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The alkali-aggregate reaction comprises the alkali-silica reaction (ASR) and the alkali-carbonate reaction (ACR).
Reaction kinetics of the ASR depends on the grain size and crystalline structure of the reactive silicon dioxide. The
reaction starts in the aggregates along the particle periphery and progresses inward. After cracking of the particle,
larger amounts of reaction products are formed and are eventually extruded in the cement paste, where they fill
cracks and voids. ASR products within aggregates predominantly consist of (hydrated) silicon, alkalis and calcium
with characteristic atomic ratios of (Na + K)/Si ~ 0-25 and Ca/Si ~ 0-25. They take up additional calcium while releasing
alkalis when extruded. Amorphous and crystalline reaction products occur and coexist. Expansion is the result of
water adsorption by the reaction products. In ACR, harmless dedolomitisation is distinguished from deleterious
reaction of fine-grained silica disseminated throughout the carbonate matrix. Further research is needed to gain
more in-depth knowledge about the thermodynamics and kinetics of ASR products and the mechanisms of
expansion. This should allow the establishment of a better link between concrete structures and both accelerated

testing and models.

1. Introduction

This paper reviews the alkali-aggregate reaction (AAR). In
the AAR, the alkaline pore solution of the concrete reacts
with minerals present in the concrete aggregates, leading to the
formation of reaction products. Depending on the reactive
minerals present in the aggregates, two different types of AAR
can be distinguished: the alkali-silica reaction (ASR) and the
alkali—carbonate reaction (ACR). Additional types of deleter-
ious aggregate reactions have been reported, but those are not
considered here.

2. ASR

In the ASR, silicon dioxide (SiO,) present in minerals is dis-
solved and subsequently precipitated as the ASR product that
contains calcium in addition to silicon and alkalis. By taking
up water, the ASR products exert mechanical stress that even-
tually leads to cracking of concrete. The silicon dioxide dissol-
ution process, and the formation of a sol and a subsequent gel
are described in detail in numerous publications (e.g.
Gaboriaud et al., 1999, 2005; Hench and West, 1990; Powers
and Steinour, 1955a; Wijnen et al., 1989, 1990). The current
understanding of ASR mechanisms has recently been

summarised in Rajabipour et al. (2015). This paper focuses on
aspects only marginally covered in that summary, notably the
formation, composition and structure of ASR products and
their spatial distribution in concrete.

2.1 Reacting minerals

The dissolution of ‘silica’ (silicon dioxide regardless of specia-
tion) is related to the degree of crystallinity (Broekmans, 2004;
Marinoni and Broekmans, 2013). Defects in the quartz crystal-
line structure facilitate dissolution. Such defects can be caused
by mechanical deformation (e.g. mylonite, gneiss) or alterna-
tively by chemical impurities incorporated during growth. The
effect of deformed quartz from a fault zone on aggregate
reactivity was shown by Monteiro et al. (2001). Overall, quartz
is responsible for slowly developing ASR and leads to damage
in concrete structures after one to a few decades.

Due to the rapid cooling rates involved in their formation, vol-
canic rocks often contain a glassy matrix. These glasses are
susceptible to being dissolved in an alkaline environment and
may cause ASR. Poorly crystalline silica species such as
chalcedony and opal, and metastable polymorphs such as
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cristobalite and tridymite react relatively quickly with the
alkaline pore solution of concrete and may cause expansion
within a decade (Katayama, 1997).

Besides silica, alkalis present in reactive volcanic glasses
(Katayama, 2012a) may be released into the concrete pore sol-
ution. Moreover, common rock-forming minerals such as feld-
spars, micas, nepheline, clays and zeolites may release alkalis
especially when weathered, thus contributing to deleterious
ASR (Bérubé et al., 2002; Constantiner and Diamond, 2003;
Van Aardt and Visser, 1978).

2.2  ASR products

2.2.1  Formation

Hydroxyl, alkalis and calcium diffuse from the cement paste
into the aggregate provoking the dissolution of reactive min-
erals. Initial reaction products usually form a rim inside the
aggregate periphery (Katayama, 2012a; Saouma et al., 2015).
Thermodynamic modelling shows that supersaturation of the
ASR product is first attained inside the aggregate adjacent to
the cement paste (Guthrie and Carey, 2015), after which the
interior gets affected. Initial, very fine-grained ASR products
are deposited interstitially between mineral grains, and are dif-
ficult to identify. Only when stress generation has led to the
cracking of the aggregate, are larger deposits formed in these
newly created cracks, first within the aggregate (Figure 1) and
later as extruding products in the cement paste (Figure 4;
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Figure 1. Crystalline ASR product in an aggregate within cracks (1),
along mineral grain boundaries (2) and together with partially
dissolved quartz (3). The medium grey mineral is quartz and the
light grey one is calcite. Concrete from a retaining wall

Katayama, 2012a; Katayama et al., 2004; Leemann and Lura,
2013).

2.2.2  Chemical composition

The tiny volume of ASR product poses challenges for its
chemical analysis. Interstitial ASR products between mineral
grains may be detected by line scans showing the presence of
alkalis and calcium (Figure 2). However, as the volume of
ASR products only represents a small fraction of the volume
activated by the electron beam, reliable quantification is not
possible.

Deposits of ASR products with dimensions larger than a few
micrometres, usually formed after crack formation, can be ana-
lysed reliably with energy-dispersive X-ray spectroscopy (EDS)
or wavelength-dispersive X-ray spectroscopy. Prerequisites are
instrument set-up minimising analytical artefacts and the use
of carefully polished specimens.

The ASR product within aggregates consists of silicon
(Si), sodium (Na), potassium (K) and calcium (Ca), often
with minor contents of aluminium, iron and magnesium
(Fernandes, 2009, 2015; Katayama, 2012a). The typical
(Na+K)/Si ratio and Ca/Si ratio are both approximately
0-2-0-3 (e.g. Copuroglu, 2013; Katayama, 2012a; Leemann
and Lura, 2013; Leemann and Merz, 2013; Peterson et al.,
2006; Thaulow et al., 1996). Towards the edge of the aggregate,
the calcium content of ASR products increases whereas the
alkali content often decreases (Fernandes, 2015; Katayama,
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Figure 2. Location of an EDS line scan between two adjacent
quartz grains in gneiss aggregate. The white rectangle in the
larger image indicates the location of the smaller image, on which
the EDS line scan and the measured calcium and potassium
distributions are shown. Concrete from a dam
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Figure 3. Atomic Ca/Si ratio against atomic (Ca/(Na +K) ratio of
ASR products within the aggregate and in the cement paste
compared with C=S-H formed by the hydration of ordinary
Portland cement as analysed in a concrete produced with reactive
volcanic rock (Katayama, 2012a)

2012a; Katayama and Bragg, 1996; Leemann and Lura, 2013;
Thomas, 1998, 2001). Calcium uptake is even more pro-
nounced in extruded reaction products, and shifts towards the
composition of calcium-silicate-hydrate (C-S-H) (Figure 3).
There are exceptions to this general trend, for example, ASR
products of similar composition are occasionally formed
in air voids close to the aggregate. Unfortunately, in many
publications containing analyses of the ASR products it is not
clearly stated where the analysed products are located, compli-
cating their interpretation.

With regard to the formation (see previous paragraph) and the
composition of the reaction products, it has to be pointed out
that they are different from those model systems where silicon
dioxide and portlandite (calcium hydroxide (Ca(OH),)) are
mixed with alkaline solutions. As first reported by Hou et al.
(2004) and later confirmed by others (Kim and Olek, 2014;
Kim et al., 2015; Leemann et al., 2011), calcium-silicate—
hydrate forms first and only when portlandite is depleted are
ASR-type products formed. This sequence should not be con-
fused with the formation and composition of ASR products in
concrete as described above.

2.2.3  Crystalline structure

Two main types of ASR products are found. Reaction products
in the interior of an aggregate particle are predominantly crys-
talline, whereas reaction products along particle edges and in
paste cracks and voids are mostly amorphous (ASR gel).
Optical microscopy allows easy distinction between the two as
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Figure 4. Transition between crystalline ASR product in a cracked
aggregate and amorphous ASR product in the cement paste. Thin
section analysed with crossed polarisers and inserted gypsum
plate. Concrete from a bridge

the crystalline product is refractive and the amorphous is iso-
tropic (Figure 4). However, exceptions occur in both types.

The crystalline material is sometimes interpreted as an aged
amorphous product (e.g. Peterson et al., 2006; Sachlova et al.,
2010). However, this seems contradicted by the observation of
crystalline products in specimens exposed to only a few days of
accelerated testing conditions. Nevertheless, an amorphous pre-
cursor cannot be entirely precluded.

The crystalline ASR product has a platy morphology
(Figure 5) and a distinct X-ray diffraction (XRD) pattern (e.g.
Cole and Lancucki, 1983; Cole et al., 1981; Katayama, 2012a;
Marfil and Maiza, 2001; Peterson et al., 2006). Due to their
small dimensions, in situ characterisation of crystalline ASR
products can only be performed by micro XRD (Diahn et al.,
2016; Marinoni et al., 2015).

On the basis of the chemical compositions determined by
SEM-EDS or an electron probe micro-analyser, a number of
mineral names have been assigned to crystalline reaction pro-
ducts — for example, okenite (Cole and Lancucki, 1983), moun-
tainite and rhodesite (De Ceukelaire, 1991), okenite and
nekoite (Peterson et al., 2006), cryptophyllite and shlykovite
(Katayama, 2012a, 2012b). Benmore and Monteiro (2010)
determined the crystalline structure of surface-extruded reac-
tion products. However, as these gels have been in contact with
cement paste and were exposed to carbon dioxide, causing car-
bonation, they are likely not representative of ASR products
causing expansion. A recent analysis with synchrotron-based
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Figure 5. Morphology of crystalline AAR product in an air void.
Concrete from a bridge

micro XRD shows that the crystalline product within aggre-
gates is a new layer of silicate similar to mountainite and
rhodesite (Dahn er al.,, 2016). Its structure consists of an
(SixoOyg)-layered framework with wide channels and large
interlayer spaces, enabling incorporation of molecular water
and potassium, sodium and calcium. The analysed structure
helps to explain the intrinsic properties of the ASR product,
such as its variable Na/K ratio, stability in an alkaline environ-
ment and cation exchange and swelling capabilities.

2.3 Mechanism of expansion

Observations regarding field structures and laboratory tests
reveal that deleterious ASR is controlled by availability of
moisture (Kurihara and Katawaki, 1989; Nilsson, 1983;
Olafsson, 1992; Poole, 1992; Poyet et al., 2006), which is attri-
buted to water uptake of the reaction products. Synthetic
amorphous ASR products are known to be able to take up
substantial amounts of water at high relative humidity (RH)
(Kirkpatrick et al., 2005; Krogh, 1975; Leemann et al., 2011;
Vivian, 1950), thereby expanding and exerting stress (Struble
and Diamond, 1981). Imbibition has been attributed to capil-
lary suction and osmosis (Foster, 1932; Glasser, 1979; Helmuth
et al., 1993; Hench and Clark, 1978; Katayama, 2012a; Powers
and Steinour, 1955a, 1955b). Non-bridging oxygen and silanol
groups present in amorphous reaction products appear to
bond alkalis or water more effectively compared with crystal-
line material (Katayama, 2012b; Kirkpatrick et al., 2005).

The exchangeability of water and/or cations in kanemite (e.g.
Apperley et al., 1995; Kirkpatrick et al., 2005; Wieker et al.,
1998) appears very similar to the mechanisms known for clay

minerals (Anderson et al., 2010; Fink and Thomas, 1964;
Foster et al., 1954; Wrangler and Scherer, 2008), changing
lattice parameters and leading to swelling or contraction. The
open crystalline structure of the ASR reaction product pro-
posed by Dihn et al. (2016) also facilitates cation exchange
and water uptake related to RH or temperature, causing
volume changes.

Precipitation of a crystalline phase from a supersaturated sol-
ution can produce pressure (e.g. Flatt and Scherer, 2008;
Winkler and Singer, 1972). To the best of the authors’ knowl-
edge, the crystallisation pressure of the crystalline ASR
product has not yet been investigated.

To exert stress on its environment, a certain minimum viscosity
or E-modulus of the ASR reaction product is required
(Katayama, 2012a; Krogh, 1975). Highly expanding gels with
low viscosity will simply be squeezed into the paste without
exerting stress. However, the E-modulus of crystalline ASR
products within aggregates ranges from 8 to 12 MPa
(Leemann and Lura, 2013) and is thus able to exert stress.

Calcium is an essential constituent in the formation and
expansion mechanism of ASR  reaction products.
Incorporation of (divalent) calcium reduces swelling potential
compared with (monovalent) alkali varieties (Prezzi et al.,
1997; Rodrigues et al., 2001; Wieker et al., 1998), as previously
observed in micas (Hazen and Wones, 1972), and clays
(Kjellander et al., 1988). Consequently, expansion can be
expected to be reduced upon extrusion into the cement paste.

3. ACR

In ACR, dolomite (calcium magnesium carbonate
(CaMg(COs),)) reacts with dissolved sodium and potassium in
the alkaline pore solution, precipitating brucite magnesium
hydroxide in pockets within the dolomite (Figure 6). Sodium,
potassium and carbonate (COj) remain dissolved and react
with portlandite (calcium hydroxide), precipitating calcite
calcium carbonate forming haloes of calcite in the surrounding
cement paste (Figure 7), while recycling sodium and potassium
to the pore solution again. As such, this reaction is a dedolo-
mitisation and can be regarded as an ACR in a narrower
sense. In severe cases, it can negatively affect the soundness of
the aggregate (Princic et al., 2013). However, since it comprises
a net volume reduction, it does not cause expansion.

By contrast, finely dispersed silica in carbonate (calcite, dolo-
mite) aggregates has only recently been identified as the cause
for expansion by deleterious ASR (Grattan-Bellew and Chan,
2013; Grattan-Bellew et al, 2010; Katayama, 2004, 2010,
2012a). Earlier work wrongly attributed expansion to dedolo-
mitisation as the finely dispersed silica remained undetected in
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Figure 6. Dedolomitisation rim: partially dissolved dolomite
(D, bright grey) with newly formed brucite (B, medium grey) and
pores (black). SEM image in backscattering mode

Figure 7. Carbonate halo: dolomite aggregate (D) with
dedolomitisation resulting in calcite formation in the cement paste
(CP) adjacent to the aggregate. Thin section, crossed polarisers
and gypsum plate under optical microscope

the carbonate matrix (Swenson, 1957, Swenson and Gillott,
1960, 1964). However, the ASR caused by this type of silica is
independent of dedolomitisation. Whether the ACR in this
wider sense should be regarded as a combination of both
processes (Katayama, 2004, 2010, 2012a) is addressed by
Katayama et al. (2016) elsewhere in this issue.

4. Summary and outlook

This paper addresses selected aspects of the AAR, notably the
reacting minerals, the formation, composition and structure of
ASR products, and their mechanisms of expansion. Although
the knowledge of AAR is continuously increasing, there are
still gaps that need to be filled. They are given below.

m More in-depth knowledge is needed on the composition
and structure of the ASR products leading to decisive
stress generation. This has to be combined with the
sequence of formation and the spatial distribution of the
ASR products at different stages of the reaction.

m Although model systems are able to provide important
data, it is essential to increase the amount of data acquired
from concrete obtained from AAR-affected structures.

m Establishing thermodynamic and kinetic data on ASR
products would make modelling possible. Consequently,
some of the microstructural phenomena observed may be
better explained.

m Data on the effect of temperature on the physical properties
of ASR products should improve the transferability of the
results obtained in accelerated tests to concrete structures.

m The ultimate goal of understanding the mechanisms of the
ASR is to prevent damage in new concrete structures and
enable efficient repair of damaged concrete structures.
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forwarded to the author(s) for a reply and, if considered
appropriate by the editorial panel, will be published as
discussion in a future issue of the journal.
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