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Abstract: Flat-band periodicmaterials are characterized by

a linear spectrum containing at least one band where the

propagation constant remains nearly constant irrespective

of the Bloch momentum across the Brillouin zone. These

materials provide a unique platform for investigating phe-

nomena related to light localization. Meantime, the inter-

action between flat-band physics and nonlinearity in con-

tinuous systems remains largely unexplored, particularly

in continuous systems where the band flatness deviates

slightly from zero, in contrast to simplified discrete systems

with exactly flat bands. Here, we use a continuous super-

honeycomb lattice featuring a flat band in its spectrum to

theoretically and numerically introduce a range of stable

flat-band solitons. These solutions encompass fundamen-

tal, dipole, multi-peak, and even vortex solitons. Numerical

analysis demonstrates that these solitons are stable in a

broad range of powers. They do not bifurcate from the flat

band and can be analyzed using Wannier function expan-

sion leading to their designation asWannier solitons. These

solitons showcase novel possibilities for light localization

and transmission within nonlinear flat-band systems.
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1 Introduction

Existence of a flat band or of several flat bands in the

spectrum of a linear Hamiltonian significantly changes the

properties of a system. This is well understood theoreti-

cally and verified experimentally in diverse areas of physics

ranging from solid-state physics, where flat bands appear

in bi-layer graphene, to atomic and optical mono-layered

systems, where flat bands arise in spectra of some lattice

potentials [1]–[5]. The majority of studies of optical flat-

band systems was concentrated on discrete settings, which

represent tight-binding limits of the respective continuous

models with periodic refractive index landscapes. From the

theoretical point of view discrete lattices benefit from the

existence of exact flat bands and from the possibility of

algorithmic design of structures that feature such bands

[6]. From the experimental point of view, discrete models

adequately describe light propagation dynamics in arrays

of sufficiently deep waveguides [7]–[17] representing also

one of the most powerful platforms for the exploration of

self-action of light in periodic environment, but produce

considerable deviations from observed dynamics in lattices

with smooth refractive index landscapes or in arrays with

relatively small refractive index contrast. Very recently,

photonic structures with multiple flat bands on the basis of

microwave resonators were reported [18].

Exactly flat bands in discrete systems have opened

opportunities for construction of new types of self-sustained

states. Compactons and solitons were shown to exist in

both conservative and dissipative discrete arrays [19]. Two-

dimensional thresholdless solitons bifurcating from linear

compact modes have been found in kagome arrays [20].

Flat-band solitons and nonlinear localized flat-band modes

were also reported in sawtooth-like lattices [21], diamond

chain lattices [22], [23], Stub lattices [24], [25], Lieb lattices

[26]–[29], and octagonal-diamond lattices [30]. A summary

of recent theoretical and experimental advances in the area

of multidimensional localized structures in optical media,

including the formation of different types of lattice solitons
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in discrete and continuous physical models can be found in

Ref. [31].

However, in genuinely continuous systems, whose

accurate description requires going beyond tight-binding

approximations, exactly flat bands do not exist. Instead,

one can realize continuous systems with nearly flat bands,

whose width is sufficiently small, but not exactly zero. We

emphasize that here the flatness of the band is implied

in all directions of the reduced Brillouin zone (BZ). This

opens the important and so far unaddressed question about

the diversity, existence, and bifurcations of self-sustained

nonlinear states in such two-dimensional (2D) continuous

waveguiding systems.

Some preliminary conclusions that the behaviour of

nonlinear states in such systems can be very unusual and

can sharply contrastwith behaviour of discrete systems, can

be drawn on the basis of recent studies of Wannier soli-

tons in 1D flat-band system describing spin–orbit coupled

Bose–Einstein condensates [32] and studies of light propaga-

tion in photonic moiré lattices [33], where nearly all higher

bands of the optical potential are flat, allowing excitation of

2D solitons practically with zero power threshold [34].

In addition to obvious limitations of the tight-binding

(discrete) models that neglect other (non-flat) bands which

are necessarily excited in nonlinear systems, there is also

a conceptual difference consisting in certain ambiguity of

such models. Indeed, deriving a discrete model from a con-

tinuous one requires definition of a proper basis. Even

restricting the consideration to the most natural choice

of a basis of Wannier functions (WFs), the latter are not

uniquely defined, what is particularly relevant for two- and

three-dimensional systems [35]. The coupling coefficients of

the respective one-band discrete approximation are deter-

mined by the hopping of the chosen basis functions, and

thus are not uniquely defined for a given continuousmodel,

aswell. On the other hand, different continuousmodelsmay

result in the same equation of the tight-binding approxi-

mation. This does not allow one to make one-to-one cor-

respondence between the original nonlinear continuous

model and its tight-binding approximation, what makes

direct study of the continuous models particularly relevant.

In this work we use continuous superhoneycomb lat-

tices that possess a nearly flat band in their linear spectrum,

to study the emergence and stability properties of solitons

of very different types. Our choice of the superhoneycomb

lattice is dictated by its properties which are known due to

previous studies [16], [36], [37] allowing us to straightfor-

wardly find the parameter enabling a nearly flat band. By

changing the depths of some waveguides it is possible to

tune the band structure such that forbidden gap appears

(a) (b) (c)

(d) (e) (f)

Figure 1: Superhoneycomb lattice and its band structure. (a) Super-

honeycomb lattice, where all waveguides have the same depth p = 8.0.

The basis vectors of the Bravais lattice 𝒗1,2, the distance d between two

sites, and labels of sites within primitive lattice cell are shown.

(b) Superhoneycomb lattice with depths of sites A and B p
nA
= p

nB
= 8.0

and depths of sites C, D, E p
nC
= p

nD
= p

nE
= 7.8. We use the notation

nA for positions of A sites, and similar notations nD, . . . , nE for positions

of other sites. (c) Superhoneycomb lattice with p
nA
= p

nB
= 7.8 and

p
nC
= p

nD
= p

nE
= 8.0. (d–f) Band structures of lattices depicted in

panels (a–c), respectively. The flat band present in the spectrum is

indicated by red line in (d) and is preserved even when the gap appears

in (e, f). Other parameters are d = 2 and w = 0.5.

either above or below the flat band, as shown in Figure 1

in the following text. This allows to obtain flatband solitons

in this continuous system both in themediumwith focusing

(above the flat band) and defocusing (below the flat band)

nonlinearity. In addition the degree of the band flatness that

one can achieve for this type of the lattice exceeds band

flatness for more traditional Lieb and kagome lattices with

the same depth and waveguide spacing. We report families

of flat-band soliton and vortex-soliton solutions and show

that in continuous lattices, unlike in their discrete counter-

parts, they are not thresholdless anymore. The thresholds

for solitons of very different types, such as fundamental and

vortical ones, may be very small and comparable.

2 Flat bands in superhoneycomb

lattices

The dimensionless envelope Ψ of a paraxial light beam

propagating along the z-direction in a 2D optical lattice,

described by the function (r), where r = (x, y), is gov-

erned by the nonlinear Schrödinger (NLS) equation

i
𝜕Ψ
𝜕z

= HΨ− 𝜎|Ψ|2Ψ, (1)

with the linear Hamiltonian
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H = − 1

2
∇2 −(r) (2)

where ∇ = (𝜕∕𝜕x, 𝜕∕𝜕y) and 𝜎 = ±1 corresponds to the

Kerr medium either with a focusing (𝜎 = +1) or defocusing
(𝜎 = −1) nonlinearity. In this work we focus on stationary

states of the problem described by Equations (1) and (2).

Such states have the form Ψ = 𝜓 (r) exp(ibz), where b is

the propagation constant, and the function 𝜓 (r) describing

the transverse profile of the mode, solves the stationary

nonlinear problem

−b𝜓 = H𝜓 − 𝜎|𝜓 |2𝜓 . (3)

While the theory reported below is not restricted to any

specific type of optical potential (except the requirement to

possess a nearly flat band), in all numerical simulations we

employ the superhoneycomb lattice described by

(r) =
∑
n

p
n
exp

(
− (r − 𝒗

n
)4

𝑤4

)
. (4)

Here n = [n1, n2] with integers n1,2 defines the positions

of the lattice “sites”: 𝒗
n
= n1𝒗1 + n2𝒗2, where 𝒗1,2 are the

basis vectors of the Bravais lattice, p
n
stands for the depth of

each waveguide, and𝑤 is the waveguide width. The profile

of the lattice for the particular case, when all p
n
are equal,

p
n
= p, is shown in Figure 1(a).

The spectrum of the underlying linear Hamiltonian in

Equation (2), is determined by the 2D linear problem

H𝜑𝜈k = −b𝜈(k)𝜑𝜈k (5)

for 2D linear Bloch modes 𝜑𝜈k(r) = eik⋅ru𝜈k(r), where

u𝜈k(r) = u𝜈k(r + 𝒗
n
), 𝒗

n
is a lattice vector, 𝜈 is the index

of the band, and k is the Bloch vector in the first BZ. In

Figure 1(d) we show the spectrum of the problem corre-

sponding to the lattice in Figure 1(a) (it was obtained using

plane-wave expansion method and details on this method

can be find in the Section 7), where a flat band is present,

as indicated by the red line. The width of the flat band with

index 𝜈 given by

Δ𝜈 = max
k∈BZ

b𝜈(k)−min
k∈BZ

b𝜈(k)

is not exactly zero and canbeused as a parameter character-

izing band flatness. The ideally flat band would have Δ𝜈 =
0, while for the band shown in Figure 1(d) one has Δ𝜈 ≈
2.77 × 10−5. Notice that Δ𝜈 increases with decrease of the

lattice depth p.We stress thatwe consider here shallowperi-

odic photonic structures defined by small refractive index

modulations. For example, the dimensionless lattice depth

of p = k2r2
0
𝛿n∕n ∼ 8 used here corresponds to the refrac-

tive index contrast 𝛿n ∼ 8 × 10−4, where k = 2𝜋n∕𝜆 is

the wavenumber at the wavelength 𝜆 = 800 nm, n = 1.45

is the unperturbed refractive index of the material (fused

silica, for example), r0 = 10 μm is the characteristic trans-

verse scale to which coordinates x, y are normalized. Thus

the Equation (1) is ideally suited for accurate description

of the paraxial light propagation in such structures [33],

[38]–[44].

The existence of gap solitons hinges on the requirement

that the flat band is isolated from the rest of the spectrumby

a gap, positioned either below or above the band. Examples

of such situations are known [36], [37], [45]. Tomake possible

the existence of gap solitons in our case, we notice that each

primitive cell of the superhoneycomb lattice has fivewaveg-

uides, denoted by letters A–D in Figure 1(a), and judiciously

detune the depths of two groups of waveguides by making

p
n
different. Thus,when thewaveguidesA andBhave larger

depths than other waveguides, as shown in Figure 1(b), a

gap appears above the flat band, while the width of this

band practically does not increase and is equal to Δ𝜈 ≈
3.54 × 10−5 [see red line in Figure 1(e)]. Meantime no gap

opens below this flat band that touches the next band 𝜈 + 1

at the center of the BZ. On the other hand, if the depths of

waveguides A and B are reduced in comparisonwith depths

of other three waveguides in the unit cell [Figure 1(c)], then

a relatively wide gap opens below the flat band, that in this

case keeps its width at Δ𝜈 ≈ 2.94 × 10−5, as shown by the

red line in Figure 1(f).

3 Two-dimensional Wannier

solitons and vortex solitons:

numerical study

We are interested in properties of gap solitons, i.e., square

integrable solutions, whose propagation constants b belong

to a gap adjacent to the flat band. We consider here only

static solitons that do not move across the lattice, i.e., their

spatial group velocity is zero, while field modulus distribu-

tion does not change with propagation distance z. Families

of such solutions can be parameterized by the total power

P(b) = ∫
r∈ℝ2 |Ψ|2dr carried by the mode. Let us introduce

the notation bco = max
k∈BZb𝜈(k) (bco = min

k∈BZb𝜈(k)) in

the case of a gap above (below) the flat band corresponding

to the case illustrated in Figure 1(d) and (e). In 2D lattices

with non-flat bands, 2D solitons carrying a finite total power

cannot bifurcate from linear Bloch states in a sense that

P(b) does not tend to zero in the limit b→ bco [46] (see

also numerical studies in Refs. [47], [48]), and hence, there

exists a minimal threshold power Pth which is achieved at

a certain b = bth: P(b) ≥ Pth = P(bth) (such constraint does

not exist in discrete models). The amplitude of a nonlinear

solution still vanishes at b→ bco. However, when a solution
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forms in a gap above or below the flat band, one observes

a different picture, and the dependence P(b) acquires qual-

itatively new properties. We illustrate this first using direct

numerical calculation of the families of the flat-band soli-

tons. Such solutions can be found using standard Newton

method [49]. To check their stability, we introduce a small-

scale perturbation into soliton profiles andmodel their long-

distance propagation according to Equation (1). If the profile

of soliton remains unchanged upon propagation, we con-

clude that it is stable, otherwise it is considered unstable.We

also would like to stress that the presence of optical lattice

potential suppresses critical collapse that otherwise could

occur for solitons in uniform focusing nonlinear medium.

3.1 Focusing case

We start with the focusing case 𝜎 = +1 when gap soli-

tons exist above the flat band in the lattice depicted in

Figure 1(b). Figure 2(a) shows three different families of soli-

tons with the vertical dashed line representing the location

of the flat band. The lowest (green) family corresponds

to the fundamental solitons. In a flat-band system such

Figure 2: The families of solitons and examples of profiles in focusing

medium. (a) Flat-band soliton families for focusing nonlinearity.

The green, red and blue curves show families of fundamental, dipole,

and vortex solitons, respectively. Solid and dashed curves represent

stable and unstable solitons. The vertical dashed line at b = 2.4283

indicates the location of the flat band, whose width cannot be

discerned on the scale of the figure. The families are terminated at

the propagation constant b = 2.429. (b) Field modulus distributions|𝜓 | in selected flat-band solitons numbered 1–6. Panels in (b) are shown
within−15 ≤ x, y ≤ 15 window.

solitons remain surprisingly well localized even very close

to the band, i.e., even at relatively small values of detuning

𝛿b = b− bco from the band [see soliton 1 shown in

Figure 2(b)]. When 𝛿b increases, the localization of soli-

ton moderately increases too [see soliton 2 shown in

Figure 2(b)]. Fundamental solitons are stable in the largest

part of the gap, but become unstable close to its upper edge.

One can use such fundamental solitons for construction of

a high-order solitons that can be viewed as coupled funda-

mental states placed one next to the other. For example, we

can use two fundamental solitons 𝜓 1 and 𝜓 2 to construct

an initial guess via 𝜓 1(y+ 𝛿y)− 𝜓 2(y− 𝛿y) with 𝛿y being
a shift in y. Using this guess one can obtain dipole soliton

via Newton iterations [see soliton 3 in Figure 2(b)]. Dipole

solitons also demonstrate stability in the largest part of the

gap [see red solid line in Figure 2(a)], becoming unstable

only for large enough values of detuning 𝛿b [see red dashed

line in Figure 2(a)].We also found a family of vortex solitons

shown by the blue line in Figure 2(a). The stability region

of vortex solitons, however, is much smaller as compared to

that for fundamental or dipole solitons. Representative field

modulus and phase distribution in stable vortex soliton 5

taken very close to the flat band is shown in Figure 2(b). The

solitons corresponding to dot 4 and dot 6 in Figure 2(b) are

more localized in comparison with these corresponding to

dot 3 and dot 5.

The families of all such solitons share two common

features. First, although gap solitons cannot bifurcate from

linear Bloch modes (in the above mentioned sense) and

exist above a certain power threshold, Pth, this threshold

becomes extremely small in flat-band system. We success-

fully traced the families depicted in Figure 2(a) practically

up to the edge of the flat band. Further approaching bco

became technically infeasible, even with very small incre-

ments of the propagation constant. Notice that even in such

close proximity of the flat band, solitons remain well local-

ized, in particular in comparison with solitons in lattices

with dispersive bands that expand dramatically when their

propagation constant approaches the edge of the band. Sec-

ond, in a certain range of propagation constants near the flat

band, the power P becomes a linear function of detuning 𝛿b,

as discussed below (refer to Figure 4).

3.2 Defocusing case

From the physical point of view, a spatial soliton forms due

to a delicate balance between diffraction and nonlinearity.

Since in the leading order the diffraction is determined by

the curvature of the allowed band, it is natural to expect that

vanishing curvature of a flat band should result in similarity

of properties of bright and dark solitons forming in the gap
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Figure 3: The families of solitons and examples of profiles in defocusing

medium. Color coding of curves is the same as in Figure 2. The vertical

dashed line at b = 2.5494 indicates the location of the flat band,

whose width cannot be discerned on the scale of the figure. The cut-off

propagation constants of the red, green, and blue lines are b = 2.5488,

b = 2.549, and b = 2.5486, respectively.

above and below such a band. This is fully confirmed by

Figure 3 that shows soliton families [Figure 3(a)] and shapes

[Figure 3(b)] of representative flat-band solitons in defocus-

ing medium (𝜎 = −1), for the lattice depicted in Figure 1(c).
Now solitons exist in the region 𝛿b < 0, but except for this

the obtained P(b) dependencies in Figure 3(a) are remark-

ably similar to dependencies obtained for focusing case in

Figure 2(a) (we use the same color coding for fundamental,

dipole, and vortex solitons). Stability properties of soliton

families are also similar, i.e., fundamental and dipole soli-

tons in defocusing medium are stable in the largest part of

the gap adjacent to the flat band, while vortex solitons are

stable only a narrow region near the flat band. Just as in

focusingmedium analysis of P(b) dependencies near the flat

band reveals the presence of very small thresholds (com-

parable for solitons of different types) also in defocusing

medium.

It should be pointed out that while the dependencies

P(b) for flat-band solitons are qualitatively similar in focus-

ing and defocusing media (except for the sign of the deriva-

tive dP∕db for the corresponding families), and the field

modulus distributions for solitons shown inFigures 2(b) and

3(b) are also similar, the internal structure of solitons in

focusing and defocusing media is different. This is partic-

ularly well visible from comparison of solutions 2 and 4

in Figures 2 and 3. One can see that in focusing medium

the spots nearest to the central maximum of soliton are

out-of-phase with central spot, while in defocusing medium

they are in-phase with central spot. Therefore, the phrase

structure in tails of flat-band solitons in focusing and defo-

cusing media is clearly different. One can also see such

differences from phase and field modulus distributions of

vortex solitons in Figures 2(b) and 3(b).

4 Flat-band solitons: understanding

the results

4.1 Wannier solitons

In order to explain the observed peculiarities of the flat-

band solitons, we proceed with the asymptotic theory, cor-

responding to small but nonzero detuning: 0 < |𝛿b|≪ bco.

We are looking for nonlinear modes having propagation

constants in the gap adjacent to the flat band and preserv-

ing strong localization (i.e., localization on the scale of a

unit cell) even in the limit of negligible detuning |𝛿b|→ 0.

For construction of such solutions we must find a proper

orthonormal basis consisting of localized sates.

Recalling that exact flat bands in discrete systems sup-

port compactons [20] and allow in 2D case soliton families

(exactly) bifurcating from the (exact) flat band [19], and

following the approach developed for 1D Wannier solitons

[32], here we employ 2D WFs

𝑤𝜈 (a, r) =
1|Ω|∫BZei𝜃(a,k)𝜑𝜈k(r)dk (6)

where |Ω| = 2𝜋2∕(3
√
3d2) is the area of the BZ, 𝜈 is the flat

band index, and 𝜃(a, k) is an arbitrary phase, which as a

function of k has periodicity of the reciprocal lattice and

depends on a parameter a that we will discuss below. While

the WFs are not uniquely defined, we do not impose the

requirement on their best localization [35]. Furthermore,

when a flat band touches other bands [see the lowest three

bands in Figure 1(e) and highest three bands in Figure 1(f)]

the exponentially localized WFs constructed using quasi-

Bloch functions of composite bands [50] appear inconve-

nient for our purposes because they camouflage the effect

of diffraction suppression for Bloch modes of the flat band.

Thus, the WF𝑤𝜈(a, r) is considered localized in the central

cell, i.e., in the cell with n = 0, although its specific decay

with |r| is not specified.
Using Equation (6) it is straightforward to obtain

H𝑤𝜈 (a, r) = bco𝑤𝜈(a, r)+ h(r)Δ𝜈, (7)
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where

h(r) = 1|Ω|∫BZei𝜃(a,k)𝛽(k)𝜑𝜈k(r)dk,
𝛽(k) = b𝜈(k)− bco

Δ𝜈

∈ [−1, 1]. (8)

Now, by analogy with the method adopted in Ref.

[32] for the 1D Wannier solitons, we perform the mixed

Wannier–Bloch expansion of the searched solution of

Equation (3). Note that while technically expansions in 1D

and 2D cases look similarly, an essential difference is that in

the former case the expansion represents a soliton of a neg-

ligibly small amplitude, while in the last case such soliton

does not exist [46] below the threshold intensity. To this end,

we introduce a formal small parameter 0 < 𝜖 ≪ 1, scaled

propagation coordinates zj = 𝜖z, which for j = 0, 1,… are

considered independent, so that 𝜕z = 𝜕z0 + 𝜕z1 + · · ·, and
look for a solution of Equation (1) in the form of the expan-

sion

Ψ =
√
𝜖eibcoz0 [A(a, z1)𝑤𝜈(a, r)+ 𝜖Ψ1 + (𝜖2)]. (9)

Here, A(a, z1) is a slowly varying amplitude of the soli-

tonwhose spatial profile in the leading order is described by

theWF𝑤𝜈(A, r) (it is assumed that the soliton is localized in

the central cell) and

Ψ1 =
∑
n≠0

B
n
(a, z0)𝑤𝜈 (a, r − 𝒗

n
)

+
∑
𝜈′≠𝜈

∫BZ
dkB𝜈′ (k, z0)𝜑𝜈k(r) (10)

is the first-order correction, B
n
(z0) and B𝜈′ (k, z0) are the

amplitudes of the Wannier states of non-central cells (with

𝒗
n
≠ 0) of the flat band and of the Bloch states of other

(non-flat) bands.

ApplyingH to both sides of the expansion Equation (9),

we obtain

HΨ =
√
𝜖eibcoz0

[
bcoA(a, z1)𝑤𝜈(a, r)+ A(z1)h(r)Δ𝜈

+ 𝜖bco
∑
n≠0

B
n
(a, z0)𝑤𝜈(a, r − 𝒗

n
)

+ 𝜖
∑
𝜈′≠𝜈

∫BZ
dkB𝜈′ (k, z0)b𝜈′ (k)𝜑𝜈′k(r)

]
(11)

Here, we neglected all terms of the order of 𝜖5∕2

and 𝜖3∕2Δ𝜈 , and used the fact that in the leading order

Equation (7) is valid for allWFs of the flat band (i.e., after the

substitution r→ r − 𝒗n). Thus, we have two small parame-

ters: 𝜖 which is determined by the amplitude of the beam

and Δ𝜈 , which is the system parameter characterising the

flatness of the band. For the next steps we establish the

hierarchy between them, by imposing the condition

Δ𝜈 ≪ 𝜖 ≪ 1. (12)

On the one hand, this condition allows one to neglect

the term A(z1)h(r)Δ𝜈 in Equation (11). On the other hand,

the Equation (12)means that the expansion is not applicable

for beams with too small amplitudes. The width of the flat

band in photonic lattices depicted in Figure 1 is Δ𝜈 < 10−4.

Thus, for the validity of the expansion in Equation (10) the

dimensionless soliton amplitude should satisfy |A(a, z1)| ≳
Δ1∕2
𝜈

∼ 10−2. For solitons with smaller amplitudes one has

to take into account the curvature of the flat band.

Plugging the expansion from Equations (11) into

Equation (1), we obtain with the accuracy (𝜖)

i
𝜕A(a, z1)

𝜕z1
𝑤𝜈(a, r)+ i

∑
n≠0

𝜕B
n
(a, z0)

𝜕z0
𝑤𝜈(a, r − 𝒗

n
)

+ i
∑
𝜈′≠𝜈

∫BZ
dk
𝜕B𝜈′ (k, z0)

𝜕z0
𝜑𝜈′k(r)

=
∑
𝜈′≠𝜈

∫BZ
dkB𝜈′ (k, z0)

[
bco − b𝜈′ (k)

]
𝜑𝜈′k(r)

− 𝜎|A(a, z1)|2A(a, z1)|𝑤𝜈(a, r)|2𝑤𝜈 (a, r). (13)

Projecting over 𝑤𝜈(a, r) and using mutual orthogonal-

ity of the involved Wannier and Bloch functions, we arrive

at the equation

i
𝜕A

𝜕z1
= −𝜎𝜒 (a)|A|2A, (14)

where

𝜒 (a) =
∫
r∈ℝ2

|𝑤𝜈(a, r)|4dr (15)

is the form-factor of the WF of the flat band. Thus, consid-

ering the solution of (14) in the form A = aei𝜎𝜒 (a)a
2z1 where

a > 0 is an amplitude, what defines the physical meaning of

this parameter introduced above in Equation (6), the soliton

constructed in accordance with the leading order of expan-

sion (9) reads

Ψ = aeibz𝑤𝜈(a, r), b = bco + 𝜎𝜒 |a|2. (16)

In this final expression we set the formal small param-

eter 𝜖 to one, implying that the smallness is now ensured by

the amplitude a. More specifically, we now require |a|2 ≪
bco∕𝜒 ensuring the relative smallness of the corrections to

the propagation constant bco in Equation (16). Since the pro-

file of this soliton is determined by the WF, such a solution

can be termed aWannier soliton [32], [51].
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4.2 Dependence of power on propagation

constant

For theWannier soliton (16) one obtains that the total power

is |a|2. This leads to the relation
P(a, b) ⋅ 𝜒 (a) ≈ 𝜎 ⋅ 𝛿b. (17)

A peculiarity of this expression is that its right-hand

side does not depend on the soliton amplitude: even though

both power P and form-factor 𝜒 depend on a, their prod-

uct for the flat-band soliton is determined only by the

detuning 𝛿b. Furthermore, the approximate expansion in

Equation (9) does not imply bifurcation from a linear mode,

leaving freedom in the choice of a WF (the phase 𝜃(a, k)

introduced in Equation (6) remains arbitrary) while the

exact nonlinear solution for Equation (1) is well defined.

These factors not yet accounted in the expansion, strictly

speaking, leave open exact applicability conditions for

Equation (17). If however one conjecture that a flat-band

soliton is approximated by some of WFs well enough, ins-

tead of searching for such specificWF, one can use the num-

erically found nonlinear solution instead of Equation (16),

interpreting the result in Equation (17) as the relation

Ps ⋅ 𝜒s ≈ 𝜎𝛼 ⋅ 𝛿b, (18)

where Ps and 𝜒 s
are the power and the form-factor of the

exact soliton, while 𝛼 is the correction factor of order one.

We have checked the accuracy of formula in

Equation (18) for all soliton families depicted in Figures 2

and 3, and obtained a remarkable agreement illustrated in

(a1) (a2)

(b2)

(a3)

(b3)(b1)

Figure 4: Comparison of flat-band soliton families obtained numerically

(see blue curves corresponding to the numerically obtained soliton

families shown in Figures 2 and 3) and theoretically (red lines, based on

Equation (18)). Panels (a1–a3) correspond, respectively, to families of

fundamental, dipole, and vortex solitons in focusing medium. Panels

(b1–b3) correspond to fundamental, dipole, and vortex solitons,

but in defocusing nonlinear medium.

Figure 4. In all cases the accurate linear fit of the families of

fundamental, dipole, and vortex solitons was obtained with

a universal factor 𝛼 = 1.11.

4.3 On excitation of extended modes

Now we briefly discuss the excitation of other modes in

the system. Projecting Equation (13) over𝑤𝜈(a, r − 𝒗
n
) with

𝒗
n
≠ 0 we obtain

i
𝜕B

n
(a, z0)

𝜕z0
= −𝜎|A|2A

×
∫
𝑤∗
𝜈
(a, r − 𝒗

n
)𝑤𝜈(a, r)|𝑤𝜈(a, r)|2dr. (19)

This term gives a secular grows unless the nonlinear

hopping is small enough, i.e., unless

∫
𝑤∗
𝜈
(a, r − 𝒗

n
)𝑤𝜈(a, r)|𝑤𝜈(a, r)|2dr ≲ 𝜖𝜒 (a). (20)

In that case, the energy transfer to WFs localized on

non-central lattice sites with n ≠ 0 enabled by nonlinearity

is described by the next order of the asymptotic expansion

and we obtain 𝜕z0Bn = 0. Thus, Equation (20) is the only

condition on the localization of WFs, that must be verified

for the validity of the expansion in Equation (9).

Finally, projecting Equation (13) on the Bloch state𝜑𝜈′k ,

we obtain

i
𝜕B𝜈′ (k, z0)

𝜕z0
= B𝜈′ (k, z0)

[
bco − b𝜈′ (k)

]
− 𝜎𝜒𝜈′k(a)|A(a, z1)|2A(a, z1), (21)

where

𝜒𝜈′k(a) = ∫
𝜑∗
𝜈′k
(r)|𝑤𝜈(a, r)|2𝑤𝜈(a, r)dr. (22)

Thus, non-flat bands do not give secularly growing

terms, except for the Bloch state corresponding to the point

where the flat band touches either lower or higher dis-

persive band [these are Γ points in Figure 1(e) and (f),

correspondingly], where the equality bco = b𝜈′ (k) is veri-

fied. However, the weight (or measure) of the contribution

of such modes in Equation (10) is negligible, and one can

expect that they will not affect the leading order solution

Equation (16).

5 Flat-band multi-soliton solutions

Since flat-band (alias Wannier) solitons are strongly local-

ized and can be stable in considerable part of the gap, it

is natural to use them as building blocks for composition
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Figure 5: Examples of flat-band solitons of other types, including vertical 2-solitons (a, c), in-phase 7-solitons aligned in x (b, d), and out-of-phase

7-solitons aligned in y (e, f). Solutions (a, b) are obtained in focusing nonlinear medium, while solutions (c, d) are obtained in defocusing nonlinear

medium. Solutions in (a, c) are shown within−15 ≤ x, y ≤ 15 window, solutions in (b, d) are shown within−30 ≤ x ≤ 30 and−15 ≤ y ≤ 15 window,

while solutions in (e, f) are shown within−15 ≤ x ≤ 15 and−44 ≤ y ≤ 44 window.

of multi-soliton solutions or even of soliton trains. Some

solutions of this type are illustrated in Figure 5. Solitons

in Figure 5(a), (b) and (e) are obtained in focusing non-

linear medium, while solitons in Figure 5(c), (d) and (f)

were found for defocusing nonlinearity. Using the in-phase

superposition two fundamental solitons, i.e., 𝜓 1(y+ 𝛿y)+
𝜓 2(y− 𝛿y) (as opposed to out-of-phase combination yield-

ing dipole solitons presented in Figures 2 and 3) one obtains

the 2-soliton (or even) solution depicted in Figure 5(a). We

also found various multi-soliton solutions aligned along

the x-axis. Thus, in Figure 5(b), we display a 7-soliton solu-

tion, which demonstrates that the flat-band solitons exist in

abundant forms. Similar higher-order states exist and can

be stable in defocusing medium, as shown in Figure 5(c)

and (d). While the 7-solitons in Figure 5(b) and (d) are com-

posed of in-phase states, out-of-phase higher-order multi-

soliton solutions also exist. To obtain suchmulti-soliton solu-

tions, we use an initial guess in the Newton method, com-

bining several simple solitons with appropriately selected

phase multipliers. An example of such an out-of-phase solu-

tion, involving several elements aligned along the y-axis, is

shown in Figure 5(e) and (f). The different phase structures

of the soliton tails in focusing and defocusingmedia are also

evident in these plots. The solutions presented in Figure 5

can be considered as lattice soliton trains. It is noteworthy

that lattice soliton trains have also been reported in non-

flat-band systems [52]. However, the important difference

from the states presented here is that intentional truncation

or partial removal of the train in our case does not lead

to significant shape variations of the remaining train upon

propagation, whereas it can be quite destructive and lead

to the decay of the train in non-flat-band systems. From an

experimental point of view, the excitation of multi-soliton

states involves creating the proper input, which can be

achieved using interferometric techniques and spatial light

modulators. Lattices of this type can be easily inscribed

using fs-laser writing techniques in fused silica [38]–[41],

[53]–[55].

6 Conclusions

Summarizing, we have described properties of Wannier

solitons that can be excited in two-dimensional continu-

ous photonic lattices with a flat band in linear spectrum.

Suchflat-band solitons exist in both focusing and defocusing

media. Their representative feature is that they remainwell

localized even in close proximity of the flat band. We have

found several families of solitons, including fundamental,

dipole, multi-soliton, and vortex ones. All these solutions

can be stable in focusing or in defocusing medium despite

the fact that they form in finite gap adjacent to the flat band.

The analytical theory explaining the dependence of power

of such solitons on propagation constant is developed for

our continuous model. These results illustrate new nonlin-

ear localization scenarios possible in real-world continuous

flat-band periodic lattices with the translational symmetry

(e.g., the Lieb lattice [7], [8], [14], [56], the kagome lattice [12],

[57]–[59], etc.).

7 Methods

The plane-wave expansion method is used to calculate the

band structure shown in Figure 1. The primitive vectors of

the superhoneycomb lattice are 𝒗1 = [2
√
3d, 0]T and 𝒗2 =

[
√
3d, 3d]T with the angle between them 𝜃 = 𝜋∕3, as shown



S. Shen et al.: Two-dimensional flat-band solitons — 4055

in Figure 1(a). The symbol T means the transpose operation.

We then apply the following coordinate transformation in

the direct and Fourier spaces:

r =
[
1 cos 𝜃

0 sin 𝜃

]
r
′, k

′ = k

[
1 cos 𝜃

0 sin 𝜃

]
. (23)

In new coordinate system the primitive lattice vec-

tors become 𝒗′
1
= [2

√
3d, 0]T and 𝒗′

2
= [0, 2

√
3d]T , and they

become orthogonal in this frame. In new coordinate system,

the Equation (5) can be rewritten as:

b𝜑 = 2

3

(
𝜕2

𝜕x′2
+ 𝜕2

𝜕y′2
− 𝜕2

𝜕x′𝜕y′

)
𝜑+′(r′)𝜑, (24)

where′(r′) is the superhoneycomb lattice in the frame r′

after transformation.

We further expand 𝜑 and′ into the Fourier series:

𝜑 =
∑
m,n

cm,ne
i(Km+k′x)x′+i(Kn+k′y)y′ ,

′ =
∑
m,n

𝜌m,ne
iKmx

′+iKn y′ ,
(25)

where cm,n and 𝜌m,n are the Fourier coefficients with m, n

are integers, and Km = m𝜋∕
√
3d. Plugging expansions (25)

into Equation (24), after simple algebraic transformations

one obtains a series of linear equations:

bcm,n =
∑
l,s

𝜌l,scm−l,n−s −
2

3
cm,n

×
[(
Km + k

′
x

)2 + (
Kn + k

′
y

)2
−
(
Km + k

′
x

)
(Kn + k

′
y
)

]
.

(26)

Rewriting Equation (26) in matrix form and subse-

quently diagonalizing it, one obtains the eigenvalues b(k′)

(i.e., the band structure) and the corresponding cm,n that

allow to construct the eigenmodes u of the array using the

expressions (25).
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