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Introduction

Longitudinal binary data are routinely collected in medical studies in which repeated observations
of response variable are taken over time on each individual in one or more groups of treatments. A
common problem in these studies is the presence of missing data since it is difficult to have complete
records of all subjects for a variety of reasons. The generalized linear mixed-effects model (GLMM)
approach is widely used to analyse longitudinal binary data. However in GLMM it is assumed that
the observations of the same subject are independent conditional to the random effects and covariates
which may be not true. In the R package bild [2] the methodology implemented overcomes this
problem using a generalized linear mixed effects model with binary Markov chain (GLM3C) as the
basic stochastic mechanism to accommodate serial dependence and odds-ratio to measure dependence
between successive observations. In GLM3C as well as in GLMM approaches missing values on the
response are allowed provided they are MAR. A simulation study was performed to give a statistical
assessment of GLM3C when compared with the GLMM approach.

Model

Let yit the binary response value at time t (t = 1, . . . , Ti) from subject i (i = 1, . . . , n), and Yit its
generating random variable whose mean value is Pr(Yit = 1) = θit. The equation of the GLMM for
binary responses with random intercept assumes the form

logit[E(Yit|bi)] = logit(θbit) = x>itβ + bi, (i = 1, . . . , n)

where xit is a set of p covariates associate to each observation and each subject, β is the p× 1 vector
of unknown parameters and bi ∼ N(0, σ2) are assumed to be sampled independently from each other.
The serial dependence between successive observations of the he same subject is of Markovian type.

• First order dependence structure (MC1)

ψ1 = OR(Yt, Yt−1) =
Pr (Yt−1 = Yt = 1) Pr (Yt−1 = Yt = 0)

Pr (Yt−1 = 0, Yt = 1) Pr (Yt−1 = 1, Yt = 0)
=
p1/(1− p1)
p0/(1− p0)

where pj = Pr(Yt = 1|Yt−1 = j), j = 0, 1 are the transition probabilities.

• Second order dependence structure (MC2)

OR(Yt−1, Yt−2) = ψ1 = OR(Yt−1, Yt)
OR(Yt−2, Yt|Yt−1 = 0) = ψ2 = OR(Yt−2, Yt|Yt−1 = 1)

with transition probabilities given by

phj = Pr(Yt = 1|Yt−2 = h, Yt−1 = j), h, j = 0, 1.

Serial dependence is regulated by λ = (λ1, λ2) = (logψ1, logψ2) for MC2 models and by λ1 (λ2 = 0)
for MC1 models. Missing values are allowed on the response, provided they are MAR with some
restrictions:

• If MC1 dependence model is considered and if there is a missing value at time point t − 1, it is
required that there are observations at time points t− 2 and t.

• If MC2 dependence model is considered and if there is a missing value at time point t − 2, it is
required that there are observations at time points t− 4, t− 3, t− 1 and t.

Simulation

A simulation study was carried out to GLM3C and GLMM approaches.

Pr(Yit = 1|t) = exp(β0 + bi + β1t + β2xi + β3(xi × t))
1 + exp(β0 + bi + β1t + β2xi + β3(xi × t))

where xi = 0 for half the population and 1 for the remainder, β0 = −1, β1 = 0.5, β2 = 1, β3 = 1 and
bi ∼ N(0, σ2), with σ2 = 0.5.

Several designs were considered:

• Length of the profile T = 13. Number of subjects n = 20 (small) or n = 50 (large).
1. MC1 serial dependence, λ1 = 1, 2.
2. MC2 serial dependence (λ1, λ2) = (1, 1), (2, 2).

Let Ri = 1 be a T × 1 vector of indicator variables for the ith subject, where Rit = 1 if Yit is ob-
served, and Rit = 0 if Yit is missing. An intermittent missing-data mechanism MAR was generated
assuming that the binary response on the first occasion is always observed, Ri1 = 1 and for t > 1, Rit
is generated with probability of success given by (1−φ)1−yit−1, where φ is the nonresponse parameter
dependence with φ = 0, 0.25, 0.5 (φ = 0, complete data).

The whole estimation procedure was repeated for 1000 runs and several characteristics were com-
puted such as CI (coverage probabilities of nominal 95% confidence intervals) and RE (relative effi-
ciency of the estimators). RE> 1 means GLM3C estimator is preferred.

The bild function in the R package bild [2] was used when GLM3C approach was considered.
The glmer function in the R package lme4 [1] was used when the GLMM approach was considered.

The results of our simulation are summarized to MC1 on Figures 1 and 3 when λ1 = 1 and to MC2
on Figures 2 and 3 when (λ1, λ2) = (2, 2) for the time effect (β1) and group-time interaction effect
(β3), the most interest effects in a longitudinal study.
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Figure 1: Coverage probabilities of nominal 95% confidence intervals (CI coverage) for β1 (β̂1) and β3 (β̂3) when λ1 = 1.
Coding for estimation procedures: MC1 (GLM3C) and Ind (GLMM).
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Figure 2: Coverage probabilities of nominal 95% confidence intervals (CI coverage) for β1 (β̂1) and β3 (β̂3) when
(λ1, λ2) = (2, 2) . Coding for estimation procedures: MC2 (GLM3C) and Ind (GLMM).
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Figure 3: Relative efficiency of β̂1 and β̂3. Serial dependence MC1 regulated by λ1 = 1. Serial dependence MC2
regulated by (λ1, λ2) = (2, 2).

Conclusion
For both MC1 and MC2 serial dependences the impact of intermittent missingness status on the esti-
mation of β1 and β3 is greater to GLMM than to GLM3C approach. To all the situations considered
the GLM3C approach seems to be preferable to the GLMM since that gives coverage probabilities
closer to nominal and more efficient estimators.
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