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Abstract 
An aerial photographic coverage acquired on two consecutive days in Octo-
ber 2021 with a ground resolution of 20 cm and a spectral resolution of 4 
bands (red, green, blue and near infrared), allowed to distinguish most of the 
classes of interest present in the intertidal zone of the Sado estuary. We ex-
plored the possibilities of thematic classification in the powerful and complex 
software ArcGIS Pro; we presented the methodology used in a detailed way 
that allows others with minimal knowledge of GIS to reproduce the classifica-
tion process without having to decipher the specifics of the software. The 
classification implemented used ground truth from four classes related to the 
macro-occupations of the area. In a first phase we explore the standard algo-
rithms with object-based capabilities, like K-Nearest Neighbor, Random Trees 
Forest and Support Vector Machine, and in a second phase we proceed to test 
three deep learning classifiers that provide semantic segmentation: a U-Net 
configuration, a Pyramid Scene Parsing Network and DeepLabV3. The re-
sulting classifications were quantitatively evaluated with a set of 500 control 
points in a test area of 37,500 × 12,500 pixels, using confusion matrices and 
resorting to Cohen’s kappa statistic and the concept of global accuracy, 
achieving a Kappa in the range [0.72, 0.81] and a global accuracy between 
88.9% and 92.9%; the option U-Net had the most interesting results. This 
work establishes a methodology to provide a baseline for assessing future 
changes in the distribution of Sado estuarine habitats, which can be replicated 
in other wetland ecosystems for conservation and management purposes. 
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1. Introduction 

Estuarine areas play a crucial role in coastal ecosystems, being transitional zones 
where freshwater from rivers meets and mixes with saltwater from the open sea. 

These areas are dynamic and experience tidal fluctuations, allowing for a free 
exchange of water between land and sea. Estuarine ecosystems are characterized 
by a mix of fresh and saltwater that provides abundant nutrients, making estu-
aries highly productive habitats to support a diverse range of species, including 
fish, invertebrates, and birds. In the case of river Sado, seagrass meadows and 
marshes found in nearshore estuarine and marine ecosystems contribute to this 
high productivity (Beck et al., 2001). 

From the human and social perspective, governance of estuaries is a complex 
subject in Portugal (Fidélis & Carvalho, 2013), with multiple interests and mul-
tiple jurisdictions that do not contribute to a holistic approach of such a rich and 
fragile environment. 

This work analyses the efficacy of several classification methods available in 
ArcGIS Pro for mapping estuarine habitats exposed to different conditions of 
tides, using aerial photographic imagery at 20 cm ground resolution. These 
flights were the result of a two-day flight plan, covering the area of interest as 
well as possible and considering the variations and heights of the tides, and the 
wave delay (Khojasteh et al, 2021). 

Several authors have worked with deep learning methods and high-resolution 
images with similar goals; (Zhang et al., 2020) is a recent review of land cover 
classification and object detection approaches, in which traditional standard ap-
proaches are compared with deep learning models. The better performance of 
the latter is attributed to the simultaneous use of spectral and spatial information 
in object-based methods, while older approaches are based on pixel-by-pixel 
methods, which result in maps with the typical salt-and-pepper noise incorpo-
rated. In the last 20 years deep learning methods began to appear applied to land 
cover classification (Audebert et al., 2016; Huang et al., 2018; Kemker et al., 
2018) with promising results and can be found in more applications in remote 
sensing and Earth sciences (Reichstein et al., 2019), mainly in land use and land 
cover (LULC) classification, to which (Vali et al., 2020) provides a complete 
framework. A Joint Deep Learning model (Zhang et al., 2019) provides novelty 
using spatial and hierarchical relationships between land cover probabilities and 
land use classifications, applied to an urban/suburban environment. The deep 
learning approach is so promising to handle large amounts of data in time series 
that large datasets such as EuroSAT are already publicly available for ben-
chmarking (Helber et al., 2019), using Sentinel-2 images and 10 classes for LULC 
(27,000 georeferenced sub images at 10 m ground resolution in 13 spectral 
bands). More recently, the use of images from unoccupied aerial vehicles (UAVs) 
paired with deep learning algorithms (Gonzalez-Perez et al., 2022) has emerged 
as a tool with great potential for the study of coastal systems, both in terms of 
the results obtained and the associated costs (Durgan et al., 2020, Prentice et al., 
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2021). The UAVs technology being stable for the last decade, they become a re-
sourceful tool for coastal surveys (Turner et al., 2016, Liu et al., 2018). 

Aerial photography seems the best solution for estuary mapping and monito-
rization, catching simultaneously the detail and the context (Bendell & Wan, 
2011), with the advantage that nowadays the GIS software has built-in deep 
learning tools, although coverage is expensive and difficult to achieve at the best 
of times in terms of low tides and wave effects—perhaps these are the reasons 
that have made this approach rare. 

The case study presented in this article focused on finding the most consistent 
methodology among those available in the software, to classify high-resolution 
images and produce thematic maps, which will form a reference base for moni-
toring the evolution of the most relevant habitats in the estuarine zone, allowing 
future assessments of the local ecosystem, as well as the identification of natural 
and anthropogenic changes that have occurred in the meantime. 

2. Materials and Methods 
2.1. Study Area 

The study concerns 18,776 ha of the Sado estuary, located in the center of Por-
tugal mainland (Figure 1), bounded by the line between estuarine bed and fringe 
that corresponds to the highest astronomical tide (Rilo et al., 2014). This is a re-
gion with some fieldwork carried out, so there was information available to be 
used as ground truth. 

 

 
Figure 1. Sado estuarine area delimited by the “Linha de Máxima Preia-Mar de Águas Vivas Equinociais” 
(LMPMAVE), the limit corresponding to the equinoctial high tide maxima line. 
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The estuary circulation is driven mainly by the tides and the freshwater inputs 
of river Sado. The anthropogenic pressures in the region are spread differently 
by the estuarine margins. Northside includes a solid naval activity (with the 4th 
National Port), ship maintenance and repair industries, and a growing oyster 
farming that has, in many places, replaced the previous aquaculture farms that 
developed on traditional salt plants. The southside includes agriculture and fo-
restry industries and significant tourism developments at the Troia península. 

2.2. Materials 

The image data set is in the form of orthoimages (ETRS 1989 TM06) acquired 
during a two-days aerial survey, 7 and 8 October 2021, at the best time to max-
imize the area observed. The images were acquired in 4 spectral bands, red (R), 
green (G), blue (B) and near infrared (NIR), with a ground resolution of 0.20 m. 
Geometric and radiometric corrections were previously made at the supplier's 
premises. The 41 images were mosaicked in larger tiles to be processed in a reg-
ular laptop, an HP Pavilion with Intel Core i7, RAM 16 GB, 512 GB disk, and an 
NVIDIA GeForce RTX 2060, with 6 GB. 

2.3. Methods 

The software explored is ArcGIS Pro, versão 3.0.2. Although complex and com-
putationally heavy, it has several options for classification, covering the spec-
trum from standard machine learning methods such as K-Nearest Neigbors 
(KNN) (Cover & Hart, 1967), some more elaborated as Support Vector Machine 
(SVM) (Mountrakis et al., 2011), Random Tree Forest (RT) (Breiman, 2001) al-
ready using object based segmentation, to more recent deep learning (DL) ap-
proaches using Convolution Neural Networks (CNNs), such as U-Net (Ronne-
berger et al., 2015), PSP-Net (Zhao et al., 2017) and DeeplabV3 (Chen et al., 
2016). All classifications were done within the official estuarine limits defined by 
the LMPMAVE. 

Object based methods are well-suited for analysis of very high-resolution im-
ages, as its sequence of two phases (segmentation and classification) contributes to 
avoid the heterogeneity inherent to sub-meter pixels that could raise very noisy 
pixel-based classifications (Belgiu & Thomas, 2013). The segmentation aggre-
gates semantically similar pixels in groups (segments) based on radiometric and 
geometric properties, and the object classification follow the rules of the super-
vised classification, allocating each segment to one of the pre-defined classes 
(Diesing et al., 2016; Lang et al., 2018). 

The classes are defined during a train phase, common to all the algorithms 
used, based in areas known to belong to each class—it’s the ground truth, from 
which all the parameters and models will be generated. 

2.4. Pre-Processing Methodology 

The first action to prepare the working images consisted in clipping the area of 
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interest (AOI) bounded by the line of maximum tide. The diversity of water bo-
dies included in the estuary, in addition to the river itself, such as salt pans, ac-
tive or abandoned, and aquaculture ponds with different degrees of filling, leads 
to a first segmentation to isolate land and water. A chlorophyll index calculated 
as the ratio between the NIR and green bands plus one made it possible to obtain 
a segmentation mask that only needs to be “cleaned”—a procedure that gives 
consolidation to large and thin areas and eliminates small, isolated spots with a 
few pixels (Figure 2). 

The working area was isolated by application of this mask water/land to the 
four original bands (Figure 3). 

 

 
Figure 2. Water mask (a) before and (b) after a procedure to eliminate small spots and 
consolidate thin structures. 

 

 
Figure 3. Area of work, circumscribed by the LMPMAVE and with the water zones re-
moved, displayed in a combination of the NIR-R-G bands. 
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Object-based image analysis (OBIA) needs segmented images, which in Arc-
GIS Pro are produced via the mean shift segmentation algorithm (Comaniciu & 
Meer, 2002), that requires three parameters, the first two referred as spatial and 
spectral details, consisting in a spatial radius and a radiometric range in a 0-20 
scale, and the third being the minimum size accepted for each segment/object in 
pixels. The spatial detail concerns the distance from the analyzed pixel used to 
homogenize the neighborhood, the spectral detail defines the maximum distance 
allowed in radiometric space, and the third defines the minimum size of the final 
segments (Teodoro & Araujo, 2016). The introduction of segmented images 
makes it possible to reduce the local spectral variability inherent to high resolu-
tion, which can inevitably have various origins: shadows, different textures, ter-
rain roughness, etc., and which strongly influences classification. Figure 4 illu-
strates a segmentation of an area in the vicinity of a salt pan. 

 

 
Figure 4. Segmented images at a detail level of (a) 14 and (b) 20 for both spectral and 
spatial detail. The range allowed is between 0 and 20, with the detail increasing as the pa-
rameter increases. 

 
After some tests, the parameters for segmentation were chosen to be 16 for 

both spatial and spectral detail, and 2000 for the minimum size segment. 
Object-based image analysis allows the use of six attributes computed from 

these segments: Active chromaticity colour, Mean digital number, Standard de-
viation, Count of pixels, Compactness and Rectangularity, the last one being 
more relevant in urban applications but with some positive influence whenever 
man-made structures are present, as it is the case. 

2.5. Ground Truth 

The delimitation of the ground truth areas was carried out with the Training 
samples manager, considering all the a priori information available and the ex-
perience gained from past fieldwork. The four classes considered reflects the 
macro-occupations characteristic of the estuarine zone, and are Saltmarsh, 
which represents vegetated areas dominated by halophytic plants that tolerate 
saltwater inundation, typically found in intertidal zones, Seagrass, aquatic vege-
tation found in permanently submerged areas, deeper than the intertidal zones, 
Bare soil, including sand covered areas and other bare surfaces inland, such as 
mudflats—expansive areas of fine sediment exposed during low tide, character-
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ized by very low or no vegetation cover, and Shallows, encompassing all inter-
tidal flat areas, with or without filamentous plants, that are alternately exposed 
and submerged by tidal action, often characterized by a mixture of sediment 
types and vegetation cover. The colour codes for the four classes are purple for 
Saltmarsh, pink for Seagrass, green for Bare soil and orange for Shallows. 

3. Results and Discussion 

A quantitative evaluation of results was carried out using 500 control points in 
the test area, with the overall kappa index (Cohen’s Kappa statistic) and the 
overall accuracy (OA), both based on the confusion matrix, considered to be an 
indicator of the ability of the algorithm to identify all classes simultaneously. In 
short, User's accuracy concerns false positives or errors of commission: points 
incorrectly classified as belonging to one class when they belong to another. 
Producer's accuracy reflects false negatives or errors of omission: points in a 
class that have not been identified as such. 

The Kappa statistic (Cohen, 1960) is a metric that provides an overall assess-
ment of the accuracy of the classification, comparing it with a random classifica-
tion. Another useful number is the global or overall accuracy, which indicates 
the percentage of well-identified points (sum of the diagonal of the confusion 
matrix) in the total number of control points used. Of the three standard algo-
rithms tested, Random Trees provided the highest overall accuracy, with a Kap-
pa of 0.811 and correctly classifying 92.9% of the control points (Table 1). 

 
Table 1. Quantitative evaluation for the results obtained with SVM, RT and KNN algo-
rithms. 

Method Cohen’s Kappa Global accuracy 

SVM 0.739 90.3% 

RT 0.811 92.9% 

KNN 0.716 88.9% 

 
The RT classifier offers the best results both quantitatively and qualitatively, 

by visual inspection (Figure 5(b)); it has the disadvantage of having a random 
component, which makes the realization of a good model more difficult to en-
sure because it is not just a function of the chosen parameters. 

Three deep-learning models have results with enough quality to be explored, 
and among the results obtained with this type of image, the U-Net model showed 
slightly better results (Table 2). 

The segmented images resulting from the three deep-learning options are 
compared in Figure 6. The lower resolution of DLabV3 is obvious (Figure 
6(b)), although version 3 of the algorithm has already been mentioned as an 
improvement in this area (Li & Dong, 2022). 

The results with the U-Net model are clearly more homogeneous and with 
more precise contours (Figure 6(d)), showing slightly better quantitative results  
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Figure 5. Classification of an area in the test image into 4 classes with different methods 
and different parameterizations: (a) K-Nearest Neighbours, considering 8 neighbours, 
with the segmented level 16 and 4 attributes (Kappa = 0.716, 88.9%), (b) Random Trees, 
same segmented level and 6 attributes (Kappa = 0.811, 92.9%) and (c) Support Vector 
Machine also with the segmented level 16 and 6 attributes (Kappa = 0.739, 90.3%). 

 
Table 2. Quantitative evaluation of the results obtained with the models U-Net, PSPnet 
and DLabV3. 

Method Cohen’s Kappa Global accuracy 

U-Net 0.781 91.5% 

PSPnet 0.722 89.5% 

DLabV3 0.716 90.1% 

 
than the others (Table 2); it’s also more accurate and coherent with the pho-
to-interpretation of the image in the reference area, with the Bare soil areas be-
ing observed in the expected configuration, as well as a more correct identifica-
tion of the boundaries of Seagrass patches available as ground truth (Figure 7). 

In the laptop described in 2.2, processing times ranged from around 1.5 hours 
to extract the data using the ground truth previously defined, 2 to 5 hours to 
train the model, depending on the model chosen, and 3 to 7 hours to classify 
each image block, depending on the model chosen and the size of the image. 

As no other similar approach was found with this kind of data, we can only  
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Figure 6. Detail of deep learning classifications compared to (a) the original multispectral 
image of the area; models (b) DLabV3, (c) PSPnet and (d) U-Net. 

 

 
Figure 7. Detail of deep learning classification of a Seagrass patch: (a) multispectral im-
age with ground truth contoured in yellow and (b) U-Net result, with backbone Res-
Net-34. 

 
discuss the results against each other, as presented above. The U-Net model 
gives high-quality results with aerial photography, making all the post-processing 
steps previously required by conventional classifications unnecessary; ArcGIS 
Pro provides all the tools, with a learning curve feasible for a user with some 
background in classification methods, without the necessity of the informatic 
means and skills to implement complex deep learning procedures. 

4. Conclusion 

From the results illustrated and many others that we have explored with less 
success, but which have also contributed to guide the choice of the parameters of 
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the models tested, we conclude that the deep learning results obtained with the 
U-Net model with ResNet-34 as the backbone are superior to the standard ma-
chine learning methods for this type of high-resolution multispectral images, 
using the four bands R, G, B and Near-infrared. More compact patches and bet-
ter definitions of contours are obtained in the most intricated areas, and fine 
elements are preserved and correctly identified. Even in the definition of Salt-
marsh patches, which is a class correctly identified in general in both options, 
U-Net's performance is superior, simultaneously presenting well-defined con-
tours and homogeneous patches, and managing to identify even the most prob-
lematic areas, such as the presence of salt marsh on the walls separating the 
tanks from the salt pans. Like (Gonzalez-Perez et al., 2022) we use machine 
learning algorithms and deep learning models trained with the same training set 
and tested with the same control points and we found a clear advantage of the 
U-Net model in the classification of the estuarine zone under study. 

The main disadvantage is the processing time involved, but we were working 
with a fairly large area (18,776 ha) with a high resolution (0.2 m) on a laptop 
with a normal configuration, so this could probably be improved with an up-
graded working configuration. The learning curve is variable but is quickly mas-
tered with some method and a prior knowledge of supervised classification that 
facilitates familiarization with the various requirements of the models and the 
successive steps needed to complete the procedures. 
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