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A B S T R A C T

We address continuous two-dimensional (2D) star-junctions formed by different numbers of Su–Schrieffer-
Heeger (SSH) chains that have one common waveguide in the center of the junction. We show that by changing
waveguide shifts in the dimers forming individual SSH chains, one can create a rich variety of modes in the
center of the junction. Independently of the relation between non-equal bonds of the SSH chains, the in-gap
modes localized in the center of the junction can be considered as topological, either representing extensions
of the conventional topological edge stages or being modes induced by a defect at one of the SSH chain edges.
Degeneracy of the eigenvalues and structure of the localized modes of fully 2D junctions depend on their
symmetry and number of chains, and are different from their 1D counterparts obtained in the tight-binding
approximation. In the presence of the focusing nonlinearity of the medium such states give rise to families
of solitons with distinct stability properties depending on the number of chains in junction, waveguide shifts,
and mode symmetry.
1. Introduction

Waveguide arrays, alias star-junctions, representing several rays
connected with each other through a central site were considered in
diverse areas of physics, including optics where they were studied
theoretically [1–3] and experimentally [4,5], physics of Bose–Einstein
condensates [6], and in the frameworks of general lattice models [7,8].
Furthermore, linear and nonlinear junctions represent building blocks
for quantum graphs, on which rich dynamics can be considered [9–
13]. Gain guiding junctions [14] and non-Hermitian star-junctions [15]
were considered too.

Among the models of junctions explored so far one can distinguish
continuous and discrete ones. In the former case the centers (alias
edges, vertices, or knots) of the junctions are linked by the continuous
bonds described, say, by one-dimensional (1D) linear or nonlinear
Schrödinger equations. In the second case the bonds are governed
by the discrete equations and corresponding systems describe coupled
discrete 1D arrays. Most of the studies of star-junctions dealt with
the simplest case, where all bonds in each ray coupled to the central
site (or several sites forming the central cluster) are equal. At the
same time, it is well known that individual rays may display rather
unusual properties, when topological effects are introduced by unequal
alternating coupling strengths between the neighboring sites. The Su–
Schrieffer–Heeger (SSH) model [16] is the most explored example of
such a topological system. Considering permanently growing interest to
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such structures in topological photonics [17–19], it is natural to address
the properties of star-junctions assembled from topologically nontriv-
ial chains representing junction rays. This question has been briefly
touched in the literature. In particular two coupled (non-Hermitian)
SSH chains considered theoretically [20] and experimentally [21,22]
can be viewed as the simplest junction of two rays. In [23] the junctions
assembled of two crossing SSH chains were studied. Meantime, complex
2D star-junctions with multiple rays with various discrete rotational
symmetries have never been considered in either linear or nonlinear
settings.

It is known that even in lattices having simpler configuration than
star-junctions, inclusion of nonlinearity may bring unusual and in-
triguing new features into behavior of topological systems based on
waveguide arrays. In particular, self-action in such systems may result
in the formation of self-sustained hybrid states – topological solitons
– that bifurcate from linear topological modes [24–34] and that were
experimentally observed in various topological systems including Flo-
quet [35–37] and higher-order insulators [38–40]. Nonlinear effects in
single topological SSH chains were studied in [41–49].

In this work we investigate nonlinear star-junctions with different
number of rays which, being considered separately, represent SSH
chains. Several essential differences of the system considered here
clearly distinguishing it from previously considered discrete coupled
960-0779/© 2024 Published by Elsevier Ltd.
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chains should be emphasized. Discrete star-junctions obtained in the
tight-binding approximation from the mathematical point of view are
multi-component one-dimensional systems, where each configuration is
described by a multi-component vector, components of which are the
field amplitudes in the arrays. Here we consider truly two-dimensional
(2D) model, where the one-component field solves the 2D linear or non-
linear Schrödinger equation. While some properties of this system can
be predicted on the basis of the tight-binding approximation [10,11],
the difference between continuous system studied here and discrete
simplifications remain significant. Namely, in the fully 2D model the
eventual symmetry of the array becomes an important factor affecting
the degeneracy of modes, the number of guided modes differs from
the 1D discrete counterpart and becomes dependent on the waveguide
parameters, the stability of the truly 2D nonlinear modes is not pre-
dicted by the tight-binding approximations, and even the tight-binding
approximation itself poorly describes the physical situation when the
number of rays in star-junction increases (because strong overlap of
rays in the center of the junction comes into play in this case).

The paper is organized as follows. In Section 2 we formulate the
model and discuss relevant physical parameters. Basic predictions on
the mode structure and topology are presented using the discrete analog
in Section 3. The full scale numerical studies of the 2D NLS equation
modeling star-junctions with three, four, and five rays are reported
in Section 4. Families of solitons and their stability are presented in
Section 5. The outcomes of this analysis are summarized in Conclusion.

2. The model

We consider propagation of a light beam along the 𝑧 axis in a
nonlinear focusing medium with transverse shallow modulation of
the refractive index defining star-shaped topological star-junction. The
dynamics is described by the nonlinear Schrödinger (NLS) equation for
the dimensionless amplitude of the light field 𝜓

𝑖
𝜕𝜓
𝜕𝑧

= −1
2
𝛥𝜓 −(𝒓)𝜓 − |𝜓|2𝜓 (1)

where 𝛥 = 𝜕2∕𝜕𝑥2 + 𝜕2∕𝜕𝑦2 and 𝒓 = (𝑥, 𝑦). We are interested in star-
junctions assembled of 𝐾 rays located in space with equal angular
spacing 2𝜋∕𝐾 between neighbors. Each star-junction obeys 𝐾−fold
discrete rotational symmetry while each ray in it contains 𝑁 pairs
of waveguides (dimers) including central waveguide. The function
representing optical potential

(𝒓) = 𝑝
𝐾
∑

𝑘=1
𝑄𝑘(𝒓) − 𝑝(𝐾 − 1)𝑒−𝒓

2∕𝑑2 (2)

is considered for 𝑝 > 0, where each ray represents an SSH chain
modeled by

𝑄𝑘 = 𝑒−𝜂
2
𝑘∕𝑑

2
𝑁−1
∑

𝑗=0

[

𝑒−(𝜉𝑘−2𝑎𝑗+𝑎+2𝑠)
2∕𝑑2 + 𝑒−(𝜉𝑘−2𝑎𝑗)

2∕𝑑2
]

. (3)

Here 𝜉𝑘 = 𝑥 cos 𝛼𝑘 + 𝑦 sin 𝛼𝑘, 𝜂𝑘 = 𝑦 cos 𝛼𝑘 − 𝑥 sin 𝛼𝑘, 𝛼𝑘 = 2𝜋(𝑘 − 1)∕𝐾,
𝑑 is the width of the individual waveguide 𝑝𝑒−𝒓2∕𝑑2 , 2𝑎 is the spacing
between neighboring dimers (cells) in the presence of the shift 𝑠 ≠ 0,
such that 𝑠 = 0 corresponds to the non-dimerized limit, where the
distance between all waveguides is identical and is equal to 𝑎, 𝑝 =
(2𝜋𝑟0∕𝜆)2𝛿𝑛𝑛 is the dimensionless depth of an individual waveguide,
𝑛 is background refractive index and 𝛿𝑛 is the refractive index contrast,
𝜆 is the wavelength. Thus, all SSH chains share a common central
waveguide 𝑝𝑒−𝒓2∕𝑑2 , the total number of waveguides in a junction is
𝑁tot = 2𝑁𝐾 −𝐾 +1, and the discrete rotational symmetry group of the
system is the dihedral group 𝐷𝐾 . The examples of star-junctions with
𝐾 = 3, 4, and 5 rays with 𝑠 = 0 are presented in left outermost panels
(a) of Figs. 2–4.

The introduced optical potential, considered as a defect embedded
in a homogeneous linear medium, is known to sustain at least one
guided mode for any magnitude of 𝑝 > 0 [50,51]. On the other hand,
2

Fig. 1. (a) Example of a discrete star-junction for 𝐾 = 3. (b) and (c) Fully dimerized
limits corresponding to 𝛼 = 0 and 𝛽 = 0.

each of the individual waveguides, when isolated, supports one guided
mode for parameters considered here. Thus, by increasing the depth 𝑝
from zero to a certain finite value, one can achieve the regime, where
the total number of the propagation constants of the guided modes in
the entire star-junction is exactly equal to 𝑁tot . Below in this paper we
concentrate namely on this regime that allows reliable comparison of
the results obtained in the frames of our continuous model with results
of the tight-binding approach, on the one hand, and that corresponds
to typical experimental situation (in terms of parameters of the array),
on the other hand.

Thus, in our model the transverse and longitudinal coordinates
(i.e., 𝒓 and 𝑧) are normalized to the characteristic scale 𝑟0 = 10 μm
and diffraction length 2𝜋𝑛𝑟20∕𝜆, respectively, where 𝜆 = 800 nm is
the working wavelength. Further, in numerical simulations we set
waveguide depth 𝑝 = 5 (this corresponds to refractive index contrast
of 𝛿𝑛 ≈ 5.6 × 10−4), spacing 𝑎 = 3 (corresponding to 30 μm), and
width 𝑑 = 0.5 (corresponding to 5 μm). Such arrays can be written
in transparent dielectrics, such as fused silica, using well-established
fs-laser writing technology [52].

3. Discrete star-junctions

Since the chosen regime of operation of star-junctions is some-
what close to the tight-binding limit, we start with a discrete model
corresponding to our system. We emphasize, however, that unlike in
conventional 1D (or 2D) arrays, now the applicability of the tight-
binding limit can be violated in the center of the junction (even if
it works well for individual rays far from the center), especially for
𝑠 > 0, when the density of the waveguides and therefore the evanescent
mode coupling increases in the center of the junction. Therefore, in
this section we intend to provide qualitative analytical description of
the spectrum of star-junction with SSH rays, while rigorous numerical
modeling of continuous Eq. (1) will be presented in the next section.

Thus, we consider the simplest discrete star-junction, whose sche-
matic illustration is provided in Fig. 1. In this section the rays are con-
sidered semi-infinite and we are interested only in modes localized in
the center of the junction. For the coupling between nearest neighbors
we use parameters 𝛼 and 𝛽, as denoted in Fig. 1. The cases 𝛼 < 𝛽,
𝛼 = 𝛽, and 𝛼 > 𝛽 correspond, respectively, to shifts 𝑠 > 0, 𝑠 = 0, and
𝑠 < 0 introduced above. Without loss of generality we fix 𝛼 ≥ 0 and
𝛽 ≥ 0. We use 𝑢𝑘𝑛 and 𝑣𝑘𝑛 for the fields on the 𝑛−th cell of the 𝑘−th ray:
𝑘 = 1, 2,… , 𝐾. To the central site we attribute 𝑛 = 0 (without the upper
index 𝑘), while the cells in the arrays are numbered by 𝑛 = 1, 2,…, as
this is explained in Fig. 1(a). For 𝛼 = 𝛽 (i.e. for equal spacing between
all waveguides) such array was considered in [7].

The introduced junction is described by the system

𝑖
𝑑𝑢0
𝑑𝑧

=𝛼(𝑣11 + 𝑣
2
1 +⋯ + 𝑣𝐾1 ) (4a)

𝑖
𝑑𝑣𝑘1
𝑑𝑧

=𝛼𝑢0 + 𝛽𝑢𝑘1 , (4b)

𝑖
𝑑𝑣𝑘𝑛
𝑑𝑧

=𝛼𝑢𝑘𝑛−1 + 𝛽𝑢
𝑘
𝑛 , 𝑛 ≥ 2 (4c)

𝑖
𝑑𝑢𝑘𝑛 =𝛽𝑣𝑘 + 𝛼𝑣𝑘 , 𝑛 ≥ 1 (4d)

𝑑𝑧 𝑛 𝑛+1
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Fig. 2. (a) Examples of star-shaped SSH waveguide arrays with 𝐾 = 3 rays and 𝑁 = 5
dimers in each ray for different values of shift 𝑠. (b) Linear spectrum of the array versus
waveguide shift 𝑠. (c)–(h) Profiles of different linear modes of the array corresponding
to red circles in (b). The value of the shift and mode index are indicated on each
panel. Profiles of modes are shown within 𝑥, 𝑦 ∈ [−30,+30] window. For numbering of
the modes see the text.

The simplest way to understand expected features of the introduced
star-junctions is to consider their fully dimerized limits [53], shown in
Figs. 1(b) and 1(c). One observes that modes localized in the center
can exist in both cases: 𝛼 = 0 and 𝛽 = 0. At 𝛼 = 0 [panel (b)],
representing the limiting case of fully dimerized rays in topological
phase (considered separately) one has the central mode 𝑢0 ≠ 0 with all
other fields 𝑢𝑘𝑛 = 𝑣𝑘𝑛 = 0. On the other hand, when 𝛽 = 0 [for 𝐾 = 3 this
case is illustrated in Fig. 1(c)], one readily obtains that there are 𝐾 +1
modes in the cluster composed of the central waveguide 𝑢1 connected
by 𝛼-bonds with 𝐾 side waveguides 𝑣𝑘1 (𝑘 = 1,… , 𝐾). 𝐾 − 1 of these
modes have 𝑢0 = 0 and 𝑣11 +⋯+ 𝑣𝐾1 = 0 where all 𝑣𝑘1 are constants, and
correspond to zero eigenvalue. The two remaining modes are given by
𝑢0(𝑧) = ±𝑢𝐾1∕2𝑒±𝑖𝛼𝐾1∕2𝑧 and 𝑣11(𝑧) = ⋯ = 𝑣𝐾1 (𝑧) = 𝑢𝑒±𝑖𝛼𝐾1∕2𝑧, where 𝑢 is
a constant.

In the general case 𝛼𝛽 > 0 we address only the central localized
modes, whose propagation constants 𝑏 are outside the continuous
spectrum given by 𝑏2(𝑞) = 𝛼2 + 𝛽2 + 2𝛼𝛽 cos 𝑞 (here it is assumed that
all 𝑢, 𝑣 ∝ 𝑒𝑖𝑞𝑛+𝑖𝑏(𝑞)𝑧). Thus we look for a solution of (4) in the form

𝑢0 = 𝑢𝑒𝑖𝑏𝑧, 𝑢𝑘𝑛 = 𝑢𝜎𝑛𝑒−𝜆𝑛+𝑖𝑏𝑧, 𝑣𝑘𝑛 = 𝑣𝑘𝜎𝑛𝑒−𝜆𝑛+𝑖𝑏𝑧 (5)

where 𝑛 ≥ 1, 𝜎 is either 1 or −1, constants 𝑣𝑘 are to be found, and
without loss of generality 𝑢 is considered real. Notice that while 𝑢-
waveguides in all rays have the same amplitudes, i.e., they do not
depend on 𝑘, 𝑣-waveguides in different rays, generally speaking, have
different amplitudes. Now the system (4) is reduced to

− 𝑏𝑢 = 𝛼𝜎𝑒−𝜆
𝐾
∑

𝑣𝑘 (6a)
3

𝑘=1
Fig. 3. Examples of arrays with 𝐾 = 4 rays and 𝑁 = 5 dimers (a), transformation of
linear spectrum with shift 𝑠 (b), and examples of eigenmodes (c)–(h).

− 𝑏𝑣𝑘 =
(

𝛽 + 𝜎𝑒𝜆𝛼
)

𝑢 (6b)

− 𝑏𝑢 =
(

𝜎𝑒−𝜆𝛼 + 𝛽
)

𝑣𝑘 (6c)

Taking into account that for the boundness of the modes one must
impose 𝜆 > 0, one can distinguish two cases.

In the first case 𝛼 < 𝛽 [it generalizes the limit illustrated in
Fig. 1(b)], one obtains one mode corresponding to 𝑏 = 0, i.e., inside
the gap of the continuous spectrum,

𝜎 = −1, 𝑣1,2,…,𝐾 = 0, 𝑢 ≠ 0, 𝜆 = ln
𝛽
𝛼
. (7)

This mode can be viewed as a generalization of the usual edge state of
the SSH model in the topological phase to a star-junction.

In the second case, when 𝛼 > 𝛽 [it generalizes the limit illustrated
in Fig. 1(c)], one can construct 𝐾 − 1 linearly independent modes
corresponding to 𝑏 = 0:

𝜎 = −1, 𝑢 = 0,
𝐾
∑

𝑘=1
𝑣𝑘 = 0, 𝜆 = ln 𝛼

𝛽
. (8)

Each such mode is determined by the respective set of amplitudes
(𝑣1, 𝑣2, 𝑣3,… , 𝑣𝐾 ). In particular one can choose them in the forms
(1,−1, 0,… , 0), (1, 0,−1,… , 0), . . . , and (1, 0, 0,… ,−1). A remarkable
fact is that the obtained solutions can also be interpreted as topological
defect modes. While they do not have analogs in simple SSH chains,
they exist in the SSH model with a multi-waveguide defect at one (or
both) edges. Propagation constants of these modes also fall into the
center of the gap and they disappear at 𝛼 = 𝛽, when the gap closes.
The link between this case and the conventional finite SSH chain in a
topological phase can be established by noting that for the described
modes 𝑢0 = 0, and effectively the rays are decoupled with the central
site, while the most central waveguide of each of the rays is coupled
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Fig. 4. Examples of arrays with 𝐾 = 5 rays and 𝑁 = 5 dimers (a), transformation of
linear spectrum with shift 𝑠 (b), and examples of eigenmodes (c)–(h).

to the rest of the ray by 𝛽. For 𝛼 > 𝛽 such edge of the chain supports a
topological modes.

In this sense one can say, that the edge defect induces topology in
the remainders of the rays (now viewed as started at 𝑣𝑘1 waveguides,
i.e., excluding 𝑢0-waveguide). To distinguish these two situations, the
in-gap modes in the former case 𝛼 < 𝛽 will be termed as (usual)
topological modes, while in the latter case 𝛼 > 𝛽, they will be referred
to as defect-induced modes. All modes at the center of a gap should
therefore have staggered tails.

Finally one can find defect modes in the semi-infinite gap, i.e., for
|𝑏| > 𝛼 + 𝛽. To this end we fix 𝜎 = +1 and look for a solution (6) with
𝑣1 = ⋯ = 𝑣𝐾 = 𝑣 and 𝑢𝑣 > 0. Then from (6a) and (6c) we obtain the
decay exponent for defect modes

𝜆 = ln
𝛼(𝐾 − 1)

𝛽
(9)

while the propagation constants of such modes are given by

𝑏 = ±(𝛼2 + 𝛽2 + 2𝛼𝛽 cosh 𝜆)1∕2. (10)

These two modes exist for 𝛼(𝐾 − 1) > 𝛽. Interestingly, this means that
for a star-junction with 𝐾 = 2 these modes can co-exist only with
defect-induced modes at 𝛼 > 𝛽, while for a star-junction with 𝐾 > 2
they can coexist with usual topological modes in the parameter range
𝛼 < 𝛽 < 𝛼(𝐾 − 1). This provides a remarkable example of coexistence
of topological and non-topological localized states in the center of the
junction with 𝐾 = 3 or more rays.

4. Modal spectrum of star-junctions

Turning now to numerical analysis of the fully 2D continuous model
described by (1)–(3), we consider finite rays, representing SSH chains
4

composed of 𝑁 dimers (alias cells) where counting starts with the
central waveguide. Topological properties of this system are controlled
by the shift 𝑠. If 𝑠 < 0 the coupling between waveguides inside each
dimer (cell) becomes weaker than the coupling between waveguides
from neighboring dimers, thus corresponding to the topologically phase
(it corresponds to 𝛼 < 𝛽 in the above discrete model). At 𝑠 > 0 we
have the defect-induced topological phase (it corresponds to 𝛼 > 𝛽 in
the above discrete model). Middle and right panels in Figs. 2(a)–4(a)
below show examples of the respective star-junctions with 𝑠 ≠ 0.

To demonstrate qualitative modification of the linear spectrum of
star-junctions upon variation of shift 𝑠, we omit the nonlinear term in
Eq. (1) and address linear eigenmodes 𝜓𝑛 = 𝑤𝑛(𝒓)𝑒𝑖𝑏𝑛𝑧, where 𝑤𝑛(𝒓) is a
real function and 𝑏𝑛 is the propagation constant. Due to large, but finite
size of the junctions considered in numerics, all linear modes in such
structures have size not exceeding the size of the star-junction and they
all have positive propagation constants.

Strictly speaking, localized modes in a 2D Schrödinger equation,
featuring discrete rotational symmetry, must be labeled by two mode
indexes, one of which counts the eigenvalues, i.e., the propagation
constants of the defect modes 𝑏𝑛 of different types, while the second
one would account for eventual degeneracy of an eigenvalues. How-
ever, because of the complexity of the problem, in particular due to
different symmetries of the potential (2), (3) and that of the boundary
conditions, numerically all obtained modes have distinct propagation
constants (although the difference can be extremely small) and only
one of the modes from the subspace determined by discrete rotations
is shown. This allows us to sort the numerically obtained modes such
that 𝑏𝑛 decreases with increase of mode index 𝑛 (i.e., to use a single
scalar index to identify a mode).

Fig. 2(b) illustrates the transformation of the eigenvalue spectrum
upon variation of shift 𝑠 in the array with 𝐾 = 3 rays. At 𝑠 < 0 a
gap opens in the spectrum that hosts four modes of topological origin:
One of them indicated by the red dots is localized in the center of
star-shaped array [Fig. 2(d)]. This central mode corresponds to the
solution (7) for the discrete model, and it features all the properties of
topological state predicted above: the light concentrates mainly in only
one type of waveguides (belonging to one sublattice) and the mode is
staggered, i.e., the sign of 𝑤𝑛(𝒓) changes on neighboring dimers in each
array. The localization of topological mode increases with increase of
|𝑠|, while its propagation constant becomes practically independent of 𝑠
even for moderate shifts, that is the natural consequence of the strong
localization on scales smaller than the distance between neighboring
waveguides. Three other modes, obtained for 𝑠 < 0, form at the outer
ends of each ray (due to the integer number of dimers) and we do not
show them in the figure. In Fig. 2 bulk branches are shown by black
dots in Fig. 2(b), the example of one such bulk mode is provided in
Fig. 2(c).

Upon increase of the shift, the gap reopens and the spectrum at 𝑠 > 0
hosts two types of defect-induced modes (that can be also considered as
states of topological origin, as discussed above) with different internal
structures depicted in Figs. 2(g) and 2(h) (other modes with similar
internal structure can be obtained from the shown ones by rotation
through the angle 2𝜋∕3). These are 2D analogs of the central modes
(8) obtained in the tight-binding approximation. The number of defect-
induced modes in the gap at 𝑠 > 0 depends on the number of rays in
star-junction. While in the case of the tight-binding model there were
𝐾 − 1 such modes [given by Eq. (8)], in the continuum model, this
counting becomes more complicated.

The coexistence of the topological and non-topological defect modes
branching out at some 𝑠 from the upper and lower bulk bands was
predicted by the tight-binding model [see (9) and (10)]. Now this is
confirmed in full numerical simulations presented in Fig. 2(b) with blue
and green dots. The peculiarity of the continuous model, however, is
that the branch points for the upper and lower branches are generally
speaking different [see also below]. In the case of three rays, they are

close to the point 𝑠 = 𝑠0 ≈ −0.11 [see Fig. 2(b)]. Unlike topological
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modes, non-topological defect states have light in each waveguide.
In modes from the upper (blue) branch the field is in-phase in all
waveguides [Fig. 2(e)], while in modes from the lower (green) branch
the field changes its sign between neighboring waveguides [Fig. 2(f)].
Localization of these modes gradually increases with increase of 𝑠 > 𝑠0
[cf. Eq. (9)]. Notice that non-topological branches, depicted by blue
and green lines in Fig. 2(b), remain for 𝑠 > 0. The physical reason
for localization of the modes of the types shown in Fig. 2(e)–(h)
can be viewed as geometry-mediated local increase of the density of
waveguides in the center of star-junction.

Similar transformation of linear spectrum with 𝑠 is encountered
in structures with 𝐾 = 4 (Fig. 3) and 𝐾 = 5 (Fig. 4) rays. All of
them host single topological mode in the center of the star-junction at
𝑠 < 0 that co-exists with topological modes at outer ends of the rays.
The richness of shapes of topological modes increases with increase
of the number of rays 𝐾 in the structure [cf. Figs. 3(d) and 4(d)].
As peculiarities of the continuum model, as compared with its tight-
binding approximation, we notice that with increase of the number
of rays in our continuous model the coupling between non-central
waveguides belonging to different rays comes into the play, leading to
gradual upward shift of the 𝑏𝑛(𝑠) curves. Moreover, increase of 𝐾 leads
to notable difference in bifurcation points (values of 𝑠) at which defect
mode branches shown with blue and green dots in Figs. 3(b) and 4(b)
emerge from bulk bands. This difference is particularly well visible for
𝐾 = 5 array. In the 𝐾 = 5 array there are two types of defect-induced
modes in the finite gap. Their examples are shown in Fig. 4(g) and
Fig. 4(h).

Unlike in the discrete model, in the defect-induced topological
phase, now the value and degeneracy of the propagation constants
depend on both 𝑠 and 𝐾 that occurs due to increasing strength of
evanescent coupling between waveguides belonging to neighboring
arrays (this effect is not accounted for by the discrete model). One can
see that propagation constants of defect-induced in-gap modes slightly
change with 𝑠, this is particularly visible for 𝐾 = 5 junction [Fig. 4(b),
cf. the magenta branches in this figure and in Fig. 2(b) for 𝐾 = 3].
An unexpected result is shown in Fig. 3(b) where in the case of even
number of waveguides, 𝐾 = 4, there appear two branches of the defect-
induced modes, see magenta and dark yellow dots. Furthermore, one
of these branches, the dark yellow one, is notably shifted into lower
part of the finite gap when 𝑠 increases. For 𝐾 = 4 the branch shown by
magenta dots represents eigenvalues of dipole-like modes [an example
is shown in Fig. 3(g)]. The lower branch of the defect-induced modes
(dark yellow dots) correspond to quadrupole-type modes.

5. Solitons in star-junctions

Now we turn to the properties of nonlinear modes (alias solitons)
that bifurcate from the linear defect modes. We thus take into account
nonlinear term in Eq. (1) and look for soliton solutions in the form
𝜓(𝒓, 𝑧) = 𝑤(𝒓)𝑒𝑖𝑏𝑧. Now the propagation constant 𝑏 parameterizes
a soliton family and determines the dependence 𝑈 (𝑏), where 𝑈 =
∬ |𝑤|2𝑑2𝒓 is the total soliton power. We first consider solitons emerging
in the usual topological phase, at 𝑠 < 0, and residing in the center
of the star-junction. As usual, in a focusing media, amplitudes and
powers of such states increase away from the bifurcation point, where
propagation constant coincides with the eigenvalue of the linear mode
[the dashed vertical line in Fig. 5(a)] that are practically identical in
the star-junctions with different number of rays 𝐾. In the focusing
nonlinear medium considered here, upon increase of the nonlinearity,
the soliton propagation constant shifts towards the top of the allowed
band [right gray region in Fig. 5(a)], and enters the allowed gap where
it coexists with delocalized bulk modes that is accompanied by a rapid
growth of the total power. This increase of the power inside the gap
occurs due to increasing extension of the solitons across array [cf.
solitons near the bifurcation point in Figs. 5(b), (d), and (f) with the
respective shapes close to the allowed band in Figs. 5(c), (e), and (g)].
5

Fig. 5. (a) Power of topological solitons bifurcating from linear topological state, whose
eigenvalue is marked by the dashed line, versus propagation constant 𝑏 in star-junctions
with 𝑠 = −0.4 and different number of rays 𝐾. Gray regions correspond to bulk bands
of linear spectrum. (b)–(g) Soliton profiles corresponding to the red circles in (a)
in structures with different number of rays 𝐾. Indices of linear modes from which
bifurcation occurs are indicated on the profiles.

Solitons, in general, inherit the internal structure of linear topological
modes, but in nonlinear regime both waveguides in the central dimers
become populated. Discrete rotational symmetry of topological solitons
is determined by discrete rotational symmetry of corresponding array.
Remarkably, analysis of stability that was performed using direct prop-
agation in the frames of Eq. (1) of weakly perturbed by broad-band
input noise solitons has shown that for our parameters whole families
of topological solitons for any number of rays 𝐾 in the array are
stable, even when such states couple with modes in the band, becoming
delocalized.

In the defect-induced topological phase, at 𝑠 > 0, soliton families are
richer, because in this phase linear spectrum contains several localized
modes with different internal structure and in different gaps, from
which soliton families can bifurcate. Representative 𝑈 (𝑏) dependencies
for solitons in 𝐾 = 3 array are presented in Fig. 6. In the top
semi-infinite gap increasing with 𝑏 nonlinearity leads to progressive
localization of the non-topological soliton and its eventual contraction
to the central waveguide [see example in Fig. 6(b)]. In contrast, non-
topological soliton from the bottom gap that bifurcates from defect
mode with staggered tails becomes more extended when 𝑏 increases
[Fig. 6(g)], and delocalizes when 𝑏 enters lower band (left gray region).
The non-topological defect solitons in the top and bottom gaps are
completely stable. In finite gap one finds two types of defect-induced
solitons with different internal structures [Figs. 6(c) and 6(e)]. Each
such family has degeneracy 𝐾 with other nonlinear modes obtained
by the rotation through the angle 2𝜋∕𝐾. When such solitons shift into
the top band [right gray region in Fig. 6(a)], one of them extends
along all three rays [Fig. 6(d)], while the other soliton extends along
two rays only, with no light in the third ray [Fig. 6(f)]. These two
families feature very different stability properties. Solitons bifurcating
from linear mode with index 𝑛 = 14 depicted in Figs. 6(c) and 6(d)
are stable only near bifurcation point and become unstable even at
moderate powers [in Fig. 6 stable (unstable) families are shown with
black (red) color]. In contrast, solitons bifurcating from mode with
𝑛 = 15 [Figs. 6(e) and 6(f)] are always stable.
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Fig. 6. (a) Families of solitons bifurcating from different defect modes if star-junction
with 𝐾 = 3 rays with 𝑠 = +0.4. (b)–(g) Examples of solitons corresponding to the red
circles in (a). Black families correspond to stable solitons; red families correspond to
unstable solitons.

Families of solitons in a star-junction with 𝐾 = 4 rays are presented
in Fig. 7(a). As in the previous case, two families of stable defect non-
topological solitons, shown in Figs. 7(b) and (g), bifurcate towards
the top semi-infinite and bottom gaps. Two families of defect-induced
solitons, formed in the finite gap have different symmetry and bifurcate
from linear modes with different propagation constants. Among them,
quadrupole-like solitons are stable in considerable part of the gap at
lower amplitudes, but become unstable at higher amplitudes [Figs. 7(e)
and 7(f)]. The family of the dipole-like solitons from Figs. 7(c) and 7(d)
is stable only near the bifurcation point, and becomes unstable even at
moderate amplitudes.

We also considered star-junctions with 𝐾 = 5 and larger number of
rays. In all the cases we observe a general situation when a linear defect
mode gives origin to a nonlinear family. The general tendency with
existence of single stable soliton family at 𝑠 < 0, and several families
with distinct stability properties (especially in finite gap) at 𝑠 > 0 is
observed in such structures as well. To confirm the stability results,
in Fig. 8 we show a typical example of the stable propagation of a
perturbed topological soliton at 𝑠 = −0.4 [Fig. 8(a)]. The unstable in-
gap state in defect-induced topological phase at 𝑠 = +0.4 demonstrates
gradually increasing oscillations of central spots that are accompanied
by radiation and eventual expansion of soliton [Fig. 8(b)]. Stable
defect-induced soliton at the same propagation constant maintains its
shape over very long distances, even when it is perturbed [Fig. 8(c)].

6. Modes in junctions with structural defects

To confirm that the in-gap modes in a star-junction have topological
origin and that they are not affected by deformations of the struc-
ture, we introduced perturbation into the 𝐾 = 3 array that breaks
its three-fold discrete rotational symmetry — namely, we removed
three outermost waveguides from one of the rays of the structure, as
shown in Figs. 9(b) and 9(c). Comparing the linear spectra of deformed
[Fig. 9(a)] and original [Fig. 9(e)] arrays, we observe that the very
existence of the in-gap modes in the center of star-junction is not
affected. The difference between topological (𝑠 < 0) and defect-induced
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Fig. 7. (a) Families of solitons bifurcating from different linear modes in a star-junction
with 𝑠 = +0.4 and 𝐾 = 4. (b)–(g) Examples of solitons corresponding to the red circles in
(a). Black branches correspond to stable solitons; red branches correspond to unstable
solitons.

Fig. 8. Stable propagation of a perturbed topological soliton at 𝑠 = −0.4 (a), decay
of an unstable defect-topological soliton at 𝑠 = +0.4 (b), and stable propagation of a
defect-topological soliton at 𝑠 = +0.4 (c) in star-shaped SSH arrays with 𝐾 = 3 rays. All
solitons correspond to 𝑏 = 0.89, the index of linear modes from which they bifurcate is
indicated on each panel.

(𝑠 > 0) modes consists in emergence of additional branches inside the
gap, which appear due to the introduced defect. As expected, when a
defect mode is strongly localized, it remains very weakly affected by
the introduced defect [c.f. Figs. 9(d) and 2(d); the mode numbers are
different because of different numbers of modes in these cases]. Clearly,
for small |𝑠| → 0, when widths of the modes are comparable with the
size of the structure, the deformation manifests in asymmetry of the
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Fig. 9. Comparison of the linear spectrum of (a) star-shaped arrays with 3 removed
waveguides in the horizontal ray, as shown in (b) and (c) for 𝑠 = −0.4 and 𝑠 = 0.4,
respectively, with the spectrum of (e) the star-junction with rays of equal length. (d)
Example of a topological mode at 𝑠 = −0.3 corresponding to the red dot in (a). Here
𝐾 = 3.

mode. Because we removed odd number of waveguides, the modified
ray acquires a ‘‘topological edge’’ at 𝑠 > 0 [Fig. 9(c)], thus hosting a
standard SSH topological mode at its outer end: this mode is clearly
visible in spectrum at 𝑠 > 0 [red dots at 𝑠 > 0 in Fig. 9(a)].

7. Conclusions

Summarizing, we have shown that SSH chains arranged in two-
dimensional star-shaped configuration with properly chosen param-
eters of the waveguides, allow for existence of three types of the
central modes. The first one is an extension of the conventional topo-
logical edge states in the SSH arrays, which survives in the presence
of several rays. The propagation constant of such mode is located
in spectral gap. The second type of the modes (there are several of
them) with the propagation constants in the gap can be viewed as
the defect-introduced topological modes. They also have analogs in
the conventional SSH chains with a defect site on the one side of the
chain. The two types of the modes occur at different parameters of the
rays, and disappear when coupling constants between all waveguides
become equal. Finally, there are defect modes localized in the center
of the star-junction whose propagation constants are located above and
below the top and bottom bands of the continuous spectrum. Each type
of the linear defect mode gives origin to a family of nonlinear modes
enabled by the focusing nonlinearity, which can be stable for large
range of the junction parameters and amplitude of the modes.
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