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SUMMARY 

This work presents an innovative approach to expedite the identification process of green leafhoppers by combining a deep-learning 
algorithm with an automatic camera system that captured high-resolution images from yellow sticky traps. Identifying and monitoring 
agricultural insects are crucial for implementing effective pest management strategies. Conventional insect identification and counting 
methods can be time-consuming and labor-intensive, urging the need for efficient and accurate automated solutions. The deep learning 
algorithm based on convolutional neural networks (CNNs) learn discriminators from a diverse set of green leafhopper images. The model's 
architecture was optimized to handle variations in lighting conditions, angles, and orientations commonly found in field settings. To assess 
the algorithm's efficacy, the test images were also evaluated by human curation and results accounted for in terms of false positives and 
false negatives. The results demonstrated the algorithm's capability to accurately identify green leafhopper species, improving the speed of 
identification compared to conventional methods while maintaining a high level of precision (80%), and a harmonic mean of the precision 
and recall  (F1) of 0.85. The combination of a deep learning algorithm and real-time data acquisition allows a fast decision-making by 
technicians and researchers, supporting the implementation of pest management strategies, and demonstrates the promising potential for 
specific and sustainable pest monitoring, contributing to the progress of precision farming practices. 
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RESUMO 

Este trabalho apresenta uma abordagem inovadora para agilizar a identificação de cigarrinhas verdes, combinando um algoritmo de deep-

learning com um sistema automatizado que captou imagens de alta resolução de armadilhas amarelas adesivas. A monitorização e 
identificação de insetos agrícolas são cruciais para a implementação de estratégias eficazes de gestão de pragas. Os métodos convencionais 
de identificação e contagem de insetos podem ser demorados e árduos, exigindo soluções automatizadas eficientes e precisas. Os métodos 
de deep-learning baseados em redes neuronais convolucionais (CNNs) aprendem caraterísticas discriminativas associadas ao complexo de 
espécies de cigarrinhas verdes através de um processo de treino, recorrendo a um conjunto diversificado de imagens dos insetos. A 
arquitetura do modelo foi otimizada para variações nas condições de iluminação, ângulos e orientações comumente encontradas no campo. 
A eficácia do algoritmo foi avaliada sobre um conjunto extenso de imagens-teste, em que um especialista humano identificou as ocorrências, 
para se proceder posteriormente à contabilização de falsos positivos e falsos negativos detetados. Os resultados demonstraram a capacidade 
do algoritmo para identificar com precisão espécies de cigarrinhas verdes, melhorando a velocidade de identificação em comparação com 
métodos tradicionais, mantendo um alto nível de precisão (80%) e um F1=0,85. A combinação de um algoritmo de deep-learning e a 
aquisição de dados em tempo real permite uma rápida tomada de decisão, apoiando a implementação de estratégias de gestão de pragas, e 
demonstra um potencial promissor para a monitorização sustentável de pragas específicas, contribuindo para o progresso de práticas 
agrícolas de precisão. 
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INTRODUCTION 

For centuries, vineyards have flourished in the border 
regions of the Mediterranean basin (Fátas-Cabeza, 
2002). Nowadays, they are a major fruit crop in 
Europe, covering an area of about 3.2 million ha, 
corresponding to 2.0% of utilized agricultural land 
(Eurostat, 2024). In Portugal, in 2022, the crop was 
grown on 191,170 ha. The country ranks 10th among 
the world's largest wine producers, with a total of 6.7 
million hL (IVV, 2022). 

Green leafhoppers (GL) (Hemiptera, 
Auchenorrhyncha, Cicadellidae) are major pests of 
vineyard (Afonso et al., 2023). In Portugal, the first 
reference to GL as vineyard pests dates back to 1980 
in the Alentejo region (Coelho, 1983). Later, during 
the 1990s, the species complex spread and affected 
the Douro and Dão regions (Raposo and Amaro, 
2003), particularly Empoasca vitis (Göthe). 
Jacobiasca lybica (Bergevin & Zanon) was first 
identified in 1989 (Quartau et al., 1989), and it was 
considered the main GL species responsible for yield 
losses in vineyards from the southern region.  

The feeding process of GL on leaves triggers typical 
symptoms known as hopperburn, leading to direct or 
indirect damage, including lower assimilate 
production, lower sugar accumulation in grapes, and 
lower vine reserves (Rebelo, 1993), resulting in 
considerable losses in production and income, as 
well as significant increase in control costs (Backus 
et al., 2005). 

GL are very similar in their external morphology, and 
specific identification is only possible by analysing 
the male genitalia microscopically (Quartau and 
Rebelo, 1992; Rebelo, 1993).  

Effective monitoring systems for risk assessment and 
decision-making are needed in Integrated Pest 
Management (IPM) of GL. Monitoring systems of 
GL populations include visual observation of leaves 
to detect symptoms or nymphs’ presence, and 
sampling with yellow sticky traps, aspirators, and 
entomological nets (Félix and Cavaco, 2009). 
However, these procedures are usually time-
consuming, in fieldwork, insect counting, and 
identification, depending on trained manpower. 

Automatic remote monitoring constitutes an 
innovative and highly efficient technology for pest 
monitoring, which has registered increasing 
developments in the last 20 years (Preti et al., 2021). 
However, such technology was not applied yet in GL 
monitoring. Remote monitoring, coupled with 
automatic image acquisition systems and 
identification, presents a promising avenue for GL 
sampling. This integration of technology holds the 
potential to revolutionize the way vineyards are 
monitored, offering real-time data acquisition and 
analysis. Nevertheless, a decision support tool based 
on mobile-acquired sticky trap images was recently 
developed for GL (Gonçalves et al, 2022; Rosado et 

al., 2022). 

This article addresses the gap in current research by 
presenting a comprehensive study using an automatic 
image acquisition system from yellow sticky traps, 
coupled with a deep-learning algorithm based on 
convolutional neural networks (CNNs), to provide an 
efficient and accurate solution for remote monitoring 
of GL in vineyards. The main objectives of this study 
included evaluating the performance of the proposed 
system, assessing its feasibility for large-scale 
implementation, and contributing to the 
improvement of digital viticulture practices.
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MATERIALS AND METHODS  

Study site and sampling period 

Sampling was carried out between May and 
September 2023 in two grapevine plots of ‘Touriga 
Nacional’ grapevine variety (one managed in organic 
production system and the other in integrated 
production system) at Colinas do Douro, a 450 ha 
farm with about 160 ha of vineyards, located at Vale 
das Eiras, Escalhão, in the SE of the Dermarcated 
Region of Douro and integrated in the Natural Park 
of Douro Internacional.  

 

Sampling and image acquisition system 

Leafhopper sampling was conducted using yellow 
sticky traps. Two iSCOUT®COLOR TRAPS were 
installed, one per grapevine plot. This remote 

monitoring system is a self-sufficient device, 
powered by a solar panel and a battery, and 
integrating a camera, a modem, and a yellow sticky 
trap (Figure 1). The incorporated camera takes high-
resolution pictures of the sticky trap and the images 
are sent via GPRS to the FieldClimate platform, 
which are then visible on the web. The sticky plates 
were substituted every 3-4 weeks, during the 
sampling period, depending on the level of insect 
captures, as well as on logistical constraints. The 
collected plates were kept in the laboratory for insect 
identification. Each trap was photographed daily, but 
only a sample of 20 images was analyzed for this 
study, of which 15 images that captured all trapped 
GL were used. In the end of each exposure period, 
the captures in a trap correspond to the accumulated 
number of insects captured during that period. 
Therefore, the image of the trap on day n shows the 
total number of insects captured between day 1 and 
day n.

   

 

  

Figure 1. iSCOUT®COLOR TRAP: general perspective (left); camera and yellow sticky trap (right). 

 

 

Dataset and Methodology 

The dataset included 15 images of 2748 x 3664 
pixels, obtained through FieldClimate platform, that 
were pre-processed in a Matlab (nd) environment to 
attenuate the gradient in the background with a 

modified homomorphic filter and all histograms 
were matched to one reference image (Figure 2). The 
large image size was not supported by the available 
hardware; these images were divided into 916 x 916 
non-overlapping tiles, and the dataset was restrained 
to focused tiles.  
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a b c 

Figure 2. The evolution of an image with the preprocessing: a) original image; b) after homomorphic filter; and c) histogram 

match. 

 

The objects of interest were detected and counted in 
the images with a deep-learning algorithm released 
in July 2022 called YOLO v7 (Redmon et al., 2016), 
that is publicly available in a GitHub repository 
(GitHub, nd). To use YOLO v7 on any new data set, 

a training stage is needed: the objects of interest 
intended to be detected should be identified in a 
representative subset of images (Figure 3), that will 
allow the algorithm to define discriminative features.

 

 

 

Figure 3. Fluxogram describing the procedure: i) all the targets are manually identified in a subset of images; ii) the set of 

annotated images is divided for training and validation of the algorithm, that will proceed in several iterations (750 in the present 

case); iii) the resulting weights define a new model that can be applied to any image with the same characteristics, detecting and 

counting the targets to which it is trained.  

  

The manual identification of the targets can be 
achieved online, for instance with MakeSenseAI (nd) 
in three steps, consisting in: i) upload the subset of 
images for training the algorithm; ii) identify the 
objects of interest in each image using the tools 
available on the graphic interface; iii) download the 
annotations in a YOLO compatible format, in the 
form of text files. 

YOLO v7 and its precedent versions have the 
possibility of transfer learning, which consists of 
reusing an already trained network as a base for a 
new problem. Since simple features such as edges, 
shapes or contrasts are common to many objects in 

detection problems, a trained network can be used to 
implement a new problem, with a set of initial 
weights well established from training on very large 
datasets, such as Common Objects in Context 
(COCO), which was trained with more than 200,000 
annotated images. The new discriminators will tune 
the detector according to the details of the new 
training dataset, defining the last layers of the 
convolutional neural network (CNN), while the 
basics are defined by the first layers previously 
trained.  
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The new GL detection model uses the e6e model from 
YOLO v7 as base and training with augmented data, 
changing a few hyperparameters from the default 
values, namely the amounts of rotation to 0.75 
degrees, and the change in scale to 0.2. Translation, 
shear and perspective were kept to zero. The 
annotation of 33 images of a subset of 120 tiles (916 
x 916 pixels, 24-bit depth) with one class of objects of 
interest was done online (MakeSenseAI, nd). Of these 
tiles, 22 were used for training and 11 for validation 
of the algorithm, respecting the recommended ratio of 
1:2 between validation and training images. 

The training was done once, and took two hours 
nineteen minutes for 750 iterations in a laptop 
equipped with dual Core Intel i7-10750H processor, 
16 GB SDRAM, and a graphic unity NVIDIA 
GeForce RTX 2060 Max-Q 6GB. The resulting 
weights defining the new model can be used to detect 
the same objects of interest on any similar image 
(Figure 4), with a processing time around 0.2 s for 
each image. 

 

  

a b 

Figure 4. Example of an image (a) and the detections made by the model with the respective confidence associated with each 

identification (b 

To evaluate the performance of the model considered 
the best, with the hyperparameters mentioned above, 
the remaining 87 tiles were processed using a 
confidence threshold of 0.30, meaning that the model 
is at least 30% confident that each object detected is 
similar to the ones used in the training stage. The 
results were compared to those obtained by a human 
expert, identifying false detections (false positives) 
and failed detections (false negatives). The results 
were quantified in terms of the usual metrics Precision 
and Recall; the first one is defined as the percentage 
of objects correctly classified among all the objects 
detected by the model as in Equation  

Precision = True Positives/(True Positives + False 
Positives) 

Eq. 1 

 

Recall refers to the percentage of positives correctly 
identified among all occurrences of real positives 
(Equation 2).  

 

  

Recall = True Positives/(True Positives + False 
Negatives) 

Eq. 2 

 

The F1 score is a combined measure of the accuracy 
of a model in a data set, computed as the harmonic 
mean of the accuracy and recall of the results 
(Equation 3). 

F1 = 2 x (Precision x Recall) / (Precision + Recall) Eq. 3 
 

The resulting F1 score is in the range [0, 1], the value 
1 indicating perfect precision and recall, and a zero-
value revealing that either precision or recall are zero. 
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Species identification 

Samples of GL specimens were collected from 20 
traps, during the sampling period, to determine the 
most common GL species captured, based on the 
microscopic study of male genitalia (Le Quesne, 
1983). The pygofer was dissected from the insect and 
placed in boiling KOH solution 10% (w/v) for 
approximately 2 min. Then, the pygofer was washed 
and mounted in glycerine on glass slides. Species 
identification was carried out following Ribaut 
(1936), Biedermann and Niedringhraus (2009), 
Dmitriev et al. (2022), and Evangelou et al. (2023). 

 

RESULTS AND DISCUSSION 

Leafhopper species 

Two species of GL were identified: Empoasca solani 
(Curtis) and J. lybica, with an asynchronous 
distribution. E. solani appears earlier in the spring 
and the first months of summer, being gradually 
replaced by J. lybica, which reaches its peak by mid-
summer and early autumn, as also recorded by 
Quartau and Rebelo (1992) and Rebelo (1993). This 
distribution pattern may help reduce competition 
between the two species. 

E. vitis was unexpectedly not identified, especially 
during the spring season. This may be due of having 
only two traps, one per grapevine plot. Additionally, 
the specimens collected in May were only females, 
making specific identification unfeasible. 

Recently, Xu et al. (2021) published a phylogeny and 
reclassification of the complex and diverse tribe 

Empoascini, which included a subdivision of the 
genus Empoasca Walsh. Other experts in 
Auchenorrhyncha (Nickel, 2022; Evangelou et al., 
2023) have adopted these changes. According to 
their reclassification, the species found in this study 
formerly placed in the genus Empoasca as E. solani, 
has been renamed. Xu et al. (2021) now refer to it as 
Hebata (Signatasca) solani, and Nickel (2022) as 
Hebata (Signatasca) pteridis (Dahlbom). 
Additionally, J. lybica has retained its original genus. 

Despite the taxonomic changes, which are primarily 
based on molecular analyses, the genitalic 
characteristics of the male are sufficient to categorize 
systematically a Typhlocybinae individual as 
belonging to H. solani/pteridis or J. lybica 

(Evangelou et al., 2023). Moreover, the damage they 
cause in vineyards is very similar. 

Algorithm assessment 

The model built had a precision of 79.8%, recall of 
90.4%, and consequently an F1=0.85, when 
evaluated over the test dataset of 87 tiles. A human 
operator was able to identify 188 GL on these tiles, 
and the model was able to correctly identify 90.4%, 
with a confidence level of 30%, failing to detect 
9.6%. The erroneous detections were mainly related 
with other Auchenorrhyncha and small Diptera. The 
main reasons for keeping the confidence level at 0.30 
were: i) to ensure that some already degraded insects 
were included in the detections, since each trap 
remained in place for about one month; and 
simultaneously ii) to keep the number of erroneous 
detections low. Any change in the confidence level is 
reflected in the number of detections, as shown in 
Figure 5.

 

 

a b c 

Figure 5. Example of the evolution of the number of GL detections in the same image with different confidence thresholds: a) 

0.25; b) 0.55; and c) 0.75. 
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The stability of the algorithm can be seen in the small 
changes in the number of detections as the 
confidence threshold increases. An example from 
one image in the test dataset shows the number of 

detections as the confidence threshold goes from 
0.15 to 0.80 in steps of 0.05 (Figure 6): within the 
range [0.20, 0.60], the average number of detections 
is 19.7, with a standard deviation of 1.0. 

 

Figure 6. The value for the confidence threshold presents good stability within the range [0.2, 0.6], showing the robustness of the 

algorithm: in this range, the mean number of detections is 19.7, with standard deviation of 1.0. 

 

The automatic identification of GL based on deep 
learning models was only recently investigated in 
vineyards (Gonçalves et al., 2022). However, in this 
case, mobile devices were used for image acquisition 
from yellow sticky traps in the field. Gonçalves et al. 
(2022) compared five different deep learning models 
suitable to run locally on mobile devices, and 
concluded that the SSD ResNet50 model was the 
most suitable, presenting a precision, recall, and F1 
score of 56%, 73% and 64%, respectively. In the 
present study, a different image acquisition system 
was used for the first time, consisted by high-
resolution pictures remotely sent via GPRS to a web 
platform, combined with a deep learning algorithm 
based on convolutional neural networks. This 
automatic identification system showed a better 
performance (accuracy, precision, recall, and F1 
score of 80%, 90%, 85%, respectively), in 
comparison to the best model studied by Gonçalves 
et al. (2022). Nevertheless, it should be considered 
the two algorithms were developed for different 
systems of image acquisition, i.e., field image 
acquisition with mobile devices, in Gonçalves et al. 
(2022), and remote image acquisition by camera-
equipped traps, in the present study. Furthermore, the 
apparently different levels of performance could 
have been influence by the different number of 
images used to evaluate the performance of the 
algorithms in the two studies (a higher number was 
used by Gonçalves et al., 2022). 

The application of this new technology might 
improve the cost effectiveness of GL monitoring 
systems for decision making in IPM in vineyards. 
Nevertheless, it should be further evaluated in 
different climatic conditions, insect numbers and 
farm management systems, for a more complete 
assessment of its cost effectiveness, in comparison to 
the conventional trap´s monitoring system. 
According to Preti et al. (2021), the use of automatic 
traps in remote monitoring systems has several 
benefits compared to the conventional traps : 1) Field 
visits are only required to empty traps or replace 
lures, saving time and money; 2) On-site checking of 
empty traps is unnecessary, further saving resources; 
3) Fewer personnel are needed, as one operator can 
manage a high number of traps spread over a wide 
area; 4) High sampling frequency allows for detailed 
temporal resolution, with the potential for multiple 
pictures per day; 5) Traps can be easily deployed 
over a large territory, providing high spatial 
resolution; 6) Accurate records can be maintained 
even by non-expert operators when combined with 
reliable automatic identification and counting 
systems; 7) Increased data flow, potentially including 
automatic counting and identification, enables real-
time alerts and reduces the risk of human bias in 
information; 8) Although the initial trap cost may be 
higher, the long-term savings in manpower make it 
cheaper overall; 9) Enables the creation of real-time 
or regularly updated online monitoring systems 
covering large areas, connecting captured data with
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environmental, biological, and human variables to 
implement Decision Support Systems (DSS). 

However, the automatic traps tested for GL present 
challenges compared to remote monitoring systems 
based on automatic pheromone traps. Unlike 
pheromone traps, these traps (e.g., yellow sticky 
traps) are non-specific and attract various insect 
species, including Diptera, Hymenoptera, and 
Thysanoptera. This lack of specificity can hinder the 
identification performance of the monitoring system 
and may require more frequent field trap 
replacements due to insect saturation of trap surface. 
Furthermore, the cost effectiveness analysis should 
also consider different scenarios, including farm size 
and number of traps needed for reliable estimate of 
GL population level. 

With the imaging system already installed and 
accessible online, a standard laptop running the 
algorithm will allow an immediate reaction when the 
number of detections exceeds a critical threshold 
previously established for the species.  

Application to new species of interest will require a 
new training stage and a new dedicated model. As 
yellow sticky traps are not selective, capturing many 
different insects, they could be also used to 
simultaneously estimate de abundance and diversity 
of pest natural enemies in vineyards, and thus 
evaluate actual situation on the potential for 
conservation biological control. Future 
developments on the automatic identification of 
predators and parasitoids of major grapevine pests 
would be an important contribution to support a 
monitoring system with that purpose. 

CONCLUSIONS 

GL are major vineyard pests in many grape-
producing countries, including Portugal. Pest 
management strategies for a sustainable control of 
these insects are dependent on efficient DSS. In the 
present work, an automatic image acquisition system 
was developed and evaluated, coupled with a deep-
learning algorithm based on CNNs, for remote 
monitoring of GL in vineyards. The results showed 
that the new algorithm successfully identified GL 
specimens in images obtained from automatic traps, 
evidencing a very good performance. This is a 
significant achievement, providing a technological 
solution for remote monitoring of GL populations 

with automatic insect identification, which will 
contribute to improve the efficiency of pest 
management decision making in vineyards. The 
possibility of applying the same approach to the 
identification and monitoring of biocontrol agents of 
vineyard pests, using the same yellow sticky traps, 
simultaneously with GL monitoring, should be 
considered in future developments of the model. 
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