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Abstract. Nonlinear quadratic dynamical dependencies of large-scale climate modes are disentangled through
the analysis of the rate of information transfer. Eight dominant climate modes are investigated, covering the
tropics and extratropics over the North Pacific and Atlantic. A clear signature of nonlinear influences at low
frequencies (timescales larger than 1 year) is emerging, while high frequencies are only affected by linear de-
pendencies. These results point to the complex nonlinear collective behaviour at the global scale of the climate
system at low frequencies, supporting earlier views that regional climate modes are local expressions of global
intricate low-frequency-variability (LFV) dynamics, which are still to be fully uncovered.

1 Introduction

During the last decades, considerable efforts have been de-
voted to the analysis of the low-frequency variability (LFV)
in the climate system, in order to understand its origin and
its implications for long-term prediction. This low-frequency
variability covers a large range of timescales and processes.
A first example at relatively short timescales is the suc-
cession of blocked and zonal flows, which typically cov-
ers timescales from weeks to months (e.g. Hannachi et al.,
2017). Another is the low-frequency variability present in
the oceans, which impact or interact with the atmosphere,
which covers timescales from months to millennia (e.g. Di-
jkstra and Ghil, 2005). One of the most well known ocean–
atmosphere interactions is the so-called El Niño–Southern
Oscillation (ENSO), which occurs in the tropical Pacific with
typical timescales of a few years and has considerable im-
pact all over the globe (e.g. Alexander et al., 2002; Newman
et al., 2003; Timmermann et al., 2018; Di Lorenzo et al.,
2023; Stuecker, 2023). Beside this main mode of ocean–
atmosphere co-variability, other low frequencies are present,

covering a wide range of timescales, such as the Madden–
Julian Oscillation (e.g. Wu et al., 2023), the North Atlantic
Oscillation (NAO) (Barnston and Livezey, 1987) and its
quasi-decadal modulation (Da Costa and De Verdiere, 2002),
the Quasi-Biennial Oscillation (QBO) (e.g. Baldwin et al.,
2001), the Pacific Decadal Oscillation (PDO; Mantua et al.,
1997), and the Atlantic Multidecadal Oscillation (AMO; En-
field et al., 2001). These low-frequency variabilities are usu-
ally characterized through the use of some large-scale in-
dices, which summarize the overall dynamics in specific re-
gions of the globe.

In this context, one central question is the link between
these different processes: are there drivers that dominate the
overall climate dynamics, like suggested by the strong tele-
connections of ENSO with the rest of the world, or is there
a more intricate set of links and feedbacks that makes the
dynamics more complex? Such a question is generally ad-
dressed using a process-based causal thinking which is linear
by essence: assume that an observable A is modified, then
B is affected, which in turn could affect C, and possibly C
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could affect A, inducing a feedback loop. Although this way
of thinking is very useful in understanding the dynamics of
a system, it is not the whole story. One can, for instance,
imagine that the forcing is nonlinear or that joined (syner-
getic) effects of several processes could affect a third one,
say through a nonlinear product A times B affecting C, which
may not be isolated with the approach before. This diffi-
culty has already been realized in climate science, as revealed
by different analyses that have been performed in the past
decades. A recent example is the analysis of the combined
impact of the Southern Annular Mode (SAM) and ENSO on
the sea ice in Antarctica (Wang et al., 2023). Another exam-
ple is the dynamics of compound events which need to be
activated in order to generate an extreme event (e.g. Zscheis-
chler et al., 2018; Nguyen-Huy et al., 2018). Such types of in-
fluences are also revealed by the presence of single and cross-
statistical moments of third and fourth order, for instance,
between oceanic low-frequency modes (Pires and Hannachi,
2017). These findings suggest that more complicate interac-
tions between climate modes should occur, as discussed in
Wang et al. (2009), Tsonis and Swanson (2012), Wyatt et al.
(2012), and Jajcay et al. (2018), in which synchronization
between different climate modes was investigated. The con-
nection between the different indices (or mode of variability)
is also emphasized in de Viron et al. (2013), who showed
that these modes share a common variability and a strong
link with ENSO. Tackling this general problem of links be-
tween the different modes of variability necessitates both a
clear picture of the (linear and nonlinear) causality involved
between these modes and a clarification of the mechanisms
that could be at play in such interactions.

In the current work, we focus on the first aspect by inves-
tigating the nonlinear and synergetic dependencies across a
set of climate modes. A limited number of key modes is used
here in order to have a tractable number of causal links to
analyse and at the same time to be comparable to previous
works. Eight different indices are used, as in Docquier et al.
(2024a), namely the NAO, the Arctic Oscillation (AO) in-
dex, the Pacific–North American (PNA) index, the AMO, the
PDO, the Tropical North Atlantic (TNA) index, the Niño3.4
index, and the QBO index. This is a similar set to that in Van-
nitsem and Liang (2022) without local Belgian temperature,
precipitation, and insolation indices but adding the QBO.
This set also corresponds to a subset of modes of Silini et al.
(2022). The focus is therefore on the Atlantic, Pacific, and
tropical basins of the Northern Hemisphere.

The causality analysis becomes a popular approach in cli-
mate science to evaluate the links between modes of variabil-
ity. A first very interesting example is the use of the Granger
causality (GC) to evaluate the influence of the sea surface
temperature (SST) on the NAO (Mosedale et al., 2006). Af-
ter this, the GC approach was used on many occasions, for
instance, to evaluate the interaction between the ocean and
the atmosphere (Bach et al., 2019). Another recent example
is provided in Zhao et al. (2024), in which two versions of the

GC approach are used to understand the interaction between
the vegetation and the atmosphere. Several other techniques
based on networks or analogues have also been tested with
a lot of success; see e.g. van Nes et al. (2015), Kretschmer
et al. (2016), Vannitsem and Ghil (2017), Runge (2018), Van-
nitsem and Ekelmans (2018), Runge et al. (2019), Di Capua
et al. (2020a), Di Capua et al. (2020b), Huang et al. (2020a),
and Huang et al. (2020b). Comparisons of different methods
of causality analysis are provided in Krakovská et al. (2018)
and in Docquier et al. (2024a), and an interesting framework,
in which several measures are based on the dynamics of the
information entropy, is provided in Smirnov (2022). In the
current work, we use the Liang–Kleeman information flow
technique (e.g. Liang, 2014a, 2016), which has been used fre-
quently in recent years (Hagan et al., 2019; Vannitsem et al.,
2019; Hagan et al., 2022; Docquier et al., 2022; Vannitsem
and Liang, 2022; Docquier et al., 2023). There is, however,
a crucial difference in the use of nonlinear observables (or
predictors) following the work of Vannitsem et al. (2024),
who showed in the context of a reduced-order nonlinear at-
mospheric system that the method is able to extract the in-
fluences originating from nonlinearities. As there are many
possible types of nonlinear dependencies, we limit ourselves
to using quadratic terms. The justification of this choice lies
in the fact that many nonlinearities in fluid dynamics come
from advective quadratic terms.

Section 2 describes the modes of low-frequency variabil-
ity that are used in the current study. In Sect. 3, the tools
used to isolate the low-frequency variability in both the at-
mospheric and oceanic indices and to analyse the dynamical
dependencies are briefly described. The dynamical depen-
dencies (or causality) are discussed in Sect. 4, with a detailed
analysis based firstly on a reduced set of linear predictors and
secondly on expanding to a set of predictors containing all
quadratic products between indices. Section 5 summarizes
the consequences of our findings and potential research av-
enues.

2 Data

Eight different regional climate indices, characterizing
mostly the variability in the Atlantic and Pacific regions of
the Northern Hemisphere, are considered. Four of these in-
dices are based on atmospheric variables, and four of them
are based on oceanic ones. Time series of these indices were
retrieved from the Physical Sciences Laboratory (PSL) of the
National Oceanic and Atmospheric Administration (NOAA;
https://psl.noaa.gov/data/climateindices/list/). Monthly val-
ues from January 1950 to December 2021 are used in the
present work (864 months).

The eight indices are the Pacific–North American (PNA)
index (Wallace and Gutzler, 1981); the North Atlantic Oscil-
lation (NAO) index (Barnston and Livezey, 1987); the Arctic
Oscillation (AO), or Northern Annular Mode (NAM), index

Earth Syst. Dynam., 16, 703–719, 2025 https://doi.org/10.5194/esd-16-703-2025

https://psl.noaa.gov/data/climateindices/list/


S. Vannitsem et al.: Nonlinear dependencies of climate modes 705

(Thompson and Wallace, 1998); the Atlantic Multidecadal
Oscillation (AMO) index computed based on version 2 of the
Kaplan et al. (1998) extended SST gridded dataset using the
approach of Enfield et al. (2001); the Pacific Decadal Oscilla-
tion (PDO) index (Deser et al., 2010); the Tropical North At-
lantic (TNA) index (Enfield et al., 1999); the Niño3.4 index
(for the remainder of the paper, we mostly refer to this index
as “Niño3.4”); and the Quasi-Biennial Oscillation (QBO) in-
dex (Graystone, 1959). These indices are the same as the
ones used in Docquier et al. (2024a), in which more details
on their characteristics may be found.

3 Methods

3.1 Singular spectrum analysis (SSA)

Singular spectrum analysis (SSA) shows similarities with the
principal component analysis where a covariance matrix is
diagonalized. In SSA, the lag-covariance matrix of a single
time series is diagonalized where the eigenvectors or tempo-
ral empirical orthogonal functions (T-EOFs) are finite time
sequences providing the more frequent and higher-amplitude
finite time spells of that variable. To construct them, the time
series X(i) with i = 1, . . .,N of each index is embedded into
a phase space of dimension, sayM , using a delay-coordinate
state vector Y (t)= [X(t −M + 1), . . .,X(t)], whose coordi-
nates are the successive values in the time series (e.g. Broom-
head and King, 1986; Vautard et al., 1992; Fraedrich et al.,
1993; Ghil et al., 2002). The evolution in phase space is then
obtained by sliding the M window in time. This operation
can be expressed as an eigenvalue problem of the following
M ×M Toeplitz matrix:

T (0) T (1) T (2) . . . T (M − 1)
T (1) T (0) T (1) . . . T (M − 2)
. . ..

T (M − 2) T (M − 3) T (M − 4) . . . T (1)
T (M − 1) T (M − 2) T (M − 3) . . . T (0)

 , (1)

where each matrix entry (i,j ) is the lag covariance
cov(X(t),X(t + |i− j |)). The eigenvalues and eigenvectors
can then be computed. These eigenvectors characterize the
dominant modes within the M window, such as intermittent
oscillating spells with periods less than M . The window M

is generally fixed to 1/10 of the length of the time series
in order to have enough statistics for estimating the covari-
ance matrix. In the current work, it is fixed to 240 months, a
bit longer than the default value, in order to resolve decadal
timescales. More information on the method is provided in
Vautard et al. (1992) and Ghil et al. (2002).

For each index, we compute the SSA spectrum and visu-
ally evaluate each of the 40 SSA modes corresponding to
the 40 dominant eigenvalues. These different modes have a
time length of 240 months (the M window mentioned ear-
lier). If the dominant period in each mode evolution is shorter
than 1 year, the mode is discarded, the idea being to keep

the low-frequency variability larger than 1 year. After fil-
tering out the modes displaying high frequencies, we end
up with new low-frequency-variability series of the origi-
nal monthly anomalies of the climate indices (the monthly
mean is removed before the application of SSA). The modes
that are kept at a low-frequency signal are listed in Table 1.
Here, there is a certain degree of arbitrariness, as we some-
times discard modes that display a mix of low-frequency and
high-frequency variabilities. We do believe, however, that the
essence of the LFV dynamics is captured well by our selec-
tion. Note also that the LFV of most of the oceanic modes
is essentially concentrated on the dominant SSA modes of
variability.

In order to evaluate the impact of choosing specific SSA
modes rather than others on the causality analysis, we also
considered arbitrary choices of modes, namely the even
modes 2k and the odd modes 2(k− 1)+ 1, for k = 1, . . .,20.
The analysis reveals that considerably fewer significant in-
fluences from nonlinearities are detected (five instances for
the odd modes and two instances for the even modes), indi-
cating that these arbitrary choices do not provide optimal re-
sults. With such choices, high and low frequencies are again
mixed up, leading to a rather suboptimal result. The presence
of high frequencies indeed hinders the proper detection of
dependencies given the short time series.

Note that a sensitivity test was also performed by remov-
ing the trends in temperature for the Niño3.4 index, with little
impact on the results discussed below.

3.2 Rate of information transfer

Liang developed a theory on causal dependencies in the con-
text of nonlinear stochastic systems based on the estima-
tion of changes in the information entropy of the system,
leading to an expression for the rate of information trans-
fer between variables (Liang and Kleeman, 2005; Liang,
2014a, b, 2016, 2021). A simpler expression was subse-
quently deduced for linear stochastic systems forced by addi-
tive noise, allowing direct estimation with observational data
as discussed in Liang (2014b, a, 2021). The latter approach
is also known as the Liang or Liang–Kleeman method. It
has been applied in various climate contexts (Vannitsem
et al., 2019; Vannitsem and Liang, 2022; Docquier et al.,
2022, 2023, 2024a). A recent extension of the theory allow-
ing the estimation of the rate of information transfer based on
conditional expectations was performed in Pires et al. (2024)
and tested in the context of a reduced-order model displaying
deterministic chaos in Vannitsem et al. (2024). In the latter,
an extension of Liang’s method for time series analysis is
also tested to allow the incorporation of nonlinear predictors.

Let us consider the S time series, Xi , i = 1, . . .,S, having
N data points, Xi(n), n= 1,2, . . .,N , recorded at a regular
time step1t . A forward temporal derivative can be computed
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Table 1. Set of SSA modes kept in the reconstruction of the low-frequency variability of the monthly anomalies of the climate indices
displayed in Fig. 1.

Indices LFV modes

NAO 3, 11,12, 13, 14, 17, 18, 29, 30
AO 1, 2, 3, 4, 7, 12, 13, 18, 19
PNA 3, 4, 14, 17, 18, 21, 24, 25, 29, 31, 32, 35, 36, 39
AMO 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
PDO 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20
TNA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20
Niño3.4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
QBO 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Figure 1. Original (red) and filtered (black) monthly anomaly time series of the climate indices, covering the period 1950–2021.

as

Ẋi(n)=
Xi(n+ 1)−Xi(n)

1t
. (2)

Let us denote Cij as the sample covariance between Xi
and Xj and Ci,dj as the sample covariance between Xi and
the temporal derivative Ẋj . It has been shown that the esti-
mator of the rate of information transfer from variable Xj to

variable Xi is

T̂j→i =
1

detC
·

S∑
k=1

1jkCk,di ·
Cij

Cii
, (3)

where 1jk are the co-factors of the covariance matrix C=
(Cij ) and detC is the determinant of C. Note that this
is valid under the approximation that (Xi,Xj ) is jointly
Gaussian, otherwise the term Cij/Cii must be replaced by
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E[d/dXi(E(Xj |Xi))], relying on nonlinear conditional ex-
pectations as in Pires et al. (2024).

Generically, causation is assumed to imply correlation, but
correlation clearly does not imply causation. This feature
emerges nicely in the mathematical expression (3) when con-
sidering two time series only as discussed in Liang (2014a),
so the significance test allowing the evaluation of causal de-
pendencies consists of computing the rate of information
transfer and checking whether it is significantly different
from zero. Several approaches may be used, and here a boot-
strap method with replacement is used (Efron and Tibshirani,
1993) in a similar way to that in Vannitsem et al. (2019). The
level of confidence is fixed here to 1 % in order to avoid a
false positive as far as possible, but, as indicated in Docquier
et al. (2024a), a false negative may arise when the number of
predictors is high and the time series is short. This caution is
most probably applicable here; therefore some nonlinearities
may not be properly isolated (some false negative).

A normalization of the rate of information transfer is also
performed in such a way that the influences of the different
variables on the target can be evaluated on the same grounds.
It provides a percentage of influence. The normalization fac-
tor in the multivariate case is the same as in Liang (2021):

Zi =

S∑
k=1
|T̂k→i | +

∣∣∣∣∣dH noise
i

dt

∣∣∣∣∣ , (4)

where
∣∣∣∣ dH noise

i

dt

∣∣∣∣ is the contribution of the noise of the under-

lying linear stochastic model.
The relative transfer of information fromXj toXi is given

by

τj→i =
T̂j→i

Zi
. (5)

Note that the time series used are relatively short. This
implies that some links could not be detected, as the un-
certainty around the value of the rate of information trans-
fer may be large. Given that caveat, some dependencies of
the method on the bootstrap sample are explored in Docquier
et al. (2024a). They concluded that 1000 bootstrap samples
are a good choice to detect causal links in short climate time
series.

Another potential difficulty is the number of predictors. In
Docquier et al. (2024a), it was indicated that, to obtain good
detection, a small number of predictors should be used (of
the order of maximum 10). It was, however, shown in the
more theoretical study of Vannitsem et al. (2024) that using
a combination of linear and nonlinear terms up to 44 predic-
tors still allows us to obtain meaningful results. The different
conclusions reached are probably associated with the differ-
ent setups used in both studies, and this question should be
further addressed in the future.

The approach proposed by Liang allows the construction
of a network of directional connections between observables
that are measured concomitantly. This approach is distinct
from techniques that assume that causation should be based
on a time lag between events, such as the classical network
approach (Runge et al., 2019; Di Capua et al., 2020a). If real
processes indeed display a lag (like in the propagation of a
wave), the information will propagate from one point to an-
other, and this will be isolated in Liang’s method through a
specific path through the network. In reality, as we usually
do not have all variables (at all grid points, for instance), this
could not show up, but filtration through (spatial or temporal)
averaging or frequency selections should help to disentangle
the impact of one distant observable on another, as, for in-
stance, in Vannitsem and Liang (2022).

Note also that the sign of influence also contains interest-
ing information: when positive, it means that the predictor
is inducing an increase in the uncertainty (or variability) of
the target, while, when it is negative, the predictor reduces
the uncertainty (variability) of the target. This information
is, however, quite sensitive to the set of predictors used, as
discussed in Vannitsem et al. (2024). We therefore do not dis-
cuss this in detail, except if outstanding features are emerg-
ing.

4 Results

4.1 Influence on an atmospheric index: NAO

Let us first consider the influence on one specific climate in-
dex, the NAO. Figure 2 displays the application of Liang’s
method (Eq. 5) to the original NAO time series and to the
low-frequency filtered data. A first remark is that the only
influence detected at the 1 % level in the original series orig-
inates from the AO, while correlation is statistically signifi-
cant for the AO, AMO, and TNA. This result is in agreement
with Docquier et al. (2024a). Note that we use 1 % in order
to reduce false positive cases, particularly when the number
of predictors used is large. When the analysis is applied to
the low-frequency variability of the series, the influence of
the AO does not appear anymore, while the influence of the
PNA and QBO emerges, together with correlations with all
the other indices. The fact that the AO influence disappears
probably reflects that it mostly acts on shorter timescales
(not present in the LFV series anymore), while the PNA and
QBO emerge in the low-frequency NAO signal. The influ-
ence of the TNA is consistent with the barotropic telecon-
nection mechanism proposed in Okumura et al. (2001).

This linear approach could, of course, miss the impact of
the joint influence or co-variability of indices. In Vannit-
sem et al. (2024), this question was addressed in the con-
text of a reduced-order atmospheric model, and it was shown
that joint influences in the form of polynomial nonlinearities
could be very large and dominate the sources of information
transfer. To deal with that aspect in the context of time series
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Figure 2. The rate of information transfer (left y axis, red open circles) and the correlation (right y axis, blue triangles) are plotted as
functions of the observables for the targeted observable (labelled TARGET in the plot): the NAO. Panels (a) and (b) are for the original and
LFV time series, respectively.

analysis, they also propose to use new types of observables in
the context of Liang’s approach as products of system vari-
ables. It was indeed found that, if nonlinearities do not play
a role in the dynamical equations, the corresponding rate of
information transfer obtained from the time series generated
by the model would be negligible. This result provides some
hope of also being able to isolate nonlinear influences in the
real atmosphere and in the climate system.

To disentangle the role of nonlinearities in the context of
the eight climate indices, all combinations of quadratic terms
are constructed. This choice is made, since, in many dynam-
ical systems, such nonlinearities are present. These quadratic
nonlinearities are typically associated with the presence of
nonlinear advection terms in the classical conservation laws
(momentum equation, thermodynamic equation, etc.), for in-
stance, as illustrated in the work done recently in the context
of the Charney–Straus model (Vannitsem et al., 2024). How-
ever, these could be viewed as restrictive, and tests should be
done in the future to evaluate the impact of higher-order or
more complicated nonlinearities.

Figure 3a displays the application of Liang’s approach
with the additional 36 quadratic observables in the original
series. The only influence emerging in this panel is associ-
ated with the AO index, as in the analysis based on the purely

linear approach of Fig. 2. It is striking to see that there is no
quadratic nonlinearity which emerges here, as these observ-
ables are very close to 0. This negative result is very useful,
as it shows that, if there is no nonlinear influence in the form
considered here, it will not show up and that the linear de-
pendence on the AO is a robust feature of the influence on
the NAO in the original series.

An even more striking result is found when only inves-
tigating the low-frequency variability of these indices. Fig-
ure 3b displays the results with the nonlinear observables.
As with the previous discussion of Fig. 3a, the dependen-
cies of the NAO from the PNA and QBO again emerge,
but additional dependencies are found from the PDO and
seven different nonlinearities: PNA TNA, TNA QBO, PNA
AMO, AMO QBO, AMO2, PNA QBO, and AO QBO. In all
those cases, correlation is significantly different from zero,
though the reverse is not true, as expected (i.e. correlation
does not imply causation). The PDO influence on the low-
frequency variability of the NAO is consistent with the find-
ings of Nigam et al. (2020). The influence of the QBO is
also consistent with the important role played by the strato-
sphere, as found in Ambaum and Hoskins (2002) and Scaife
et al. (2005). This indicates that the influence of the Atlantic
Ocean through the TNA and AMO is only emerging jointly
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Figure 3.

with the PNA and QBO and through the quadratic amplitude
of the AMO. At the same time, the influence of the AO is
now mediated through the joint influence with the QBO. In-
terestingly, the nonlinear joint influence of the QBO with the
Atlantic multidecadal variability is consistent with the results
presented in Omrani et al. (2014, 2022), who demonstrated

the essential influence of the stratosphere on the extratropi-
cal atmospheric response to ocean variability. The latter in-
teresting investigation of joint influences, consistent with our
findings, should be extended to the other nonlinearities un-
covered in the current analysis. A visual picture of the de-
pendencies is provided in Fig. 4.

https://doi.org/10.5194/esd-16-703-2025 Earth Syst. Dynam., 16, 703–719, 2025
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Figure 3. The rate of information transfer (left y axis, red open circles) and the correlation (right y axis, blue triangles) are plotted as
functions of the observables for the targeted observable (labelled TARGET in the plot): the NAO. Panels (a), (b), and (c) are for the original,
the LFV, and the high-frequency time series, respectively. The observable set is composed of 7 linear terms and 36 nonlinear quadratic terms,
all listed along the x axis. The points in black refer to the significant dependencies at the 1 % level.

Figure 4. A visual representation of the linear and nonlinear influ-
ences from the set of indices on the NAO for the low-frequency-
variability dataset. The curved plain arrows refer to the linear in-
fluence, and the triple straight arrows with the same colours refer
to the influence of the quadratic nonlinearities: two straight arrows
emanate from two indices, joining somewhere in between the in-
dices, and from there the third straight arrow indicates the target.

Related to the sign of influence, it is interesting to note that
all nonlinear predictors involving the AMO show a negative
influence on the NAO. This feature suggests that the AMO,

in combination with several indices, tends to reduce the vari-
ability of the NAO. This conjecture should be checked in the
future, either through additional analyses with a wider set of
indices or through a process-based analysis, as done, for in-
stance, in Omrani et al. (2014, 2022).

A test on the high-frequency variability computed as the
difference between the original series and the LFV series
is also performed to clarify whether nonlinearities also play
an important role at these frequencies. Two weak linear de-
pendencies emerge from the AMO and the TNA, suggesting
some quick response of the NAO to the Atlantic Ocean tem-
perature, but no nonlinear influences emerge here. This inter-
esting feature suggests that nonlinear couplings between the
different climate modes are only present at long timescales.
This point is also taken up in the next section.

Here, a few important considerations are in order:

– As in Vannitsem et al. (2024), the use of new nonlin-
ear observables could also modify the contributions of
linear influences, such as the emergence in Fig. 3b of
the influence of the PDO and the reduction in the TNA
influence in the low-frequency NAO signal. The modi-
fications can either be present in the average influence
or in the amplitude of the confidence intervals.

– A few influences in the low-frequency variability of cli-
mate indices could emerge only through nonlinearities,
revealing the joint impact of pairs of indices.
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– The high-frequency variability of the NAO is only in-
fluenced through linear terms associated with the ocean
variability over the Atlantic.

– The fact that the use of nonlinear terms in the original
and high-frequency series does not provide any substan-
tial influence suggests that the scheme proposed is un-
likely to produce spurious influence through nonlinear
terms if indeed not present.

4.2 Influence on an oceanic index: El Niño

Let us now perform the same analysis for the well-known dy-
namics in the tropical Pacific. Figure 5a shows the influence
at the 1% level of confidence of the PNA and TNA; again,
this is in agreement with Docquier et al. (2024a). If one con-
siders the low-frequency variability only, the influence of the
PNA is not statistically significant at the 1 % level but is sig-
nificant at the 5 % level. On the other hand, there is a very
strong influence of the TNA and PDO with amplitudes of
−0.181 and −0.163, both accounting for more than 35 % of
the total influence. Both characterize ocean processes known
to be connected with the dynamics of El Niño (Levine et al.,
2017; Park and Li, 2019; Johnson et al., 2020).

Figure 6a displays the analysis done with all the quadratic
nonlinearities. Firstly, there is no specific nonlinearity which
emerges here. Secondly, the dominant influence is now in the
TNA at the 1 % level, while the PNA will only appear at a
lower level of confidence. As for the NAO, the extension of
the analysis of the original series using the nonlinear terms
did not show any nonlinear influence and only revealed the
influences already isolated with the original variables.

Let us now turn to the nonlinear analysis of the low-
frequency series (Fig. 6b). The influences of the PDO and
TNA still remains dominant, although with lower ampli-
tudes. Interestingly, most of the nonlinearities that show sig-
nificant influence (AO PDO, AO Niño3.4, AO PNA, AO2)
involve the influence of the AO; the only additional nonlin-
earity is Niño3.42. This influence clearly does not emerge in
the purely linear analysis, suggesting that the AO influences
the low-frequency variability of El Niño only in conjunction
with other key climate indices. To our knowledge, this spe-
cific influence of the AO on El Niño was not reported before,
which is worth exploring further in the future. The additional
positive causation comes from the nonlinear term Niño3.42,
which is related to the positive El Niño skewness (Burg-
ers and Stephenson, 1999) and the tendency for extreme El
Niños or La Niñas to generate future El Niños, 2–3 years
later, as shown by cross-bicovariance and bi-spectral anal-
ysis of El Niño time series (Pires and Hannachi, 2021). A
visual picture of the dependencies on Niño3.4 is provided in
Fig. 7.

Interestingly, there is no influence of any linear or nonlin-
ear predictor at high frequencies as illustrated in Fig. 6c. This
result firstly demonstrates that only low-frequency variabil-

ity in the other indices influences the dynamics of Niño3.4
and secondly, on more technical grounds, that a false positive
can indeed be rare, giving confidence in the analyses done on
the low-frequency-variability indices. Similar remarks to the
ones listed at the end of the previous section are also in order
here.

4.3 Influences on the other climate modes

Concerning the other indices, a similar analysis was per-
formed, and a summary of the findings is given in Tables 2
and 3 for the analysis based on the eight original filtered se-
ries only and based on the extended set of observables con-
taining the 8 variables themselves and the nonlinearities al-
ready described in the previous sections. Note that all de-
tailed figures are given in the Supplement.

For the AO, there is no influence detected on the original
series. Turning now to the filtered ones containing the low-
frequency variability of all series, the linear analysis reveals
the presence of influence of the NAO and TNA. If one uses all
nonlinearities, the influence of the NAO still remains a linear
term, but that of the TNA does not. The TNA now appears
in conjunction with the influence of the QBO. Niño3.4 also
emerges through the nonlinearities in conjunction with the
NAO and PNA. Finally, the QBO and PNA are also emerging
as influencing the AO linearly.

The PNA is influenced by Niño3.4 (as also indicated in
Silini et al., 2022) and the AO, whatever the original or fil-
tered series, is analysed, whatever the set of predictors used
(linear or nonlinear). This shows the robustness of these
influences for both the full-variability series and its low-
frequency counterpart. When the nonlinear analysis is per-
formed on the filtered series, a large set of new influences
emerges: the PDO as the dominant influence which was not
present in the linear analysis; the NAO with a linear influ-
ence; and a bunch of nonlinear influences involving the NAO,
AMO, TNA, PDO, and QBO. Here, all indices show influ-
ences either through linear or nonlinear terms. This reflects
the complexity of the dynamics of the PNA.

The AMO shows an overall strong influence from the
TNA, whatever the series and predictor sets used. When the
nonlinear analysis of the filtered series is performed, a set
of linear and/or nonlinear influences emerges from the PNA
and NAO, together with a quadratic self-influence. Interest-
ingly, a strong NAO is likely to influence the AMO through
the term NAO2, revealing the importance of extreme NAO
events on the AMO, while the influence of the PNA emerges
only in conjunction with an amplification of the AMO.

For the PDO, the influences of Niño3.4 and the AO are al-
ways detected in the different analyses performed. The anal-
ysis confirms results already reported in Silini et al. (2022)
and Vannitsem and Liang (2022). When the filtered data are
used, additional linear influences are detected from the TNA,
NAO, and QBO, together with some nonlinear dependencies
combining the AO, NAO, AMO, and PDO.
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Figure 5. The rate of information transfer (left y axis, red open circles) and the correlation (right y axis, blue triangles) are plotted as
functions of the observables for the targeted observable (labelled TARGET in the plot): Niño3.4. Panels (a) and (b) are for the original and
LFV time series, respectively.

Table 2. List of climate indices that have a significant influence on the targets mentioned in the first row. These are listed by order of
importance based on the mean value of the rate of information transfer (over 1000 bootstraps). These estimates are shown in Figs. 2 and 5
and in the figures in the Supplement. The value for the dominant information transfer is given between parentheses.

Targets NAO AO PNA AMO PDO TNA Niño QBO

Influences from AO(0.029) – AO(0.013) TNA(−0.28) Niño(0.090) AMO(0.15) TNA(−0.089) –
linear Niño AO Niño PNA
predictors AO

Influences from PNA(0.048) NAO(−0.28) Niño(0.22) TNA(−0.34) Niño(0.22) Niño(0.15) PDO(−0.18) NAO(−0.09)
linear QBO TNA PDO NAO AMO TNA (TNA)
predictors NAO TNA PNA (PNA)
(LFV series) AO AO AO

QBO

For the TNA, a similar picture is found, with influences
from Niño3.4, the AMO, and the AO found in all analyses
performed, either linear or nonlinear or using the original or
filtered data. The influence of the PNA emerges only in the
analysis of the filtered dataset, and additional influences from
the QBO and PNA are felt through nonlinearities. Note also
that the AMO does not appear as a linear influence in the
fully nonlinear analysis of the filtered data, but rather as the
square of this index. The latter reveals that a strong influence
of the AMO is only felt when the AMO has high amplitude.

Finally, for the QBO, no influences are felt using the orig-
inal dataset, while they appear on the filtered data, with a
dominant influence of the NAO in the linear analysis. For the
fully nonlinear analysis, a large variety of nonlinearities in-
fluence the QBO in which all climate modes are involved.
Note, however, that these influences are always very small,
even if significant.

The analysis based on the high-frequency time series re-
veals that there are no nonlinear influences affecting the dif-
ferent indices: For the NAO, weak influences on the AMO
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Figure 6.

and TNA are detected; for the AO, there is a weak influence
of the TNA; for the PNA, there are weak influences of the
AO and PDO; for the AMO, there is a large influence of the
TNA; for the PDO, there is a weak influence of the AO; for
the TNA, there are influences by the AO and AMO; and, fi-
nally, for the QBO, there is no influence detected.

All these complicated nonlinear dependencies between the
climate modes are also worth exploring more from a pro-
cess dynamics perspective, as was done for the interaction
between the stratosphere, the troposphere, and the ocean in
Omrani et al. (2014).
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Figure 6. The rate of information transfer (left y axis, red open circles) and the correlation (right y axis, blue triangles) are plotted as
functions of the observables for the targeted observable (labelled TARGET in the plot): Niño3.4. Panels (a), (b), and (c) are for the original,
the LFV, and the high-frequency time series, respectively. The observable set is composed of 7 linear terms and 36 nonlinear quadratic terms,
all listed along the x axis. The points in black refer to the significant dependencies at the 1 % level.

Table 3. List of climate indices and their quadratic products that have a significant influence on the targets mentioned in the first row. These
are listed by order of importance based on the mean value of the rate of information transfer (over 1000 bootstraps). These estimates are
shown in Figs. 3 and 6 and in the figures in the Supplement. The value for the dominant influence is given between parentheses. In the first
row, the results with the use of 44 predictors in the original series are displayed, while, in the second row, the results with 44 predictors in
the LFV series are displayed. Note that, for the AMO, the influence of the TNA in parentheses with the set of nonlinear predictors is still
intense, but only at the 5 % level.

Targets NAO AO PNA AMO PDO TNA Niño3.4 QBO

Influences from AO(0.027) – AO(0.012) TNA(−0.27) Niño3.4(0.076) AMO(0.14) TNA(−0.06) –
Niño3.4 AO Niño3.4 (PNA)

AO

Influences from PNA TNA(0.044) NAO(−0.1) PDO(−0.12) (TNA)(−0.093) Niño3.4(0.13) Niño3.4(0.14) PDO(−0.14) AO TNA(0.064)
TNA QBO TNA QBO Niño3.4 Niño3.4(0.053) NAO PNA TNA NAO AMO
PNA AMO NAO Niño3.4 NAO AMO AMO2 TNA QBO AO AO PDO NAO
AMO QBO Niño3.42 NAO TNA PNA AO AMO AMO2 AO Niño3.4 NAO TNA
PDO Niño3.4 PNA AMO TNA PNA AMO AO PDO AO AO PNA NAO PNA
PNA QBO NAO NAO2 AO NAO PNA Niño3.42 PDO Niño3.4
QBO PNA AMO2 NAO AMO QBO2 AO2 PNA TNA
AMO2 PDO2 QBO AO
PNA QBO AMO QBO AO Niño3.4
AO QBO TNA QBO AO PNA

PNA TNA AO AMO
AO PNA AMO

PDO2

TNA
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Figure 7. A visual representation of the linear and nonlinear in-
fluences from the set of indices to Niño3.4 for the low-frequency-
variability dataset. The curved plain arrows refer to the linear in-
fluence, and the triple straight arrows with the same colours refer
to the influence of the quadratic nonlinearities: two straight arrows
emanate from two indices, joining somewhere in between the in-
dices, and from there the third straight arrow indicates the target.
The double-dashed straight (black) arrow indicates the influence of
the product between the source and the target. The empty curved ar-
row indicates the quadratic influence of the source, while the striped
curved arrow indicates the quadratic influence of the target.

5 Conclusions

This work investigates the quadratic nonlinear influences on
a set of climate indices. This is done by regarding products of
indices as predictors in the analysis. This extension to non-
linear predictors has proven to be successful in the idealized
context of a reduced-order model Vannitsem et al. (2024).
The analysis reveals that nonlinearities indeed couple the
low-frequency variability of climate indices, revealing the
complexity of the climate system at timescales from years
to decades. A few additional key conclusions may be drawn
from this analysis:

– The method of Liang, extended to nonlinear observ-
ables, is indeed an interesting approach to disentangle
the impact of nonlinearities on the evolution of the cli-
mate modes, as suggested in Vannitsem et al. (2024).

– The analysis of the climate modes indicates that the low-
frequency variability of the climate system over the dy-
namics of the northern tropics and extratropics also in-
volves nonlinearities that reflect the joint influences of
several climate modes on the target one. This may ex-
plain the “nonstationarity” of influences often raised in
the climate system, e.g. García-Serrano et al. (2017),
related to conditional influences of one climate mode
given the evolution of a second mode. For instance, the
influence of the AO on Niño3.4 can only be seen de-
pending on the actual state of the PDO, Niño3.4, and

the PNA (see Table 3). The latter result is worth explor-
ing further through process-based analyses.

– Robust linear influences have also been isolated for both
the original and filtered (LFV) time series and whatever
the number of predictors used (linear and nonlinear).

– Intricate nonlinear relations between all the modes
emerge at low frequencies, suggesting that these modes
and their dynamics cannot be regarded as isolated or as
pure forcing and forced subsystems.

The last conclusion points to the general question of the
nature of the dynamics of the climate system on timescales
from years to decades or, in other words, what processes
drive others. In view of the linear and nonlinear dependen-
cies disentangled in the current work at low frequencies, the
number of connections and the complexity of the interplay
of processes that could join “forces” to influence a third one
through nonlinearities are high. This is reminiscent of tri-
adic wave resonances in fluid dynamics (Pires and Perdigão,
2015). This suggests in turn that the simplistic viewpoint of
having forcing and forced subsystems should be revisited,
and the climate system at low frequencies should rather be
viewed as a nonlinear dynamical system with a collective be-
haviour all over the globe. This vision of the large-scale cli-
mate system supports similar visions found in earlier works
on the collective behaviour of the different large-scale atmo-
spheric and ocean processes (e.g. Wang et al., 2009; Tsonis
and Swanson, 2012; Wyatt et al., 2012; de Viron et al., 2013;
Runge et al., 2019; Silini et al., 2022).

In the current analysis, a limited set of modes is consid-
ered. This, of course, has implications, as some important
connections would have been missed, for instance, with the
Indian Ocean, with the large-scale dynamics in the Southern
Hemisphere, or with the northern circumglobal pattern (e.g.
Ding and Wang, 2005; Ding et al., 2017; Di Capua et al.,
2020a). Other multiple synergies among oceanic basins can
emerge like that between the Pacific and Atlantic El Niños
and the AMO, as shown by Martín-Rey et al. (2014). The
absence of these large-scale modes may also affect the linear
and nonlinear dependencies isolated in the current work. Ex-
tending to a larger number of large-scale modes as in de Vi-
ron et al. (2013) and Silini et al. (2022) is certainly worth
doing in the future, but it is more important to figure out if
the set of modes would be enough to have a sufficiently accu-
rate and complete description of the global climate dynam-
ics. This is left as an key open-research topic. This knowl-
edge could also provide hints on the nonlinearities that would
be useful to build a data-driven model of the large-scale cli-
mate indices. A possible avenue is to use techniques of ma-
chine learning, with the help of information theory to iso-
late these dominant modes and their interactions, (e.g. Liang
et al., 2023; Tyrovolas et al., 2023). Another path is to build
simplified stochastic models as, for instance, in a recent ap-
plication by Kravtsov et al. (2005). Finally, the modifications
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of these influences with climate change should be investi-
gated as, for instance, in Stips et al. (2016) and Docquier
et al. (2022, 2024b).

Finally, it would be very useful to compare these results
using another approach, such as the network approach devel-
oped and used in Runge (2018), Runge et al. (2019), Di Ca-
pua et al. (2020a), and Docquier et al. (2024a), and to check
whether similar nonlinearities (with lags) at low frequencies
would emerge.
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