra

tio
n

Items

TTL=2, Not Filled
TTL=2, Random
TTL=2, Ordered

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

(a) DbC=2

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800

M
es

sa
ge

s/
O

pe
ra

tio
n

Items

TTL=2, Not Filled
TTL=2, Random
TTL=2, Ordered

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

(b) DbC=3

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800

M
es

sa
ge

s/
O

pe
ra

tio
n

Items

TTL=3, Not Filled
TTL=3, Random
TTL=3, Ordered

TTL=4, Not Filled
TTL=4, Random
TTL=4, Ordered

(c) DbC=4

Figure 5.17: Average number of reply messages

by previous cluster heads. Therefore, all nodes storing at least one item satisfying the

query will send a reply to the cluster head. The difference is more visible in situations

where the redundancy is higher, what occurs for low values of DbC and items.

It should be noted that since the number of GATHERING messages is independent

of the policy, these plots represent the effective gains in the number of messages of each

policy. Table 5.1 presents for 100 and 800 items the proportion of the replies transmitted

by the “Not Filled” policy for those used by the “Random” policy. The table shows

that ratios vary significantly, providing more substantial gains when the redundancy

is higher, i.e., when there are less items advertised and when the TTL of the message is

higher.

We emphasise that these results vary according to the tested scenario. The size

5.3. EVALUATION 169

DbC TTL
100 800

Reply Msgs. Total Bytes Reply Msgs. Total Bytes

2
2 91.02% 106.21% 97.74% 112.40%
3 79.07% 98.83% 92.61% 113.16%

3
2 93.71% 109.43% 97.91% 112.37%
3 86.06% 107.43% 94.07% 114.48%

4
3 90.17% 112.31% 95.41% 116.10%
4 85.92% 111.54% 92.68% 117.21%

Table 5.1: Proportion of the reply messages and total bytes per operation transmitted
by the “Not Filled” policy sent by the “Random” policy

of the data items, for example, is one factor affecting the performance of the different

policies as it influences the number of data items that can be carried on each GATH-

ERING message. An increasing number of items on the GATHERING message should

provide additional gains in the number of messages because it would let nodes learn

about more items that do not need to be replied. On the contrary, an increased number

of items satisfying the condition should reduce the relevance of the “Random” policy

because the probability of some node to listen to a GATHERING message carrying the

item(s) it can provide will be smaller.

Figure 5.18 compares the average number of bytes transmitted per operation for

“Not Filled” and “Random Policies”. The figure clearly shows that the “Not Filled”

policy consumes less bytes per operation. It also shows that there is a different distri-

bution of the weight of each message type on the contribution for the total number of

bytes transmitted.

As it was shown before, the “Random” policy uses more bytes on GATHERING

messages. The difference is attenuated by the amount of bytes transmitted in reply

messages, which is significantly higher in the “Not Filled” policy due to its inability to

prevent redundant retransmissions. Table 5.1 supports these conclusions by presenting

side-by-side the ratio of reply messages and total bytes per operation between the “Not

Filled” and the “Random” policies.

The table shows that in the cases where there is more redundancy, which are those

where less items are advertised, the “Random” policy can save up to 20% of the reply

170 CHAPTER 5. APPLICATION

 0

 5000

 10000

 15000

 20000

 25000

 100 200 300 400 500 600 700 800

B
yt

es
/o

pe
ra

tio
n

Items

TTL=2, Not Filled, Replies
Queries

TTL=2, Random, Replies
Queries

TTL=3, Not Filled, Replies
Queries

TTL=3, Random, Replies
Queries

(a) DbC=2

 0

 5000

 10000

 15000

 20000

 25000

 100 200 300 400 500 600 700 800

B
yt

es
/o

pe
ra

tio
n

Items

TTL=2, Not Filled, Replies
Queries

TTL=2, Random, Replies
Queries

TTL=3, Not Filled, Replies
Queries

TTL=3, Random, Replies
Queries

(b) DbC=3

 0

 5000

 10000

 15000

 20000

 25000

 100 200 300 400 500 600 700 800

B
yt

es
/o

pe
ra

tio
n

Items

TTL=3, Not Filled, Replies
Queries

TTL=3, Random, Replies
Queries

TTL=4, Not Filled, Replies
Queries

TTL=4, Random, Replies
Queries

(c) DbC=4

Figure 5.18: Average bytes per operation

5.4. SUMMARY 171

messages. However, the total number of bytes transmitted per data gathering opera-

tion increases up to 17%. As discussed before, the “Random” policy can still present

some gains which can not be accounted in the simulation: a smaller number of mes-

sages decreases contention and reduces control messages, for example those required

by the IEEE 802.11 MAC protocol for point-to-point message passing.

An undesirable side effect of the reduction of the number of reply messages is the

increasing relevance of message losses to the coverage. Because there are less redun-

dant replies, each reply is more likely to contain the unique copy of a data item satisfy-

ing the query that will be delivered to the source. The lowest coverage exhibited by the

“Ordered” and “Random” policies (presented in Figure 5.14) is attributed to message

losses. To support this conclusion, we notice that the difference (which in rare cases

is of approximately 10%, or 1 item per gathering operation) is more significant when

the number of advertised items is smaller, meaning that there is more redundancy.

As redundancy decreases, the coverage results tend to approximate, showing that the

“Not Filled” policy tends to become equally vulnerable to message losses. The ns − 2

simulator was configured to present a reliable media, without message loss due to in-

terference. Message drops continue to occur, for example due to an excessive number

of collisions or the arrival of a second packet to the ARP temporary buffer, addressed

to the same node while the ARP module is still trying to retrieve the MAC address of

the node.

5.4 Summary

This chapter presented an application of the data distribution algorithms named

SIPCache. SIPCache is a distributed location service for the SIP protocol, aimed to

multi-hop ad hoc networks. SIPCache emerges directly from the combination of our

data distribution algorithms with dSIP, an extension to the Session Initiation Protocol

(SIP) forMANETs developed in an independent project, outside the scope of this thesis.

SIPCache confirmed that the algorithms are relevant for realistic environments. In

172 CHAPTER 5. APPLICATION

particular, it was shown that the algorithms can contribute to the adaptation required

by some popular services provided in the wired Internet which rely on centralised

servers.

SIPCache uses a data gathering module to collect an unknown number of data

items satisfying some constraint. The module relies on the geographical distribution

of the replicas and therefore, limits the scope of the search to a few hops away from

the source. Simulations have showed that the module requires a limited number of

messages per operation and presented acceptable completeness even in adverse con-

ditions. It uses Pampa to disseminate the query within a limited number of hops and

to define a cluster structure. Cluster heads are responsible for collecting information

on behalf of the querying node, purging the replies from multiple copies of the same

item.

Evaluation compared different approaches aiming to further reduce the traffic by

preventing nodes from sending replies without a valid contribution. It was shown that

it is possible to reduce the number of replies at expenses of increasing message sizes.

In addition, a tradeoff between most efficient approaches to remove redundancy and

the completeness of the information received was identified.

6
Conclusions and Future

Work

The absence of a supporting infrastructuremakes application development forMo-

bile Ad hoc Networks (MANETs) particularly challenging. During application devel-

opment, the programmer is faced with different problems that can not be solved using

traditional approaches. For example, due to the high unreliability of mobile devices

and wireless networks it is inadequate to centralise data for distributed applications

on a single node. Decentralised solutions that replicate data by different nodes should

be preferred.

Message passing as been identified as one of the most significant sources of power

consumption in mobile devices. The multi-hop nature of MANETs, together with the

limited computational resources and power available to the devices, suggest that repli-

cas should be geographically distributed. Geographical distribution of the replicas re-

duces power consumption because data can be retrieved by any node in the network

using a small number of messages.

The geographical distribution of the replicas in MANETs is not a new subject.

However, in a survey to the related work, we showed that previous algorithms re-

quired additional information like the location of the nodes or an anticipated informa-

tion about the popularity of the items.

This thesis showed that it is possible to perform geographical distribution based

only on the Received Signal Strength Information (RSSI), which can be made available

by the wireless network interface of the devices. The algorithm presented in the thesis,

named PADIS, performs a plain geographical distribution in the sense that it does not

173

174 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

bias the distribution of any item. Therefore, it is adequate for scenarios where it is not

possible to estimate the data items that will be more requested.

Devices participating in MANETs are expected to move. A fine geographical dis-

tribution may become inadequate as a result of the movement of the nodes. The thesis

presented, evaluated and compared different algorithms capable of leveraging the ge-

ographical distribution of the items. These algorithms complement PADIS as all share

the same set of requirements. To preserve the resources of the devices, shuffling is

triggered by information collected during data retrieval operations. The algorithms

experiment different approximations, with and without preservation of the number of

replicas and dedicated messages.

PADIS rely on a novel broadcast algorithm forMANETs named Pampa and equally

presented in the thesis. The goal of Pampa is to reduce the number of nodes required

to retransmit a broadcast message. Pampa is fully distributed and does not require the

use of dedicated control messages. Instead, it ranks nodes according to their distance

to the previous source and selects for retransmission those that are more distant. The

distance is estimated from the Received Signal Strength Indicator (RSSI). Evaluation

results show that this innovative application of the RSSI makes Pampa self-adaptable

to different node densities and improves the delivery ratio when compared with the

related work.

Finally, the thesis presented an illustrative application of these results. PADIS and

Pampa were successfully integrated in a middleware library aiming to decentralise

the Session Initiation Protocol (SIP) architecture so that it can be applied to ad hoc

networks. The resulting framework, named SIPCache contributed to increase the scal-

ability of the original work. SIPCache successfully reduces the resource consumption

of the devices and extends the number of participants that can be simultaneously using

the service.

6.1. FUTURE WORK 175

6.1 Future Work

Our algorithms present a limited set of requirements what makes them applicable

in a broad range of services. In the near future, we plan to continue our research in two

directions: i) to devise and evaluate complementary features for our algorithms; and

ii) to evaluate its applicability in other services, in particular as a complement to other

research trends that have been pursued by the authors.

PADIS guarantees a maximum distance from any node to any data item although

requiring a small number of messages. The algorithm does not put a bound on the

number of replicas or on the minimal distance, in hops, between them. In the future,

we plan to investigate different tradeoffs between the number of transmissions and

the memory resources required by the distribution. For example, we plan to devise

algorithms that, although requiring additional messages, ensure a minimal distance

between the replicas.

The algorithm relies on the Distance between Copies (DbC) constant to define the

maximumdistance between a node and a replica of each data item. The self-adaptation

of the algorithmwould be improved if the DbC did not have to be estimated in advance

by the system developer. Ideally, the algorithm should be able to change, in run-time,

the value of the DbC to attend to variations in the network conditions. Addressing

this issue is a complex task. The definition of an adequate DbC depends of multiple

variables like the network density, the storage space made available by each node and

the number of data items, which can vary with time but also with different regions of

the network.

To conclude our prospective future work concerning the improvement of the algo-

rithms, we plan to develop and evaluate other shuffling algorithms, possibly combin-

ing properties from some of those already described in this thesis. An aspect that we

plan to address is the tradeoff between the size of the data items and the number of

items that can be included in an HERALDmessage. In particular, a challenging scenario

considers the case where only keys are advertised in HERALD message due to the size

176 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of the complete items. In this scenario, the decision to shuffle should carefully weight

the benefits of the operation with the power consumed for transferring the data item.

Routing protocols for MANETs typically use flooding to broadcast route request

messages (Perkins & Royer, 1999; Johnson et al., 2001). Pampa can contribute to attenu-

ate the power consumed on route discovery by reducing the number of nodes required

to retransmit the route request messages. However, Pampa may introduce some bias

to the route discovery algorithm which can also decrease the performance of the rout-

ing protocol and should therefore be carefully weighted. Pampa is expected to increase

unfairness as nodes are selected strictly by their geographical coordinates. In the past,

we experimented to apply biased delays to the propagation of route request messages

of routing protocols. The goal was to improve fairness and load balancing by having

unfairly overused nodes to delay the route request message retransmission (Miranda

& Rodrigues, 2003; Miranda & Rodrigues, 2005; Miranda & Rodrigues, 2006b). As a fu-

ture work, the authors will investigate how Pampa can be adapted to simultaneously

improve fairness and reduce the number of retransmissions in a broadcast.

The problems of privacy and reputation have been widely addressed in the scope

of MANETs. Previously, we proposed an anonymity mechanism for MANETs that

binded the users to a virtual pseudonym, thus creating a permanent link between an

anonymous user and his reputation (Miranda & Rodrigues, 2006a). One of the limita-

tions of our proposal was the lack of a reliable mechanism for storing data and repu-

tation information in the MANET. To address this problem, our framework required

nodes to periodically connect to a trusted reliable server in the wired network. In fu-

ture work, we expect to benefit of PADIS to create a new anonymity framework that

alleviates these constraints.

References

ACHARYA, SWARUP, ALONSO, RAFAEL, FRANKLIN, MICHAEL, & ZDONIK, STANLEY.

1995. Broadcast disks: data management for asymmetric communication envi-

ronments. Pages 199–210 of: Proceedings of the 1995 ACM SIGMOD international

conference on management of data (SIGMOD ’95). New York, NY, USA: ACM Press.

BETTSTETTER, C., RESTA, G., & SANTI, P. 2003. The node distribution of the random

waypoint mobility model for wireless ad hoc networks. IEEE transactions on mobile

computing, 2(3), 257–269.

BRAGINSKY, DAVID, & ESTRIN, DEBORAH. 2002. Rumor routing algorthim for sen-

sor networks. Pages 22–31 of: Proceedings of the 1st ACM international workshop on

wireless sensor networks and applications (WSNA ’02). New York, NY, USA: ACM

Press.

CHANG, NICHOLAS, & LIU, MINGYAN. 2004. Revisiting the ttl-based controlled flood-

ing search: optimality and randomization. Pages 85–99 of: Proceedings of the 10th

annual international conference on mobile computing and networking (MobiCom ’04).

New York, NY, USA: ACM Press.

DATTA, ANWITAMAN, QUARTERONI, SILVIA, & ABERER, KARL. 2004. Autonomous

gossiping: A self-organizing epidemic algorithm for selective information dissem-

ination in mobile ad-hoc networks. In: BOUZEGHOUB, MOKRANE, GOBLE, CA-

ROLE, KASHYAP, VIPUL, et al. (eds), Proceedings of the international conference on

semantics of a networked world (IC-SNW’04). Lecture Notes in Computer Science,

vol. 3226 / 2004. Paris, France: Springer-Verlag Heidelberg.

177

178 REFERENCES

DRABKIN, VADIM, FRIEDMAN, ROY, KLIOT, GABRIEL, & SEGAL, MARC. 2006. RAPID:

Reliable probabilistic dissemination in wireless ad-hoc networks. Tech. rept. CS-2006-19.

Computer Science Department, Technion - Israel Institute of Technology.

FEENEY, LAURA MARIE, & NILSSON, MARTIN. 2001. Investigating the energy con-

sumption of a wireless network interface in an ad hoc networking environment.

Pages 1548–1557 of: Proceedings of the 20th annual joint conference of the IEEE computer

and communications societies (INFOCOM 2001), vol. 3. Anchorage, AK USA: IEEE.

GHOSE, ABHISHEK, GROSSKLAGS, JENS, & CHUANG, JOHN. 2003. Resilient data-

centric storage in wireless sensor networks. IEEE distributed systems online, Nov.

GILBERT, SETH, & LYNCH, NANCY. 2002. Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services. SIGACT news, 33(2), 51–59.

HAAS, ZYGMUNT J. 1997 (Oct. 12–16). A new routing protocol for the reconfigurable

wireless networks. Pages 562–566 of: Proceedings of the IEEE 6th international confer-

ence on universal personal communications, vol. 2.

HAAS, ZYGMUNT J., HALPERN, JOSEPH Y., & LI, LI. 2002. Gossip-based ad hoc rout-

ing. Pages 1707–1716 of: Proceedings of the 21st annual joint conference of the IEEE

computer and communications societies (INFOCOM 2002), vol. 3. IEEE.

HARA, TAKAHIRO. 2001. Effective replica allocation in ad hoc networks for improving

data accessibility. Pages 1568–1576 of: Proceedings of the 20th annual joint conference of

the IEEE computer and communications societies (INFOCOM 2001), vol. 3. Anchorage,

AK: IEEE.

HARA, TAKAHIRO. 2002 (Jan. 8–11). Replica allocation in ad hoc networks with peri-

odic data update. Pages 79–86 of: Proceedings of the 3rd international conference on

mobile data management, (MDM 2002).

HARA, TAKAHIRO, MURAKAMI, NORISHIGE, & NISHIO, SHOJIRO. 2004. Replica allo-

cation for correlated data items in ad hoc sensor networks. SIGMOD Record, 33(1),

38–43.

REFERENCES 179

HE, TIAN, BLUM, BRIAN M., STANKOVIC, JOHN A., & ABDELZAHER, TAREK. 2004.

AIDA: Adaptive application-independent data aggregation in wireless sensor net-

works. Transactions on embedded computing systems, 3(2), 426–457.

HUANG, QING, BAI, YONG, & CHEN, LAN. 2006. Efficient lightweight broadcast-

ing protocols for multi-hop ad hoc networks. In: Proceedings of the 17th annual

IEEE international symposium on personal, indoor and mobile radio communications

(PIMRC’06). Helsinki, Finland: IEEE, for University of Oulu.

IEEE 802.11. 1999. Wireless LAN medium access control (mac) and physical layer (phy)

specifications. ANSI/IEEE Std 802.11, 1999 Edition. IEEE Computer Society LAN

MAN Standards Committee, 3 Park Avenue, New York, NY 10016-5997, USA.

JOHNSON, DAVID B., & MALTZ, DAVID A. 1996. Mobile computing. Kluwer Academic

Publishers. Chap. Dynamic Source Routing in Ad Hoc Wireless Networks, pages

153–181.

JOHNSON, DAVID B., MALTZ, DAVID A., & BROCH, JOSH. 2001. Ad hoc networking.

Addison-Wesley. Chap. DSR: The Dynamic Source Routing Protocol for Multi-

Hop Wireless Ad Hoc Networks, pages 139–172.

KARP, BRAD, & KUNG, H. T. 2000. GPSR: greedy perimeter stateless routing for wire-

less networks. Pages 243–254 of: Proceedings of the 6th annual international conference

on mobile computing and networking (MobiCom ’00). New York, NY, USA: ACM

Press.

KRISHNAMACHARI, BHASKAR, & AHN, JOON. 2006 (Apr. 3–6). Optimizing data repli-

cation for expanding ring-based queries in wireless sensor networks. Pages 1–10 of:

Proceedings of the 4th international symposium on modeling and optimization in mobile,

ad hoc and wireless networks (WiOpt’06).

LEGGIO, SIMONE, MANNER, JUKKA, HULKKONEN, ANTTI, & RAATIKAINEN, KIMMO.

2005 (May 23–26). Session initiation protocol deployment in ad-hoc networks: a

180 REFERENCES

decentralized approach. In: Proceedings of the 2nd international workshop on wire-

less ad-hoc networks (IWWAN). Centre for Telecommunications Research, King’s

College London, London, UK.

LEVIS, PHILIP, PATEL, NEIL, CULLER, DAVID, & SHENKER, SCOTT. 2004. Trickle: A

self-regulating algorithm for code propagation andmaintenance inwireless sensor

networks. In: Proceedings of the 1st USENIX/ACM symposium on networked systems

design and implementation (NSDI 2004).

LI, JINYANG, JANNOTTI, JOHN, COUTO, DOUGLAS S. J. DE, KARGER, DAVID R., &

MORRIS, ROBERT. 2000. A scalable location service for geographic ad hoc rout-

ing. Pages 120–130 of: Proceedings of the 6th annual international conference on mobile

computing and networking (MobiCom ’00). New York, NY, USA: ACM Press.

LIM, SUNHO, LEE, WANG-CHIEN, CAO, GUOHONG, & DAS, CHITA R. 2006. A

novel caching scheme for improving internet-based mobile ad hoc networks per-

formance. Elsevier journal on ad-hoc networks, 4(2), 225–239.

LIU, CHANGLING, & KAISER, JÖRG. 2003 (Oct.). A survey of mobile ad hoc network routing

protocols. Tech. rept. 2003-08. Department of Computer Structures - University of

Ulm, Germany.

MADDEN, SAMUEL, FRANKLIN, MICHAEL J., HELLERSTEIN, JOSEPH M., & HONG,

WEI. 2002. TAG: a Tiny AGgregation service for ad-hoc sensor networks. SIGOPS

operating systems review, 36(SI), 131–146.

MIRANDA, HUGO, & RODRIGUES, LUÍS. 2003. Friends and foes: Preventing selfish-

ness in open mobile ad hoc networks. Pages 440–445 of: Proceedings of the interna-

tional workshop on mobile distributed computing (MDC’03), in conjunction with the 23rd

IEEE international conference on distributed computing systems (ICDCS). Providence,

Rhode Island: IEEE.

MIRANDA, HUGO, & RODRIGUES, LUÍS. 2005 (June 6–10). Using a fairness monitoring

service to improve load-balancing in DSR. Pages 314–320 of: Proceedings of the

REFERENCES 181

1st international workshop on services and infrastructure for the ubiquitous and mobile

internet (SIUMI’05), in conjunction with ICDCS’2005.

MIRANDA, HUGO, & RODRIGUES, LUÍS. 2006a (July 17–21). A framework to provide

anonymity in reputation systems. In: Proceedings of the 3rd annual international

conference on mobile and ubiquitous systems: Networks and services (MOBIQUITOUS

2006).

MIRANDA, HUGO, & RODRIGUES, LUÍS. 2006b (June 29–30). A two-side perspective on

cooperation in mobile ad hoc networks. Pages 109–118 of: JOSÉ, RUI, & BAQUERO,

CARLOS (eds), Proceedings of the conference on mobile and ubiquitous systems. Escola

de Engenharia - Universidade do Minho, Guimarães, Portugal.

PAPADOPOULI, MARIA, & SCHULZRINNE, HENNING. 2001. Effects of power conser-

vation, wireless coverage and cooperation on data dissemination among mobile

devices. Pages 117–127 of: Proceedings of the 2nd ACM international symposium on

mobile ad hoc networking & computing. ACM Press.

PERICH, F., UNDERCOFFER, J., KAGAL, L., JOSHI, A., FININ, T., & YESHA, Y. 2004

(Aug. 22–26). In reputation we believe: query processing in mobile ad-hoc net-

works. Pages 326–334 of: Proceedings of the 1st annual international conference on

mobile and ubiquitous systems: Networking and services (MOBIQUITOUS 2004).

PERKINS, CHARLES E., & ROYER, ELIZABETH M. 1999 (Feb.). Ad-hoc on-demand

distance vector routing. Pages 90–100 of: Proceedings of the 2nd IEEE workshop on

mobile computing systems and applications.

PRZYDATEK, BARTOSZ, SONG, DAWN, & PERRIG, ADRIAN. 2003. SIA: secure infor-

mation aggregation in sensor networks. Pages 255–265 of: Proceedings of the 1st in-

ternational conference on embedded networked sensor systems (SenSys ’03). New York,

NY, USA: ACM Press.

182 REFERENCES

RATNASAMY, S., KARP, B., SHENKER, S., ESTRIN, D., GOVINDAN, R., YIN, L., & YU,

F. 2003. Data-centric storage in sensornets with GHT, a geographic hash table.

Mobile networks and applications, 8(4), 427–442.

RATNASAMY, SYLVIA, KARP, BRAD, YIN, LI, YU, FANG, ESTRIN, DEBORAH, GOVIN-

DAN, RAMESH, & SHENKER, SCOTT. 2002. GHT: a geographic hash table for data-

centric storage. Pages 78–87 of: Proceedings of the 1st ACM international workshop on

wireless sensor networks and applications (WSNA ’02). New York, NY, USA: ACM

Press.

ROSENBERG, J., SCHULZRINNE, H., CAMARILLO, G., JOHNSTON, A., PETERSON, J.,

SPARKS, R., HANDLEY, M., & SCHOOLER, E. 2002 (June). SIP: Session initiation

protocol. Request For Comments 3261. IETF.

SAILHAN, FRANÇOISE, & ISSARNY, VALÉRIE. 2003. Cooperative caching in ad hoc

networks. Pages 13–28 of: Proceedings of the 4th international conference on mobile data

management (MDM ’03). London, UK: Springer-Verlag.

SARKAR, RIK, ZHU, XIANJIN, & GAO, JIE. 2006. Double rulings for information bro-

kerage in sensor networks. Pages 286–297 of: Proceedings of the 12th annual interna-

tional conference on mobile computing and networking (MobiCom ’06). New York, NY,

USA: ACM Press.

SCHULZRINNE, HENNING, & ROSENBERG, JONATHAN. 2000. The session initiation

protocol: Internet-centric signaling. IEEE communications magazine, 38(10), 134–

141.

SHARAF, MOHAMED A., BEAVER, JONATHAN, LABRINIDIS, ALEXANDROS, &

CHRYSANTHIS, PANOS K. 2004. Balancing energy efficiency and quality of ag-

gregate data in sensor networks. The VLDB journal, 13(4), 384–403.

SHRIVASTAVA, NISHEETH, BURAGOHAIN, CHIRANJEEB, AGRAWAL, DIVYAKANT, &

SURI, SUBHASH. 2004. Medians and beyond: new aggregation techniques for sen-

REFERENCES 183

sor networks. Pages 239–249 of: Proceedings of the 2nd international conference on

embedded networked sensor systems (SenSys ’04). New York, NY, USA: ACM Press.

TILAK, SAMEER, MURPHY, AMY, & HEINZELMAN, WENDI. 2003 (Nov. 4–7). Non-

uniform information dissemination for sensor networks. Pages 295–304 of: Pro-

ceedings of the 11th IEEE international conference on network protocols (ICNP’03).

TSENG, YU-CHEE, NI, SZE-YAO, CHEN, YUH-SHYAN, & SHEU, JANG-PING. 2002. The

broadcast storm problem in a mobile ad hoc network. Wireless networks, 8(2/3),

153–167.

WU, WEI, & TAN, KIAN-LEE. 2006 (May 10–12). Global cache management in nonuni-

form mobile broadcast. In: Proceedings of the 7th international conference on mobile

data management (MDM 2006).

YIN, LIANGZHONG, & CAO, GUOHONG. 2006. Supporting cooperative caching in ad

hoc networks. IEEE transactions on mobile computing, 5(1), 77–89.

184 REFERENCES

Index

τ function, 87, 113–115, 125

7DS, 24

Ad-hoc On-demand Distance Vector, 35

Address of Records, 146, 147, 150–153

Advertise State

Shuffling Algorithm, 102, 104, 105,

107, 109, 128, 140

AODV, see Ad-hoc On-Demand Distance

Vector

AOR, see Address of Records

Autonomous Gossipping, 16, 18, 19

biased algorithm

in Non-Uniform Dissemination, 21

bimodal, 39, 40

binding, 146, 149–151

C-DAFN, see Correlation Dynamic Access

Frequency and Neighborhood

C-DCG, see Correlation-Dynamic Connec-

tivity based Grouping

C-SAF, see Correlation Static Access Fre-

quency

CacheData, see Cache the Data

CachePath, see Cache the Data Path

Cache the Data, 28, 31, 35, 109

Cache the Data Path, 30, 31

Correlation Dynamic Access Fre-

quency and Neighbourhood,

23

Correlation Dynamic Connectiv-

ity based Grouping, 23

Correlation Static Access Frequency, 18, 23

counter-based scheme, 43, 44, 50, 51

and Pampa, 61–71

DAFN, see Dynamic Access Frequency

and Neighborhood

Data-Centric Storage, 29, 32, 33

data aggregation, 153

data availability, 12

data dissemination submodule, 11

data gathering, 152–155, 158–162, 169, 170

data management module, 10, 53

data retrieval submodule, 11

DbC, see Distance Between Copies

DCG, see Dynamic Connectivity based

185

186 INDEX

Grouping

DCS, see Data-Centric Storage

Decentralised SIP, 145, 146, 148–153, 169

Default

Shuffling Algorithm, 102, 103, 109, 112

delay function, 58–62, 71

distance-based scheme, 48, 50, 51, 55–57

and Pampa, 61–71

Distance Between Copies, 79, 81, 82, 84–

87, 89–91, 98, 102–105, 113, 114,

116, 117, 119, 120, 123–125, 128–

132, 135–142, 162–166, 173

Distributed Hash Tables, 26

double ruling algorithms, 25

DSDV, see Destination-Sequenced

Distance-Vector Protocol

dSIP, see Decentralised SIP

DSR, see Dynamic Source Routing

Dynamic Access Frequency and Neigh-

bourhood, 21–23, 75, 109

Dynamic Connectivity based Grouping,

21–23, 75, 109

dynamic programming sequence, 15

Dynamic Source Routing, 35

E-DAFN, see Extended Dynamic Access

Frequency and Neighborhood

E-DCG, see Extended Dynamic Connectiv-

ity based Grouping

E-SAF, see Extended Static Access Fre-

quency

Enhanced RAPID, 42, 50, 52

Extended Dynamic Access Fre-

quency and Neighbourhood,

23

Extended Dynamic Connectiv-

ity based Grouping, 23

Extended Static Access Frequency, 18, 23

Filtercast, 20

flooding, 37

Gathering Message, 154–158, 160–162,

164–167

GCM, see Global-Cache-Miss initiated

Cache Management

Geographical Hash Table, 26, 29, 32, 35

Geographical Location Service, 27

GHT, see Geographical Hash Table

Global-Cache-Miss initiated Cache Man-

agement, 12, 13

GLS, see Geographical Location Service

GOSSIP1, 38–41, 43

GOSSIP2, 40–42, 52

GOSSIP3, 43, 44, 51

GPSR, see Greedy Perimeter Stateless

Routing

great circle, 25, 26

greedy forwarding

in GPSR, 29

Greedy Perimeter Stateless Routing, 26,

27, 29

INDEX 187

HCAB, see Hop Count-Aided Broadcast-

ing

Herald Messages, 100, 102–105, 126, 133,

173

Home Node

in Data-Centric Storage, 29, 30

in Resilient Data-Centric Storage, 32

Home Perimeter

in Data-Centric Storage, 29, 30

Hop Count-Aided Broadcasting, 44, 45,

51, 52

and Pampa, 61–71

HybridCache, 31

hybrid networks, 16

Least Recently Used, 12, 14

local storage module, 10, 11, 52

LRU, see Least Recently Used

MCM, see Motion-aware Cache Manage-

ment

Monitor Node

in Resilient Data-Centric Storage, 32

Monte-Carlo simulations, 16, 17

Motion-aware Cache Management, 12, 13

mTFS, 79, 81–85

non-uniform information, 20, 33

Not filled policy, 156, 162, 164–167, 169

omni-directional antennas, 74

Opportunistic Gossipping, 18, 36

Ordered policy, 156, 162

pins, 105, 126, 128

prep, 105, 126

packet dissemination module, 11, 53

PADIS, see Power-Aware data DISsemina-

tion algorithm

Pampa, see Power-Aware Message Propa-

gation Algorithm

in SIPCache, 153–155, 158, 164, 170

in PADIS, 76–79, 81, 82, 89, 90, 94, 109,

115, 116, 118–120, 142

module, 76, 77, 81

perimeter forwarding

in GPSR, 29

PIX score, 13

Power-Aware data DISsemination algo-

rithm, 7, 8, 74–93, 97, 106–121, 134,

141–143, 146, 150–154, 160, 162–

164, 171–174

Power-Aware Message Propagation Algo-

rithm, 57–72, 172, 174

Probabilistic

Shuffling Algorithm, 102, 104, 109,

126–128, 133, 134, 137–139, 143

Proxy Server, 146–148

qTTL, 94, 96, 97, 100

Query Messages, 76, 93, 94, 96, 97, 102,

104, 105, 112, 116, 120

R-DCS, see Resilient Data-Centric Storage

Random policy, 156, 157, 165–167, 169

188 INDEX

random walk, 17

RAPID, 41, 42, 52

Received Signal Strength Indication, 48,

49, 171, 172

in Pampa, 58, 59, 62

refresh algorithm, 29

Refresh Packet

in Data-Centric Storage, 29, 30

registrar server, 146–149

Registration Message, 76, 78, 79, 90, 116

replica location submodule, 11

Replica Node

in Resilient Data-Centric Storage, 32

replica refreshment submodule, 11

Reply Message, 76, 94, 97, 102–104, 112

Resilient Data-Centric Storage, 32, 33

RFiltercast, 20

RSSI, see Received Signal Strength Indica-

tion

Rumour Routing, 16, 33

SAF, see Static Access Frequency

SAPB, see Self-Adaptive Probability

Broadcasting

Saturation Point, 88, 114, 116–119

Saturation Point Ratio, 89, 113–116, 118,

120, 123, 124, 134, 137–139, 141

Self-Adaptive Probability Broadcasting,

48, 49

Session Initiation Protocol, 145–151, 172

similarity

Autonomous Gossipping, 18

Simple Search, 16, 94

SIP, see Session Initiation Protocol

SIPCache, 146, 150–153, 169, 170, 172

SP, see Saturation Point

SPR, see Saturation Point Ratio

SS, see Simple Search

Static Access Frequency, 16–18, 21–23, 75,

109

stereographic projections

in double ruling algorithms, 25

survival of the fittest, 18

Swap on Query

Shuffling Algorithm, 102–104, 107

TDS, see Time and Distance Sensitive

TFS, see Time From Storage

Time-To-Live

in dynamic programming sequence,

15

in Gathering module, 155, 158, 162,

164, 166

in Non-Uniform Dissemination, 21

in PADIS, 94, 97, 105, 120

in Rumor Routing, 17

in Simple Search, 16

Time and Distance Sensitive, 13, 14

Time From Storage, 90

in Heralds, 101, 103–105, 126

in Registrations, 78, 79, 81, 83–85, 90

in Replies, 94, 97, 102

INDEX 189

TTL, see Time-To-Live

Two Ray Ground, 59

unbiased algorithm

in Non-Uniform Dissemination, 20

Zone Routing Protocol, 24

ZRP, see Zone Routing Protocol

