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ABSTRACT

Assuring the security of services in Computational
Clouds (CC) is one of the most critical factors in cloud
computing. However, it can complicate an already com-
plex environment due to the complexity of the system
architecture, the huge number of services, and the re-
quired storage management. In real systems, some se-
curity parameters of CC are manually set, which can be
very time-consuming and requires security expertise.

This paper proposes an intelligent system to sup-
port decisions regarding security and tasks scheduling
in cloud services, which aims at automating these pro-
cesses. This system comprises two different kinds of
Artificial Neural Networks (ANN) and an evolutionary
algorithm, and has as main goal sorting tasks incoming
into CC according to their security demands. Trust
levels of virtual machines (VMs) in the environment
are automatically set to meet the tasks security de-
mands. Tasks are then scheduled on VMs optimizing
the makespan and ensuring that their security require-
ments are fulfilled.

The paper also describes tests assessing the best con-
figurations for the system components, using randomly
generated batches of tasks. Results are presented and
discussed. The proposed system may be used by CC
service providers and CC consumers using Infrastruc-
ture as a Service (IaaS) and Platform as a Service
(PaaS) Cloud Computing models.

I. INTRODUCTION

Validation of security demands (SD) of tasks pro-
cessed in Computational Clouds (CC) is a crucial part
of the CC workload management process [5], [9]. Per-
sonalization of cloud services enables users to change
the features of Virtual Machines (VMs) that provide
the computational power for executing pools of tasks.
Especially the security Trust Levels (TLs) offered by
VMs may be changed and adapted to fit the SD of
tasks. Another important aspect is to ensure the proper
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assignment of tasks to suitable VM offering the proper
TL to fulfill the SD required by tasks.

This paper presents an intelligent system for man-
agement of tasks submitted into the cloud. Fig. [1] dis-
plays a representation of the proposed system, which
considers three computational cloud units:

« the edge of the cloud,
o the cloud computing center, and
« the cloud storage center.

Additional units could be considered, however these
three provide a sufficient level of detail for testing our
system.
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Fig. 1: Model of the proposed system

Tasks are submitted to the cloud in batches, which are
classified into security classes according to their tasks
SDs. According to this classification, batches are then
delivered to be processed at the proper cloud units, thus
allowing to determine the workload required in each
cloud unit and further to decide about the configuration
of the available VMs. These VMs are then customized
to serve the TLs that fit the tasks SDs. Finally, tasks
in each of the considered cloud units are scheduled on
VMs offering proper security levels while minimizing
the total processing time.

The presented system is composed of two Artificial
Neural Networks (ANNs) and an Evolutionary Sched-
uler. One of the ANNs is a classifier /sorter ANN, which
classifies and sorts batches incoming into the cloud;



the other is an Expert ANN that predicts the VMs
configurations. The Evolutionary Scheduler optimizes
the scheduling of tasks relying on an evolutionary algo-
rithm.

The paper is organized as follows. Section[[I presents
the concepts underlying task processing in CC systems
considering security aspects. Section [[I]]is devoted to
describing the proposed intelligent system and its com-
ponents. In Section[[V] we describe in detail the system
testing and discuss its results. The paper ends with Sec-
tion [V] which contains a summary, conclusions based
on the experiments results, and ideas for future work.

II. SECURITY OF TASK PROCESSING IN
CC SYSTEMS

Processing tasks with security requirements in CC
involves many steps [10]. End users start by specifying
security demands for their tasks before uploading them
into the cloud. Then one has to decide in which com-
ponent of the cloud infrastructure should tasks be pro-
cessed. For instance, some tasks may be computed at
the cloud edge, while others have to be processed inside
the cloud. The collected tasks are then scheduled into
available VMs which offer proper security trust levels.
Finally, the results of tasks processing are returned to
the end users or delivered to another service from CC.

Assuring the security of the users data and cloud in-
frastructure is a complex process [18], [9]. In the TaaS
and PaaS models, often the biggest responsibility for
ensuring security in the cloud is on the cloud providers
side [3]. Moreover, as there still exist many vulnerabil-
ities in cloud systems, international organization have
produced standards providing guidance regarding cloud
security [16], [§].

A. Mapping security requirements into VMs

Considering a given cloud unit for which there are n
tasks to be processed, and that there m available VMs
in that CC unit, we define an SD vector describing the
security requirements of these tasks [5]:

SD = [sdy, ...sdy), (1)

where sd; is the security demand value of the jth task
to be processed in the cloud unit. Accordingly, we de-
fine the T'L vector representing the security levels of-
fered by the VMs in that CC unit [5]:

TL = [tly, ..., tl], 2)

where tl; is the trust level offered by the ith VM in the
CC unit. A task can only be scheduled on a particular
VM that offers a TL equal or higher than the SD of
the task. According to the NIST guidelines |2| we pro-
pose four levels of security demand/trust level, that is:
de,tli € {0, 1,2, 3}

To differentiate security requirements as far as cryp-
tography is concerned, we introduce three classes:
e Class 1, containing only small tasks, processed on-
line using strong but fast enough cryptography algo-
rithms. The RSA asymmetric cipher with 1024 bits

key should be used for ciphering and deciphering tasks
[15].

e Class 2, requiring operational cryptography [19].
This class of security demands is designed for most
tasks, which may have varied workload and are pro-
cessed mostly off-line, using advanced cryptography
protocols without security compromises. If it is pos-
sible, these protocols should be designed to be as fast
as possible. The RSA asymmetric cipher with 2048 bits
key should be used for ciphering and deciphering tasks.
o Class 3, corresponding to data at rest cryptography
[4]. This class contains tasks with very heavy work-
load, mainly ciphering data to be stored, and using the
strongest cryptography methods designed for process-
ing data at rest. The RSA asymmetric cipher with 2048
bits keys is used for ciphering and deciphering tasks.
Furthermore, tasks are signed with Elliptic Curve Dig-
ital Signature Algorithm (ECDSA) based on curve de-
fined over 521 bits field [1].

B. Security computational overhead

Each security operation adds a computational over-

head that has to be considered during tasks processing
and comprises two parts as follows.
1. Part of this overhead influences the task schedul-
ing and includes pre and post-processing security op-
erations, such as verification of the task integrity and
ciphering results of task processing. The bias required
to deliver tl; to task j, requiring a security demand of
sdj, is assumed as an estimated time (sec.) denoted by
[11):

b; ; = b(sd;, wl;, tl;, cc;, inputSize;, outputSize;) (3)

where wl; is the workload of task j, inputSize; and
outputSize; are the sizes (in bytes) of the files charac-
terizing the task and storing the corresponding result,
respectively, and cc; is the computational capacity of
VM i, i=1,2,..,m,5 = 1,2...,n. This value can be ap-
proximated by the sum of the number of instructions to
compute the cryptographic requirements and the work-
load.

2. The remaining part of the computational overhead
is associated with complying the security protocols
and performing operations that do not influence the
scheduling process, such as, ciphering data stored in
the data center (before sending the task back to the
end user) and verifying the digital signature of the end
user who wants to recover some results from the Cloud
Computing system.

C. Scheduling tasks into VMs by matching SD
and TL

Tasks scheduling is the process of assigning tasks to
the available VMs assuring that each task is processed
by a VM offering a TL value of at least the required
SD and optimising the utilisation of VMs by minimiz-
ing the makespan. Our system uses the scheduler pre-
viously developed in [10], [11], which has as objective



the minimization of the makespan - the time of conclu-
sion of the last task. As an additional criterion, here we
introduce the condition of compliance with the required
SD.

III. THE INTELLIGENT SYSTEM TO
SUPPORT SECURITY DECISIONS

This section describes the proposed system and its
components: the sorter ANN, the expert ANN, and
the scheduler. The input of the system is a stream of
batches of tasks. Each batch is considered separately.
The system works according to the schema illustrated
in Fig. [1}:

o The first stage conmsists of classifying batches and
sorting them to the appropriate destination in the cloud
system considering their security requirements.

o The second stage concerns setting the VMs parame-
ters according to the tasks workloads and security re-
quirements so that all tasks can be computed with ade-
quate security levels and without spare computing time
or energy losses.

o The last stage is assigning the tasks from each batch
into the created VMs ensuring the proper security level.

The output from the system is a vector describing
the TL of all VMs and the complete schedule.

A. The sorter ANN

The system starts by automatically classifying the
incoming traffic into security classes, which define the
cryptography level required by tasks in a particular
batch, without any additional knowledge about them.

The classified batches are then sorted into pools cor-
responding to their security classes and defining where
the tasks should be processed in the CC infrastructure:
e Class 1: tasks that may be processed in the cloud
edge,

o Class 2: tasks to be executed by fast VMs inside the
cloud, and

e Class 3: tasks that have to be stored in the cloud
longer and then processed inside cloud storage centers
(when enough computational power is available).

To define the training set for the pattern recogni-
tion problem, a set of batches was previously classified.
The numbers of tasks requiring each SD value [ were
counted separately in each batch:

N(t); =card{j:sd; =1},1=0,1,2,3 (4)

where ¢t indexes batches entering the CC system, t =
1,2,...,T and card represents the set cardinality.

The SD statistics for the ¢-th batch are stored in
vector input”°°9(t), which is considered as the input
for the ANN classifier /sorter.

input™*°*9(t) = [N ()] (5)

The security class of each batch ¢ is declared by spec-
ifying its target value

target™*“9(t) = k. (6)

The training and testing sets were created from data
obtained from different batches coming during system
operations:

TSET"™9 = (7)
{(input™©°9(t), target™ (t))t:L?wT}

The original set was split into three parts: the train-
ing TSET, Y, containing information from 70% of all

batches; the validation set TSET, /"7, and testing set
TSET; 5, each containing 15% of randomly chosen
batches (not used for training).

A shallow feed-forward Neural Network was then
trained to classify inputs according to the target classes
defined before. We used a two-layer feed-forward net-
work with sigmoid hidden and softmax output neurons
[12], see Fig.

Additionally, the sorter may help to detect anomalies
in batches, for instance, by allowing the identification
of differences in security demands from past patterns,
therefore supporting detection of hostile tasks or users
abnormal behavior.

B. Expert system for setting Trust Levels

The aim of the expert system is to decide the proper
TL values for the VMs based on the SD levels required
by the tasks. For each cloud unit, an expert ANN was
designed to get knowledge about the computational ca-
pacities cc of all VMs, as represented in Figl]

We examined several strategies of assigning TL val-
ues to VMs, for example, by using arbitrary human
decisions or Stackelberg Game solutions [12]. Then we
trained the ANN to mimic these decisions. To formu-
late the input for this expert system, we analyzed the
individual tasks workload; wl; denotes the workload of
task j. The total workload of tasks requiring the SD
level I in batch t is represented by W (t);

W(t)l = Zj{wlj : de = l},l = 0, ...,3,t = 1,2, ...,T (8)

Vector
mpute“'pe”(t) = [W(t)] 9)

represents the workload for each SD value [ in batch
t, and is given as the input to the ANN expert system.

Target values were defined to indicate the trust levels
tl for all the virtual machines in the system, in ascend-
ing computer capacity order.

Vector

target®Pert(t) = [ty tly, ..., tly,] (10)

represents the decisions of an expert for a particular
batch t. This vector assigns the trust level tl; to the
i-th VM according to it’s computing capacity cc; and
the amount of work that has to be done using trust
level tl;, i =1,...,m.

The training, validation and testing sets were also
formulated considering data obtained from different



batches entering the system, through the definition of
the set

TSET*»ert = (11)

{(Z-nputea:pert (t), ta,,,getezpert (t))t:1’2""T}
which was split into training set TSET/ 7" vali-
dation set TSETS™™ and TSETSH, analogously
to the process described in Section [[TI-A] for the sorter
ANN.

A backpropagation feed-forward NN was then
trained with the defined inputs and used for targets
prediction. We used a two-layer ANN, with sigmoid
hidden and linear output neurons [7], as represented in
Figf]

The quality of prediction was assessed through the
coefficient of determination R?:

Sy (v — 9:)?

R2 =1- n — )
21:1(% - yi)2

. where:

e y is the given set of data,

o ¢ represents the calculated values of y, and
e § represents mean value of y.

A properly trained expert system may be an auto-
matic alternative for human security decisions made by
CC administrators. Once the ANN is trained, it can
also deal with unknown situations, without requiring
additional customization.

C. FEvolutionary scheduler

Our system uses the Independent Batch Sched-
uler [13] as the main method of mapping tasks into
VMs. The Security Biased Expected Time to Compute
(SBETC) matrix with security biases is computed us-

ing Eq. (13):
SBETC = (13)
[ETCj][i] + SB(SD, TL) (i, j)|;=y "
where
ETCj][i] = wl;/ce; (14)

in which cc¢; is the computational capacity of the i-th
VM in Giga Flops per Second (GFLOPS) and wl; is the
workload of j-th task in Flops (FLO); n and m are the
number of tasks and the number of VMs, respectively.

The Security Bias Matrix (SB) is obtained by aggre-
gation of security biases in a matrix form:

SB(SD,TL)(i,j) = (15)
[b(sdj, wl;, tl;, cc;, inputSize;, outputSizej)]z;l7’22___7

The full description of this model can be found in
[11]. The main scheduling objective is the minimization
of the makespan, which can be defined as follows:

Crax = min { max C’J} (16)
SeSchedules \ jeTasks

where C} is the conclusion time of the j-th task, Tasks
is the set of tasks in the batch, and Schedules is the set

of all possible schedules which can be generated for the
tasks from that batch. The scheduler is based on the
evolutionary algorithm solution proposed in [10] and
[11], using only a particular subset of its features.

IV. NUMERICAL EVALUATION OF THE
SYSTEM PERFORMANCE

Cloud Sim test bed (www.cloudbus.org) was used
as a testing tool. All security algorithms were im-
plemented in Java. Processing of different dimensions
pictures was considered as a tasks set. The exam-
ined workload was based on proposed day and night
pattern (to represent the load of a CC system). All
designed ANN were implemented in MATLAB 2017
(www.mathworks.com). We examined different ANN
sizes together with different learning algorithms, to as-
sess the quality of the solutions.

A. Trust Levels

The following trust levels of VMs were considered:

o Trust Level 0 (t1=0) - bare tasks are processed with-
out any cryptographic computational overhead (no se-
curity required).

o Trust Level 1 (t1=1) - corresponds to the TL required
by tasks of Class 1 as defined in Section [[TI}

o Trust Level 2 (t1=2) - corresponds to the TL required
by tasks of Class 2 as defined in Section [[TI}

o Trust Level 3 (t1=3) - corresponds to the TL required
by tasks of Class 3 as defined in Section [[II}

B. Tasks and their security demands

The security demand of each task was defined ac-
cording to the trust level values defined in Section [[TI}
Tab. [I| presents the sizes of ten pictures that were used
for the tests. For each picture, the size is presented
in pixels and with a qualitative classification (Small,
Medium and Big).

TABLE 1: Pixel size of blurred JPG pictures

Picture Number [PN] | Picture size [pixels] Size
PN1 200x200 Small
PN2 400x400 Small
PN3 600x600 Medium
PN4 800x800 Medium
PNb5 1000x1000 Medium
PN6 1200x1200 Medium
PN7 1400x1400 Medium
PN8 1600x1600 Medium
PN9 1800x1800 Medium
PN10 2000x2000 Big

As bare task we considered a Gaussian Blur opera-
tion with 5x5 mask made on each of these pictures. A
task resulted from combining a picture size [PN1-PN10]
with an SD value. Tab. [2] presents the characteristics
of these tasks. For each task, column (1) is the task ID,
columns (2) and (4) present the pair (PN, sd), column
(3) is the workload in terms of the number of instruc-
tions (without security), column (5) is the number of




instructions required to process the SD (bias), and col-
umn (6) is the total number of instructions to process

the task (size).

TABLE 2: All possible tasks and their characteristics
in terms of workload without bias, SD value, bias work-

load and workload with bias

task PN Instr. bare sd Instr. bias Instr. TOTAL wl
ID task wl b wl + b

[€D) (2) (3) 4 | (5) (6)

1 0 0 180281484

2 PN1 180281484 1 58248804234 58429085718

3 2 189148318241 189328599725

4 3 193351681261 193531962745

5 ) 0 366694660

6 PN2 366694660 1 233237558475 233604253135

7 2 762857236471 763223931131

8 3 767753680777 768120375437

9 0 0 582192590

10 PN3 582192590 1 549063149835 549645342425
11 2 1723705647330 1724287839920
12 3 1729619478414 1730201671004
13 0 0 935976091

14 PN4 935976091 1 984022696944 984958673035
15 2 3071839716809 3072775692900
16 3 3079432624626 3080368600717
17 0 0 1381754383

18 PN5 1381754383 1 1467324300905 1468706055288
19 2 4807412731944 4808794486327
20 3 4817016916348 4818398670731
21 0 0 1907429016

22 PN6 1907429016 1 2218939482253 2220846911269
23 2 6930461839807 6932369268823
24 3 6942582060238 6944489489254
25 0 0 2541112486

26 PN7 2541112486 1 2877893318993 2880434431479
27 2 9441396183684 9443937296170
28 3 9456608456473 9459149568959
29 0 0 2943581287

30 PN8 2943581287 1 3761249543741 3764193125028
31 2 12339533813479 12342477394766
32 3 12357819370145 12360762951432
33 0 0 3672489994

34 PN9 3672489994 1 4821170159062 4824842649056
35 2 15973646688412 15977319178406
36 3 15995539895451 15999212385445
37 0 0 5027151620

38 PN10 5027151620 1 5668347564768 5673374716388
39 2 19726744097608 19731771249228
40 3 19752079020993 19757106172613

C. Classifier/sorter ANN tests

The batches were classified as follows:

o Batch Type from Class 1 [BT1] - containing only
small tasks which demand on-line and fast cryptogra-
phy, which can be calculated e.g. on the edge of the
cloud.

o Batch Type from Class 2 [BT2] - containing mixed
big, medium and small tasks. Each task has to be con-
sidered separately.

e Batch Type from Class 3 [BT3] - comprising only
big tasks that have to be sent to the cloud and stored
until there is enough computational capacity available
for the cryptographic bias.

The classifier /sorter ANN was designed to classify each
batch into the proper type (BT1, BT2 or BT3). The
batches workload in all three classes was generated ac-
cording to following the day-night pattern function:

_J 25sin(§5 +75)
fla) = { 75sin(ZZ 4 75)

The classifier/sorter ANN uses the Scaled Conjugate
Gradient (SCG) backpropagation learning method,
which is appropriate for classification [6]. Neural Net-
works were tested with different numbers of neurons:
5, 10, 15, 20, 25, 30, 50, 100. Our focus is on assess-
ing the True Positive Rate (TPR) for BT3 because this
is the most critical classification. In our system, the
worst situation occurs when a BT3 batch is classified
as BT2 or BT1, meaning that a batch requiring high
computational power could be delivered to a VM not
offering enough computational power.

when sin(5) > 0

when sin(5) < 0 (17)

For each NN configuration, we made 10 measurements
and computed the TPR of BT3 mean and standard
deviation values. The corresponding results are shown
in Tab. B

TABLE 3: Classifier/sorter ANN: TPR of BT3 average,
standard deviation for each tested number of neurons
in the hidden layer

Avr % &£ St. dev.% | No. neurons
86.8 % + 4.7% 5

85,8% £ 9.0% 10

86,9% £ 6,5% 15

90,0% + 4,2% 20

86,5% £ 8.9% %

88,7 % + 6.1% 30

86,9 % + 9,0% 50

86,4 % + 8,0% 100

SSET i

Fig. 2: Sorter ANN, a two-layer network with 20 sig-
moid hidden neurons and 3 softmax output neurons.

The highest TPR for BT3 appeared when the SCG
algorithm was applied for the ANN with 20 neurons
(90,9% + 4,2%). So this ANN was chosen as the most
accurate one (Fig. [2).

The NNs results were also validated using confusion
matrices for the training and testing process. Fig.
displays an example of the confusion matrix for the
sorter ANN with 20 neurons. Green cells show the
numbers of correct classifications (for each class sep-
arately) and the corresponding percentage of all data.
Red cells represent these figures for incorrect predic-
tions (for each class separately). Gray cells in the last
column indicate the percentage of correct predictions
for each class, while gray cells in the last row present
the percentage of correctly classified cases. The blue
cell shows the percentage of overall correct and incor-
rect predictions. For validation, the gray cell in the red
frame was used, as it indicates the percentage of prop-
erly classified class 3 tasks. In this example the TPR
for BT3 is 93.8%.

D. Expert ANN tests

The expert ANN has to allocate proper security levels
to virtual machines (a machine with a given security
level can compute only tasks with the same or lower
security level). This network was created and tested
with three learning methods appropriate for prediction
16]:

o SCG backpropagation algorithm,

o Bayesian Regularization (BR), and

o Levenberg-Marquardt (LM).



Test Confusion Matrix
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Fig. 3: Confusion Matrix for the Sorter ANN with 20
Neurons

For each of these methods, an ANN with different hid-
den layer size (5, 10, 15, 20, 25, 30, 50, 100) was ran
ten times. To evaluate the Expert ANN performance
we used the coefficient of determination (Eq. (12)).

is based on a real cloud characteristics from public
(cloud storage center) and private, academic (cloud
edge and cloud computing center) infrastructure. Tab.
5) presents the characteristics of the simulated environ-
ment: the VMs simulated in each CC unit, their types,
their computational capacity (in GFLOPS) and their
range of TLs.

Batches of tasks were generated and classified by the
Classifier /sorter ANN and allocated to one of the sim-
ulated environment parts. For each of these compo-
nents, the Expert ANN was determining the proper
TLs for the corresponding VMs. Finally, the evolution-
ary scheduler was assigning tasks into particular VMs
of each of the three parts of the tested system.

TABLE 5: Characteristics of the simulated Cloud, see
Fig.1, and of the VMs used for simulation

We computed it on the testing set (15% of all data) to Cloud Edge cc tl€ 0,1,2,3
determine which configuration of the method and the VM number, type [GFLOPS] min:max
number of neurons present the highest R? value. Tab. 1, m1.tiny 0.293799 0
displays the average and standard deviation R? values 2, ml.tiny 0.293799 0
in the ten runs of each configuration. 3, ml.tiny 0.293799 0
4, ml.tiny 0.293799 0
) Cloud Computing Center cc tle 0,1,2,3
TABLE 4: Exper2t ANN: Ayerage and standard devi- VM number, type [GFLOPS] o p——
ation values of R* for learning methods LM, BR and : ;
SCC with diff b ; 5, m1.tiny 0.293799 0:1
with different number of neurons 6, m1.small 1.997791 0:2
i BR ele Newrons 7, m1l.medium 1.856781 0:2
Avr % + St. dev. | Avr % =+ St. dev. | Avr % =+ St. dev. | No. of neurons 8, ml.large 3.444585 0:3
95% + 2% 96,3% * 2% 91,8% + 2% 5
S L 5% 8750 £ 10% o i Cloud Storage Center cc tlE.O, 1,2,3
92% + 3% 87,6% + 14% 87,9% + 4% 15 VM number, type [GFLOPS] min:max
91% + 3% 91,7% + 3% 87,5% + 5% 20 9. m3.medium 97.6 0:1
90% =+ 2% 88,1% + 8% 88.1% + 5% 25 ! !
89% £ 4% 7% + 3% 88.2% + 3% 30 10, m3.large 396,8 0:2
88% + 5% 85,2% £ 5% 87,6% + 4% 50 11, m3.xlarge 787,2 0:2
81% + 3% 85,1% + 5% 73,9% + 7% 100 12, m3.2xlarge 1523,2 0:3

The best value of the coefficient of determination was
obtained for the BR algorithm and an the ANN with 5
neurons (96,3% =+ 2%). This ANN was chosen as the
final solution, as illustrated by Fig. [4

Hidden Layer Output Layer

5 4

Fig. 4: Expert ANN, a two-layer network with 5 sig-
moid hidden neurons and 4 linear output neurons.

E. Evolutionary scheduler tests

The aim of these tests was to examine how much time
we may gain by scheduling tasks for generated VMs
instead of submit them randomly.

For this purpose we have simulated a multi-cloud en-
vironment consisting of three types of cloud architec-
tures, namely: cloud edge, cloud computing center and
cloud storage center (see: Fig. [1)). This environment

Tab. [6] presents the value of gain as far as makespan Eq.
is concerned. The presented results were obtained
for 20 runs of the implemented evolutionary algorithm
after 300 epochs.The results reveal that the maximum
gain achieved by the application of the evolutionary
scheduler was reached for the cloud storage center, be-
ing greater than twice the gain for the cloud edge.

TABLE 6: Results of applying the evolutionary sched-
uler: mean values of makespan gain in percentage for
the Random task sender (Rand) and the Evolutionary
scheduler (Evol)

CC part Gain | Gain
Rand | Evol
Edge 0% | 15%

Computing Center | 0% | 35%
Storage Center 0% | 42%




V. SUMMARY

In this paper we presented an intelligent system for
supporting security services in Computational Clouds
(CC), which can improve the quality of security cloud
services. The system is composed of two different kinds
of Artificial Neural Networks (ANN) and an evolution-
ary algorithm. The first stage of system operation con-
cerns sorting incoming batches of tasks according to
their security demands. This allows one to divide the
traffic into streams that can be processed by different
parts of the CC environment. Our system uses the clas-
sifier /sorter ANN to perform this stage. The second
stage, which is performed by the expert ANN, consists
of fitting the security services offered by the VMs into
the security demands of tasks in each of the CC compo-
nents. Finally, the scheduler, based on the evolution-
ary algorithm, maps tasks into VMs, minimizing the
makespan of tasks processed in the corresponding CC
component. This scheduler considers the tasks char-
acteristics in terms of size and security requirements,
as well as the particular VM security services. Addi-
tional possible feature of our system is the possibility
of detection of deviations in traffic incoming into CC.
Therefore, in the future, it can be used to support the
detection of security threats, like tasks injection or ma-
licious workload.

The experimental results presented in this paper
demonstrate and confirm the effectiveness of the sys-
tem. The system is designed for CC service providers
and CC consumers using Infrastructure as a Service or
Platform as a Service Cloud Computing models.

In the future, we would like to introduce genetic algo-
rithms for supporting the automatic detection of secu-
rity threats.
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