
How Hard is Asynchronous Weight Reassignment?

Hasan Heydari,∗ Guthemberg Silvestre,† and Alysson Bessani∗
∗LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

†ENAC, University of Toulouse, France

hheydari@ciencias.ulisboa.pt, silvestre@enac.fr, anbessani@ciencias.ulisboa.pt

Abstract—The performance of distributed storage systems
deployed on wide-area networks can be improved using weighted
(majority) quorum systems instead of their regular variants
due to the heterogeneous performance of the nodes. A signif-
icant limitation of weighted majority quorum systems lies in
their dependence on static weights, which are inappropriate for
systems subject to the dynamic nature of networked environ-
ments. To overcome this limitation, such quorum systems require
mechanisms for reassigning weights over time according to the
performance variations. We study the problem of node weight
reassignment in asynchronous systems with a static set of servers
and static fault threshold. We prove that solving such a problem
is as hard as solving consensus, i.e., it cannot be implemented
in asynchronous failure-prone distributed systems. This result
is somewhat counter-intuitive, given the recent results showing
that two related problems – replica set reconfiguration and asset
transfer – can be solved in asynchronous systems. Inspired by
these problems, we present two versions of the problem that
contain restrictions on the weights of servers and the way they
are reassigned. We propose a protocol to implement one of
the restricted problems in asynchronous systems. As a case
study, we construct a dynamic-weighted atomic storage based
on such a protocol. We also discuss the relationship between
weight reassignment and asset transfer problems and compare
our dynamic-weighted atomic storage with reconfigurable atomic
storage.

Index Terms—distributed storage, weighted replication, atomic
storage, asset transfer, reconfiguration, consensus

I. INTRODUCTION

In the era of cloud computing, cryptocurrencies, and the

internet of everything, distributed storage systems are required

more than ever due to their fault tolerance and high availability.

Ensuring consistency of distributed storage systems is a fun-

damental challenging problem in distributed computing. One

well-known solution for such a problem is utilizing quorum

systems [1]. A quorum system is a collection of sets called

quorums such that each quorum is a subset of servers, and

every two quorums intersect. Although many types of quorum

systems exist, such as grids [2] and trees [3], most practical

distributed storage systems (e.g., [4]–[7]) utilize the regular

majority quorum system (MQS) due to its simplicity and

optimal fault tolerance.

In MQS, every quorum consists of a strict majority of

servers. Although MQS is simple and optimally fault-tolerant,

it might be subject to poor latency and low throughput due

to practical considerations such as replica heterogeneity [8].

To take such considerations into account, one can use the

weighted majority quorum system (WMQS), in which each

server is assigned a weight (a.k.a. vote or voting power) in

accordance with its access latency or request processing ca-

pacity (throughput), as determined by a monitoring system [9],

[10], and the assigned weights are used to determine whether

a subset of servers constitutes a (weighted) quorum.

A significant limitation of the WMQS is its reliance on static

weights, which are inappropriate for dynamic systems, where

servers’ performance might change over time [10], [11]. To

overcome such a limitation, WMQS can be integrated with

weight reassignment protocols for changing server weights

over time according to performance variations.

The main goal of this paper is to study weight reassignment

in an asynchronous system with a static set of servers and static

fault threshold, where an available weighted quorum is guaran-

teed to exist. To this end, as a first step, we formally define the

weight reassignment problem by which weight reassignment

requests can be issued and processed. We then prove that

consensus can be reduced to the weight reassignment problem,

i.e., a solution to the weight reassignment problem can be used

to solve consensus. Consequently, the weight reassignment
problem cannot be implemented in asynchronous failure-prone
systems.

To cope with such an impossibility, we introduce a re-

stricted version of weight reassignment called pairwise weight
reassignment, in which the reassignments can only be done

in a pairwise way. More precisely, in the pairwise weight

reassignment, the total weight of servers remains constant, and

a server gains a weight Δ if and only if another server loses

Δ. Reassigning weights in such a way is similar to transferring

assets in 1-asset transfer.1 Somewhat surprisingly, although 1-

asset transfer can be implemented in asynchronous failure-

prone systems [12], we show that this is not the case for

pairwise weight reassignment.

We further restrict the pairwise weight reassignment prob-

lem by mainly considering a restriction on the possible range

of weights, naming it restricted pairwise weight reassignment.
We show that such a restricted variant of the problem can

be implemented in asynchronous failure-prone systems. As a

case study, we construct a dynamic-weighted atomic storage

incorporating a protocol solving this variant.

Our dynamic-weighted atomic storage is somewhat similar

to reconfigurable atomic storage,2 which can be implemented

1In the 1-asset transfer problem, there are some accounts, each of which
is owned by a server; each server can transfer some of its assets to another
server if its balance does not become negative.

2Reconfigurable atomic storage implements atomic storage in systems with
the possibility of changing the set of servers over time.

523

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00038

in asynchronous systems [13]–[17]. We further elaborate on

similarities between these storage systems, discussing why the

techniques used to implement reconfigurable atomic storage,

e.g., generalized lattice agreement [18], cannot be used to

implement dynamic-weighted atomic storage.

Contributions. The contributions of this paper are:

• We formalize the weight reassignment problem for sys-

tems with a static set of servers and fault threshold and

prove it cannot be solved in asynchronous failure-prone

systems.

• We introduce a restricted version of the problem called

the pairwise weight reassignment, in which voting power

is transferred between pairs of servers. Although similar

to asset transfer, we show that this variant cannot be

implemented in asynchronous failure-prone systems.

• We further restrict the problem to a restricted pairwise
weight reassignment variant, which can be implemented

in asynchronous failure-prone systems, and use it to build

a dynamic-weighed atomic storage.

• We discuss the relationship between the pairwise weight
reassignment with the asset transfer problem and compare

our dynamic-weighted atomic storage with reconfigurable

atomic storage.

Organization of the paper. Section II presents our system

model and preliminary definitions. In Section III, we introduce

the weight reassignment problem. The impossibility of im-

plementing the weight reassignment problem in asynchronous

failure-prone systems is presented in Section IV. Section V

presents the restricted versions of the weight reassignment

problem: the pairwise weight reassignment and the restricted

pairwise weight reassignment. We also show that pairwise

weight reassignment cannot be implemented in asynchronous

failure-prone systems. Section VI implements the restricted

pairwise weight reassignment, while in Section VII, we outline

a dynamic-weighted atomic storage using this implementation.

Sections VIII and IX present related work and concludes the

paper, respectively.

II. PRELIMINARIES

System model. We consider an asynchronous message-passing

system composed of two non-overlapping sets of processes – a

finite set of n servers S and an infinite set of clients Π. Every

client or server knows the set of servers. At most f servers

can crash, while any number of clients may crash. A process

is called correct if it is not crashed. Each pair of processes

is connected by a reliable communication link. Processes are

sequential, i.e., a process never invokes a new operation before

obtaining a response from a previous one. In the definitions

and proofs, we make the standard assumption of the existence

of a global clock not accessible to the processes.

Weighted majority quorums. Our work relies on weighted

majority quorums [19]–[22], so we present their definition and

one of their properties that plays an essential role throughout

this paper.

Definition 1 (Weighted Majority Quorum System). The

weighted majority quorum system (WMQS) refers to a set of

quorums where each quorum is composed of a set of servers

whose total weight is greater than half of the total weight of

all servers.

Since some minority of servers might have the majority of

weights, proportionally smaller quorums can be constituted in

WMQS in contrast to MQS, yielding to performance improve-

ments. To guarantee the availability of a distributed system

based on WMQS, a relationship between the servers’ weights

and f must be satisfied; otherwise, more than half of the

voting power can be assigned to f or fewer servers [20]. The

following property determines such a relationship.

Property 1 (Availability of WMQS). A WMQS is available if

the sum of the f greatest weights is less than half of the total

weight of all servers.

Consensus. This paper shows the impossibility of solving

two problems related to weight reassignment in asynchronous

failure-prone systems. Our method of showing these results in-

volves reducing consensus to each of these problems (compre-

hensive explanation of these reductions detailed in Sections IV

and V). In consensus, each correct process proposes a value v
through the invocation of propose(v), and the ultimate goal

of processes is to decide upon a single value from the proposed

values. The operation must return the decided value, and any

algorithm that solves consensus must satisfy the following

properties (e.g., [23]):

• Agreement. All correct processes must decide the same

value.

• Validity. If all correct processes propose the same value

v, they must decide v.

• Termination. All correct processes must eventually de-

cide.

III. WEIGHT REASSIGNMENT PROBLEM

The weight reassignment problem aims to capture the safety

and liveness properties that must be satisfied as servers’

weights change over time. To formalize this problem, we

first need to define the change data structure, which contains

the essential information related to the outcome of a weight

reassignment operation.

Change. Each process pi (server or client) has a local counter

denoted by lci. We define change as {S ∪Π} × N× S × R,

where the quadruple 〈pi, lci, s,Δ〉 indicates that the weight of

server s is changed by Δ as an outcome of a reassignment

request made by process pi with local counter lci. For any

change 〈∗, ∗, s,Δ〉, by convention, “the weight of the change”

refers to Δ, and we say that “the change is created for s”.

The problem. We introduce a weight reassignment problem

with the following operations:

• reassign(s,Δ), where s is a server, and Δ is a real

number different from zero, and

• read changes(s), where s is a server.

524

Each process can invoke reassign(s,Δ) to request chang-

ing the weight of server s by Δ. Without loss of generality,

we assume that only servers invoke reassign. When an

invocation of reassign is completed (see definition below), a

change c corresponding to the invocation’s outcome is created,

and a message 〈Complete, c〉 is returned to the server that

invoked the operation. Any process can invoke read changes

to learn about the set of changes created for a server, by

which the weight of the server can be calculated. Each process

must increment its local counter after each invocation of the

reassign operation.

Definition 2 (Completed reassign). Assume that a server si
invokes reassign(sj ,Δ) when its local counter is lci. We say

that the invocation is completed if there is a time after which

the response of every invocation read changes(sj) contains

a change 〈si, lci, sj , ∗〉.
We define Cs,t as the set containing every change c created

for server s such that the reassign operation led to the

creation of c is completed at time t. It is straightforward to

show that Cs,t ⊆ Cs,t′ for any server s and t ≤ t′, and we say

that Cs,t′ is more up-to-date than Cs,t if Cs,t ⊂ Cs,t′ . Further,

for each server s, we assume there is a change defining the

initial weight of s. Specifically, given w as the initial weight of

s, we assume that reassign(s, w) is completed at time t = 0.

We denote the weight of a server s at any time t by Ws,t, where

Ws,t �
∑

〈∗,∗,s,Δ〉∈Cs,t
Δ. We also denote the weight of a set of

servers A ⊆ S by WA,t, where WA,t �
∑

s∈A Ws,t. With these

definitions, we are ready to define the weight reassignment

problem.

Definition 3 (Weight Reassignment Problem). Any algorithm

that solves the weight reassignment problem must satisfy the

following properties:

• Integrity. ∀t ≥ 0, ∀F ⊂ S such that |F | = f , WF,t <
WS,t

2 .

• Validity-I. When the reassign(s,Δ) operation is com-

pleted, a change 〈∗, ∗, s,Δ〉 is created if Integrity is not

violated; otherwise, a change 〈∗, ∗, s, 0〉 is created.

• Validity-II. If read changes(s) is invoked at time t, a

set containing Cs,t is returned as the response.

• Liveness. If a correct server s invokes reassign (resp. a

correct process p invokes read changes), the invocation

will eventually be completed, and s (resp. p) will receive

a message 〈Complete, ∗〉 (resp. a set of changes).

It is straightforward to see why the Liveness property is a

part of the problem’s definition. In the following, we discuss

why the other properties are required.

• Integrity is a consequence of Property 1, which deter-

mines the relationship between the servers’ weights and

f , guaranteeing the system’s availability over time.

• The second property states that a change must be created

as the outcome of each reassign invocation. It also

determines how the change must be created.

Notice that Integrity might be violated if each invocation

of reassign(s,Δ) is completed by creating a change

〈∗, ∗, s,Δ〉 (see example below). Hence, to avoid the vi-

olation of Integrity, an invocation reassign(s,Δ) might

be aborted, i.e., a change 〈∗, ∗, s, 0〉 is created as the

invocation’s outcome.

• The third property determines what responses to a

read changes invocation are valid. Given any process

that invokes read changes(s) at any time t ≥ 0, it is

clear that a valid response must be as up-to-date as Cs,t.
On the other hand, due to asynchrony, it is impossible

to guarantee that exactly Cs,t is returned as the response.

Consequently, a valid response is one that contains Cs,t.
Example 1. Let S = {s1, s2, s3, s4}, Π = {c1, c2}, and

f = 1. The following sets contain the initial weights:

Cs1,0 = {〈s1, 1, s1, 1〉}, Cs2,0 = {〈s2, 1, s2, 1〉}, Cs3,0 =
{〈s3, 1, s3, 1〉}, and Cs4,0 = {〈s4, 1, s4, 1〉}. Assume that

server s1 invokes reassign(s1, 1.5), which is completed at

time t1. Accordingly, a change 〈s1, 2, s1, 1.5〉 is created as

the outcome of the invocation. It is worth mentioning that this

invocation cannot be completed by creating a change with zero

weight, as Validity-I enforces the invocation to create a change

with non-zero weight when there is no Integrity violation.

Client c1 invokes read changes(s1) after t1 and receives a

set of changes C at time t2, where C = Cs1,0∪{〈s1, 2, s1, 1.5〉}.

Note that Validity-II is violated if c1 receives Cs1,0 (or any

other set than C). Client c1 can calculate the weight of s1
using C: the weight of s1 equals 2.5. Server s3 invokes

reassign(s2,−0.5) after t2, which is completed at time

t3. Notice that creating a change 〈s3, 2, s2,−0.5〉 violates

Integrity, so a change 〈s3, 2, s2, 0〉 is created. If client c2
invokes read changes(s2) after t3, it will receive C′ =
Cs2,0 ∪ {〈s3, 2, s2, 0〉}. It is important to note that servers

are not allowed to invoke reassign(∗, 0) because the second

parameter of reassign must be non-zero.

IV. IMPOSSIBILITY RESULT

We now show the weight reassignment problem introduced

in the previous section cannot be implemented in asyn-

chronous failure-prone systems. We start by presenting an

insight into such an impossibility result.

Consider a system in which all correct servers invoke the

reassign operation concurrently such that only one of the

invocations can be completed by creating a change with

non-zero weight. That is, creating two or more changes,

each with non-zero weight, violates Integrity, meaning that

it can make f servers have more than half of the to-

tal voting power in the system. Assume that invocations

reassign(s1,Δ1), . . . , reassign(sn,Δn) create such a sit-

uation. One can take the following steps to solve consensus

among servers:

1) each correct server si writes its proposal vi to a single-

writer multi-reader (SWMR) register R[i] and invokes

reassign(si,Δi), where 1 ≤ i ≤ n, and

2) if a change with non-zero weight is created for sj , the

decided value is the one stored in R[j].

525

Since the weight of only one of the created changes is

non-zero, servers can decide the same value. Consequently,

consensus can be reduced to the weight reassignment problem,

which means that the weight reassignment problem cannot be

implemented in asynchronous failure-prone systems [24].

Based on this insight, we design an algorithm presented

in Algorithm 1, by which servers solve consensus using the

weight reassignment problem, i.e., it reduces consensus to the

weight reassignment problem. The algorithm is executed by

each correct server si and provides a function – propose(vi)
– by which si proposes a value vi. We divide the servers into

two disjoint sets, F and S\F , such that F = {s1, s2, . . . , sf},

and we assume that the initial weight of every server s ∈
F (resp. s ∈ S \ F) equals n−1

2f (resp. n+1
2(n−f)). Notice that

Integrity is satisfied with these initial weights. Further, there is

a shared array of SWMR registers R of size n to store servers’

proposals.

Each server si executes the propose function. After stor-

ing its proposal in R[i], si invokes reassign(si, 0.5) (resp.

reassign(si,−0.5)) if si ∈ F (resp. si ∈ S \ F). It

is straightforward to see that two or more invocations of

reassign cannot be completed by creating changes with

non-zero weights. For instance, if reassign(s1, 0.5) and

reassign(sf+1,−0.5) are completed by creating changes

〈s1, 2, s1, 0.5〉 and 〈sf+1, 2, sf+1,−0.5〉 at time t > 0, then

we have:

WF,t = f × n− 1

2f
+ 0.5 =

n

2
WS,t

2
=

WF,t + WS\F,t

2

=
f × n−1

2f + 0.5 + (n− f)× n+1
2(n−f) − 0.5

2
=

n

2
,

which means that Integrity is violated.

In a loop, for each server sj ∈ S , si repeatedly invokes

read changes(sj) to see the invocation of which server is

completed by creating a change with non-zero weight. Because

of Liveness, the loop will eventually terminate. Assume that

the invocation of server sj is completed by creating a change

〈sj , 2, sj ,Δ〉, where Δ �= 0. Consequently, si returns R[j]
as the decided value, and consensus among servers will be

solved.

Theorem 1. Consensus can be reduced to the weight reas-

signment problem.

Corollary 1. The weight reassignment problem cannot be

implemented in asynchronous failure-prone systems.

The proof of Theorem 1 can be found in the appendix.

V. RESTRICTING THE WEIGHT REASSIGNMENT PROBLEM

The weight reassignment problem presented in Section III

cannot be implemented in asynchronous failure-prone systems

according to Corollary 1. In this section, we try to restrict that

problem in order to find a variant that can be implemented in

such a system model. We begin by keeping the total voting

power constant by restricting the reassignments to be done in

Algorithm 1 Reducing consensus to the weight reassignment

problem – server si.

� R is a shared array of SWMR registers with size n
� if i ∈ {1, 2, . . . f}, Wsi,0 = n−1

2f ; otherwise, Wsi,0 = n+1
2(n−f)

� si executes the propose function

function propose(vi)
1: R[i] ← vi
2: if i ∈ {1, 2, . . . , f}
3: reassign(si, 0.5)
4: else
5: reassign(si,−0.5)

6: decided value ←⊥
7: repeat
8: for j ∈ {1, 2, . . . n}
9: C ← read changes(sj)

10: if 〈sj , 2, sj ,Δ〉 ∈ C such that Δ �= 0
11: decided value ← R[j]

12: until decided value �=⊥
13: return decided value

a pairwise manner. We call the resulting problem the pairwise
weight reassignment.

A. Pairwise weight reassignment

Avoiding the Integrity violation is the main difficulty in

solving the weight reassignment problem, so we focus on

this property. Our first idea for restricting the problem is to

ensure that the right-hand side of the inequality presented

in the Integrity property and, consequently, the total weight

of all servers, remains constant over time, i.e., at any time

t > 0, WS,t = WS,0. In this way, identifying Integrity violations

might become easier because we just need to compare the total

weight of the f servers having the greatest weights with
WS,0

2 .

To apply this restriction, servers can reassign their weights

in a pairwise manner, i.e., a server sj gains a weight Δ if and

only if another server si loses Δ. In such a situation, we say

that Δ is transferred from si to sj . To represent this way of

reassigning weights, we define a new operation as follows:

• transfer(si, sj ,Δ) that can be invoked by any server

sk to transfer Δ �= 0 from si to sj .

Similar to the weight reassignment problem, processes can

utilize the read changes operation to learn about changes

created for each server. When transfer(si, sj ,Δ) invoked

by sk is completed, two changes c = 〈sk, lck, si,−Δ′〉 and

c′ = 〈sk, lck, sj ,Δ′〉 corresponding to the transfer’s outcome

are created, where Δ′ is either Δ or 0. Further, a message

〈Complete, c〉 is returned to sk (notice that both changes

are created with either non-zero weights or zero weights, so

returning c is enough to determine the weight of c′). We

say that the transfer is completed if there is a time after

which the responses of two invocations read changes(si)
and read changes(sj) contain c and c′, respectively. Each

server increments its local counter after each transfer in-

vocation. By convention, we say that a transfer invocation

526

is effective (resp. null) if the weights of created changes are

non-zero (resp. zero).
By considering this restriction, we define a new variant of

the weight reassignment problem called the pairwise weight
reassignment in which transfer is the only operation to

reassign weights. The definition of the pairwise weight re-

assignment contains all properties of the weight reassignment

problem (Definition 3) adapted to use the transfer operation

instead of reassign, as follows.

Definition 4 (Pairwise Weight Reassignment). Any algorithm

that solves the pairwise weight reassignment problem must

satisfy the following properties:

• P-Integrity. ∀t ≥ 0, ∀F ⊂ S such that |F | = f , WF,t <
WS,t

2 .
• P-Validity-I. When the transfer(si, sj ,Δ) operation is

completed, two changes 〈∗, ∗, si,−Δ〉 and 〈∗, ∗, sj ,Δ〉
are created if P-Integrity is not violated; otherwise, two

changes 〈∗, ∗, si, 0〉 and 〈∗, ∗, sj , 0〉 are created.
• P-Validity-II. If read changes(s) is invoked at time t,

a set containing Cs,t is returned as the response.
• P-Liveness. If any correct server s invokes transfer

(resp. a correct process p invokes read changes), the

invocation will eventually be completed, and s (resp.

p) will receive a message 〈Complete, ∗〉 (resp. a set of

changes).

Now this question arises: Can the pairwise weight reassign-
ment be implemented in asynchronous failure-prone systems?
The answer to this question is no. The general idea behind

this impossibility is similar to the one presented for the weight

reassignment problem (Section IV). Consider a set of servers

F ⊂ S with size f , and assume that all correct servers invoke

transfer concurrently such that only one of the transfers

executed by members of S \ F can be completed effectively.

P-Integrity is indeed violated if two or more transfers executed

by members of S \ F are completed effectively. In such a

situation, all correct servers can decide on the value proposed

by a server s ∈ S \F whose transfer is completed effectively

(the decided value is selected from the values proposed by

members of S\F .) As a result, servers can solve consensus us-

ing pairwise weight reassignment, which means that consensus

can be reduced to the pairwise weight reassignment problem.

Hence, pairwise weight reassignment cannot be implemented

in asynchronous failure-prone systems.
Based on this insight, we design an algorithm, presented

in Algorithm 2, to solve consensus using pairwise weight

reassignment. The algorithm is executed by each correct server

si and provides a function propose(vi). We assume that the

initial weight of each server s ∈ F (resp. s ∈ S \ F) is n−1
2f

(resp. n+1
2(n−f)), where F = {s1, s2, . . . , sf}. Further, there is a

shared array of SWMR registers R with size n to store servers’

proposals.
Each server si ∈ S executes the propose function. After

storing its proposal in R[i], each server si invokes transfer.

The transfers executed by servers must be in such a way that

only one of the transfers executed by members of S \ F can

Algorithm 2 Reducing consensus to the pairwise weight

reassignment problem – server si.

� R is a shared array of SWMR registers with size n
� if i ∈ {1, 2, . . . f}, Wsi,0 = n−1

2f ; otherwise, Wsi,0 = n+1
2(n−f)

� si executes the propose function

function propose(vi)
1: R[i] ← vi
2: if i ∈ {1, 2, . . . , f}
3: j ← (i+ 1) mod f
4: transfer(si, sj , 0.1)
5: else
6: transfer(si, s1, 0.4)

7: decided value ←⊥
8: repeat
9: for j ∈ {f + 1, f + 2, . . . n}

10: if 〈sj , 2, s1, 0.4〉 ∈ read changes(sj)
11: decided value ← R[j]

12: until decided value �=⊥
13: return decided value

be completed effectively. To this end, each server si ∈ F
(resp. si ∈ S \ F) invokes transfer(si, sj , 0.1) (resp.

transfer(si, s1, 0.4)), where j = (i+ 1) mod f .

In the loop, for each server sj ∈ S \ F , si repeatedly

invokes read changes(sj) to see the transfer of which server

is completed effectively. Because of P-Liveness, the loop will

eventually terminate. Assume that the transfer of server sj is

completed effectively by creating two changes 〈sj , 2, sj ,−0.4〉
and 〈sj , 2, s1, 0.4〉. Consequently, si returns R[j] as the de-

cided value.

It is straightforward to see that the transfer of each correct

server s ∈ F completes effectively without changing the

total weight of servers in F . On the other hand, only one

transfer executed by members of S \ F can be completed

effectively; otherwise, P-Integrity is violated. For instance,

if transfers of sf+1 and sf+2 are completed effectively

by creating changes 〈sf+1, 2, sf+1,−0.4〉, 〈sf+1, 2, s1, 0.4〉,
〈sf+2, 2, sf+2,−0.4〉, and 〈sf+2, 2, s1, 0.4〉 at time t > 0,

then we have:

WF,t = f × n− 1

2f
+ 0.4 + 0.4 =

n

2
+ 0.3

WS,t

2
=

WS,0

2
=

n

2
,

which means that P-Integrity is violated.

Theorem 2. Consensus can be reduced to the weight reas-

signment problem.

The proof of this theorem can be found in the appendix.

As the restriction presented above is insufficient to restrict

the weight reassignment problem in a way that can be im-

plemented in asynchronous failure-prone systems, we define

another problem in the following.

527

B. Restricted pairwise weight reassignment
In pairwise weight reassignment, after invoking transfer,

servers must use consensus or similar primitives to create

changes in order to preserve P-Integrity. The objective of

using consensus for each transfer invocation is to decide
whether the invocation is effective or not, i.e., which changes

must be created: two changes with non-zero weights or with

zero weights. One possible approach to create changes without

consensus is eliminating such a globally taken decision, i.e.,

given a server si that wants to invoke transfer(∗, ∗,Δ), si
is allowed to execute the operation if its invocation does not

violate (P-)Integrity.
We now present two conditions that, if they are satisfied,

ensure an effective transfer:

• (C1) only si can invoke transfer(si, ∗,Δ), i.e., other

servers cannot transfer some of si’s weight, and

• (C2) the weight of si must always be greater than
WS,0

2(n−f) .

Note that if C1 holds, C2 is a locally verifiable condition.

Theorem 3. Provided that a server si wants to invoke

transfer, we can ensure that the transfer is effective if C1

and C2 are met.

The proof of Theorem 3 can be found in the appendix. Here

we present an insight into these conditions. It is clear that:

WS,t = WS\F,t + WF,t (∀F ⊂ S, ∀t ≥ 0) (1)

It is straightforward to obtain the following inequality using

(P-)Integrity and Equation 1 when |F | = f :

WS\F,t >
WS,t

2
(∀F ⊂ S such that |F | = f, ∀t ≥ 0) (2)

Inequality 2, which is equivalent to (P-)Integrity, states that

the total weight of any n − f servers must be greater than

half of the total weight of all servers. Notice that if the

weight of each server is greater than
WS,0

2(n−f) at any time

t, the total weight of servers in set S \ F is greater than

|S\F |× WS,0

2(n−f) =
WS,0

2 , i.e., WS\F,t >
WS,0

2 . Hence, if C2 holds

for each transfer, (P-)Integrity is always preserved. To see why

C1 is required, assume that at least two servers si, sk �= sj
invoke transfer(sj , ∗,Δ1) and transfer(sj , ∗,Δ2) at time

t such that Wsj ,t−Δ1−Δ2 ≤ WS,0

2(n−f) but Wsj ,t−Δ1 >
WS,0

2(n−f)

and Wsj ,t − Δ2 >
WS,0

2(n−f) . In fact, if both transfers are

completed effectively, then C2 is violated; however, one of

the transfers can be completed effectively without violating

C2. In such a situation, si and sk can solve consensus

(like the impossibility results presented in Sections IV and

V.) Consequently, in order to satisfy C2 in asynchronous

failure-prone systems, we must assume that for each server

sj , there is at most one server that is allowed to invoke

transfer(sj , ∗, ∗). Without loss of generality, we assume that

only sj can invoke transfer(sj , ∗, ∗).
These conditions indeed can restrict pairwise weight re-

assignment. We define a new version of pairwise weight

reassignment called restricted pairwise weight reassignment to

consider these conditions. Specifically, it contains all proper-

ties of the pairwise weight reassignment (Definition 4) except

quorum
quorumquorum

quorum

Fig. 1: An example showing how the restricted pairwise weight

reassignment works. The part surrounded by a red box cannot

be executed in the restricted pairwise weight reassignment.

for two changes: P-Integrity is replaced by RP-Integrity to

consider C2, and P-Validity-I is adapted so that only server s
can invoke transfer(s, ∗, ∗) due to C1. In the next section,

we elaborate on how servers can use these conditions to

transfer weights in asynchronous failure-prone systems.

Definition 5 (Restricted Pairwise Weight Reassignment). Any

algorithm that solves the restricted pairwise weight reassign-

ment problem must satisfy the following properties:

• RP-Integrity. ∀t ≥ 0, ∀s ∈ S , Ws,t >
WS,0

2(n−f) .

• RP-Validity-I. When the transfer(si, sj ,Δ) opera-

tion is completed, two changes 〈si, ∗, si,−Δ〉 and

〈si, ∗, sj ,Δ〉 are created if RP-Integrity is not violated;

otherwise, two changes 〈si, ∗, si, 0〉 and 〈si, ∗, sj , 0〉 are

created.

• RP-Validity-II. If read changes(s) is invoked at time t,
a set containing Cs,t is returned as the response.

• RP-Liveness. If any correct server s invokes transfer

(resp. a correct process p invokes read changes), the

invocation will eventually be completed, and s (resp.

p) will receive a message 〈Complete, ∗〉 (resp. a set of

changes).

Example 2. Let S = {s1, s2, s3, s4, s5, s6, s7} and f = 2. In

this setting, the weight of each server must be greater than

0.7 at any time t ≥ 0. Notice that the size of each quorum

is four at the beginning. Assume that transfer is invoked

by s4, s5, and s6 according to Fig. 1, and the invocations

are completed before time t1. The new weights of servers at

time t1 are presented in the figure. As a result of these weight

reassignments, {s1, s2, s3} (a minority of servers) constitutes

a quorum.

This figure contains two other invocations made by s6
and s7 after time t1. Notice that these invocations cannot be

executed in the restricted pairwise weight reassignment due

to RP-Integrity violation. However, they could be executed in

the pairwise weight reassignment, resulting in the weights in

the red shaded rectangular area.

C. Discussion

The restrictions imposed by the pairwise weight reassign-

ment and restricted pairwise weight reassignment problems

528

can lead to practical limitations in dealing with failed or

slow servers in asynchronous systems. Here, we discuss these

limitations in further detail.

In the weight reassignment problem, in the case of having

a failed/slow server, there are two possible approaches to

mitigate the impact of such a server: (I) decreasing the weight

of the failed/slow server by other servers or (II) increasing the

weights of other servers. This flexibility allows other servers

to form quorums by a minority of servers during execution.

However, in pairwise weight reassignment, the second

approach cannot be employed in the case of having a

failed/slow server, as the total weight of servers cannot

change. The situation is even worse for the restricted pairwise

weight reassignment, as servers cannot use both approaches

when having a failed/slow server. For instance, consider the

same system as presented in Example 2. Assume that the

initial weights of servers s1, s2, s3, s4, s5, s6, and s7 are

1.6, 1.4, 0.8, 0.8, 0.8, 0.8, and 0.8, respectively. Assume that

servers s1 and s2 are failed or slow. Then, the size of the

smallest quorum is five, and servers cannot form smaller

quorums by reassigning weights.

VI. IMPLEMENTING THE RESTRICTED PAIRWISE WEIGHT

REASSIGNMENT

This section presents a protocol that implements the re-

stricted pairwise weight reassignment in asynchronous failure-

prone systems. The protocol is composed of two algo-

rithms. The first algorithm, Algorithm 3, implements the

read changes operation and contains two parts: the first part

can be executed by any process (lines 1-9) and the second

part must be executed by each correct server (lines 12-15). To

read the changes created for a server s, a process pi invokes

read changes. Then, pi broadcasts a message 〈RC, s, lci〉 to

all servers. Upon receiving the message, each server responds

by sending a set of changes it has stored for server s. When

pi receives more than f responses, it takes the union of the

received set of changes. Let C be the resulting set. Then, pi
broadcasts C to all servers. After receiving C, each server stores

C and responds by sending an acknowledgment. As soon as

receiving n−f acknowledgments, p can ensure that C is stored

by at least n − f servers and completes the invocation by

returning C.

The second algorithm, Algorithm 4, contains the pseudo-

code of the transfer operation and must be executed by

each correct server. It is worth mentioning that a server can

invoke transfer only if its last invocation of transfer is

complete. We assume that servers invoke transfer based on

the information provided by a monitoring system (to see how

it can be implemented or its provided information can be used,

refer to [10], [11]).

The main idea behind Algorithm 4 is as follows. Each server

s can compute its weight using the changes stored in a local

variable. If its weight is greater than Δ+
WS,0

2(n−f) , it can transfer

Δ to another server.

In further detail, each server has a local counter, denoted by

lc, initialized with 1, and used to distinguish the transferred

Algorithm 3 The implementation of read changes.

� This part can be executed by all process.

operation read changes(s)
1: C ← ∅
2: broadcast 〈RC, s〉
3: repeat
4: wait until 〈RC Ack, Cs〉 is received from a server

5: C ← C ∪ Cs
6: until |C| > f
7: broadcast 〈WC, C〉
8: wait until 〈WC Ack〉 is received from n− f servers

9: return C
� This part is executed by every correct server si.
upon receipt of 〈RC, s〉 from p
12: C ← get changes(s) � see Algorithm 4

13: send 〈RC Ack, C〉 to p

upon receipt of 〈WC, C〉 from p
14: write changes(C) � see Algorithm 4

15: send 〈WC Ack〉 to p

weights. Also, each server has a variable denoted by register
to store the tag and the value of its local register (we elaborate

on this variable in the next section.) If a server si wants

to transfer weight Δ to another server sj , it first examines

whether its weight remains greater than
WS,0

2(n−f) by transferring

Δ (line 12). If this is the case, then si broadcasts a message

〈T, 〈si, lci, si,−Δ〉, 〈si, lci, sj ,Δ〉〉 using a reliable broadcast

primitive [25] (line 14). Each server has a set denoted by C to

store every received change, initialized with a set containing

the initial weights of all servers. By receiving a message

〈T, c, c′〉 broadcast by si (line 21), every server adds c and

c′ to its set C and sends a response to si (lines 10-11). If si
receives at least n−f responses, then the invocation completes

(lines 15-20).

Theorem 4. The implementation of restricted pairwise weight

reassignment (Algorithms 3 and 4) satisfies the properties of

the problem (Definition 5).

Theorem 5. Restricted pairwise weight reassignment can be

implemented in asynchronous failure-prone systems.

The proofs of these theorems and other theorems presented

in the following sections can be found in the extended version

of the paper [26].

VII. DYNAMIC-WEIGHTED ATOMIC STORAGE

This section demonstrates how storage systems based on

MQS in asynchronous systems can be adapted to leverage

the advantages of dynamic WMQS. To do so, we construct

a dynamic-weighted atomic storage, where the weights of

servers can be reassigned using the restricted pairwise weight

reassignment, and its stored value can be accessed by two

operations: read and write.

529

Algorithm 4 The implementation of the transfer operation

– server si.

variables
1: lci ← 1
2: C ← {〈s, 1, s, 1〉 | ∀s ∈ S}
3: register [tag [ts, pid], val] ← 〈〈0,⊥〉,⊥〉

function weight()
4: T ← get changes(si)
5: return

∑
〈∗,∗,∗,Δ〉∈T Δ

function get changes(s)
6: return {〈∗, ∗, s′, ∗〉 | ∀ 〈∗, ∗, s′, ∗〉 ∈ C : s′ = s}

function write changes(C′)
7: for all 〈sj , c, sk, ∗〉 ∈ C′ \ C
8: if i = k
9: register ← read()

10: C ← C ∪ {〈sj , c, sk, ∗〉}
11: send 〈T Ack, c〉 to sj if not already sent

operation transfer(si, sj ,Δ)
12: if weight() > Δ+

WS,0

2(n−f)

13: C ← C ∪ {〈si, lci, si,−Δ〉, 〈si, lci, sj ,Δ〉}
14: RB broadcast 〈T, 〈si, lci, si,−Δ〉, 〈si, lci, sj ,Δ〉〉
15: wait until receiving 〈T Ack, lci〉 from n−f−1 servers

16: msg ← 〈Complete, 〈si, lci, si,−Δ〉〉
17: else
18: msg ← 〈Complete, 〈si, lci, si, 0〉〉
19: lci ← lci + 1
20: return msg

upon RB deliver 〈T, 〈sj , c, sj ,−Δ〉, 〈sj , c, sk,Δ〉〉
21: write changes ({〈sj , c, sj ,−Δ〉, 〈sj , c, sk,Δ〉})

In a nutshell, there are two main requirements to construct

such storage. First, each process p (client or server) that

wants to execute read or write protocols needs to store

the most up-to-date set of the completed changes C that it

knows. All read/write protocol messages carry C, and p
updates it as soon as discovering a more up-to-date set of

completed changes. The servers reject any operation issued

by p containing a set of changes different from C and respond

by sending their current set of completed changes to p, which

updates its set C. By receiving a set of changes that differs

from its set of changes, p restarts the executing operation.

The second requirement is that, before accessing the system,

p must know the initial weight of each server.

Our protocol extends the classical ABD algorithm [27] for

supporting multiple writers and working with the restricted

pairwise weight reassignment. In the following, we highlight

the main aspects of the read and write protocols (the

complete algorithms can be found in the extended version of

the paper [26].) These protocols work in phases. Each phase

corresponds to accessing a weighted quorum of servers in C.

The read protocol works as follows:

• 1st Phase: a reader requests a set of tuples 〈tag , val〉 (val

is the value a server stores, and tag is its associated tag3)

from a weighted quorum of servers in the most up-to-date

set of completed changes C and selects the one with the

highest tag 〈tagh, valh〉;
• 2nd Phase: the reader performs an additional write-back

phase in the system and waits for confirmations from a

weighted quorum of servers in C before returning valh.

The write protocol works in a similar way:

• 1st Phase: a writer obtains a set of tags from a weighted

quorum of servers in C and chooses the highest, tagh;

the tag to be written is defined by incrementing tagh.ts
and assigning tagh.pid to the writer’s id;

• 2nd Phase: the writer sends a tuple 〈tag , val〉 to the

servers of C, writing val with tag tag , and waits for

confirmations from a weighted quorum.

Correctness. The following theorem states that the dynamic-

weighted atomic storage can be implemented using the

read/write protocols if the weights of servers are reassigned

by invoking transfer (Algorithm 4).

Theorem 6. The storage system implemented using the de-

scribed read/write protocols is atomic storage.

VIII. RELATED WORK

Weight (re)assignment. The notion of majority quorum was

extended to be a weighted majority quorum to improve the

performance of replicated systems with diverse servers as-

signed with different voting power [19]. WHEAT (WeigHt-

Enabled Active replicaTion) [20] shows that additional spare

servers and weighted voting allow the system to benefit from

diverse quorum sizes, enabling it to make progress by employ-

ing proportionally smaller quorums and potentially obtaining

significant latency improvements. In WHEAT, each assigned

weight is either wmin or wmax . These values are defined in

such a way that the safety and liveness properties of quorums

are always satisfied. We also considered a minimum weight

for defining the restricted pairwise weight reassignment, just

like WHEAT. Still, we consider more general weight schemes

since our weights can have any value greater than the defined

minimum.

In practice, network characteristics may be subject to run-

time variations, and thus the assigned weights may also

require to be changed over time. Accordingly, the problem

of integrating WMQS with weight reassignment protocols was

introduced to allow reassigning weights over time according to

the observed performance variations. This problem was studied

for partially synchronous systems in [10], [20], [22], [28],

[29], where the weight reassignment protocols are based on

consensus or similar primitives. Besides, such a problem was

studied for asynchronous systems in [11], where the weights

can be reassigned in a pairwise manner using an epoch-based

protocol. In the presented protocol, reassignment requests

3A tag tg is a pair holding the timestamp tg.ts and the writer’s id tg.pid
associated with the value stored by the register. A tag tg1 is less than another
tg2 if (I) tg1.ts < tg2.ts , or (II) tg1.ts = tg2.ts and tg1.pid < tg2.pid .

530

issued during an epoch can only be applied at the end of the

epoch. Notice that the duration of epochs impacts the perfor-

mance of the protocol, and determining the optimal duration

for epochs is challenging. That study inspires our restricted

pairwise weight reassignment; however, our implementation is

epochless. Moreover, in that study, the total weight of servers

might become less than WS,0, leading to the loss of voting

power as the system progresses.

Relationship with the asset transfer problem. In the asset

transfer problem, there are some accounts, each holding some

assets owned by k ≥ 1 servers. Some assets of any account

can be transferred to another account if the source’s balance

does not become negative. It was proved by Guerraoui et

al. [12] that if there is an account with k > 1 owners,

the consensus number of the problem is k, i.e., the problem

cannot be implemented in asynchronous failure-prone systems.

The insight into such an impossibility is as follows. Consider

an account with k > 1 owner, and assume that all owners

concurrently want to transfer some assets from the account to

another account(s) such that the balance of the account will

become negative by executing all transfers. In such a situation,

some transfers must be aborted to keep the account’s balance

non-negative, which requires consensus.

Reassigning weights in a pairwise manner is inspired by

the asset transfer problem (consider weights equivalents to

assets.) These problems are similar in reassigning/transferring

weights/assets, and both cannot be implemented in asyn-

chronous failure-prone systems. However, there is a significant

difference between them: there is no condition related to the

distribution of assets in the asset transfer problem, but the

total of the f greatest weights should be less than half of the

total weights in the pairwise weight reassignment to satisfy

P-Integrity.

To solve the asset transfer problem in asynchronous failure-

prone systems, a restricted version of the problem called the

1-asset transfer problem is presented in which each account

is owned by exactly one owner. It was proved that such

a restricted problem could be implemented in asynchronous

failure-prone systems [12]. In the restricted pairwise weight

reassignment, the assumption that transferring a weight Δ
from a server s to another server can be made only by s is

inspired by the 1-asset transfer problem.

Relationship with asynchronous reconfiguration. Recon-

figurable atomic storage [13]–[17] implements atomic regis-

ters [30] in systems with the possibility of changing the set of

servers over time, i.e., servers can join and leave the system

during an execution. The reconfigurable atomic storage is sim-

ilar to the dynamic-weighted atomic storage in which quorum

formations might change over time, i.e., a subset of servers

that form a quorum during a time interval might not form a

quorum after that interval. Based on such a similarity, one

might say that the techniques used to solve the reconfigurable

atomic storage, e.g., generalized lattice agreement [18], can

be employed to solve the dynamic-weighted atomic storage;

however, this is not the case because the system’s availability

is defined differently in these problems.

In dynamic-weighted atomic storage, the system remains

available as long as the number of failures does not exceed the

fault threshold; however, in reconfigurable atomic storage, the

system remains available as long as any pending configuration

has a majority of servers that did not crash and were not

proposed for removal. In other words, the fault threshold is

static and independent of the reassignment requests in the

dynamic-weighted atomic storage; however, the fault threshold

is dynamic and determined based on the pending join and

leave requests in reconfigurable atomic storage (see Definition

1 in [13]).

IX. CONCLUSION

This paper studies the problem of integrating weighted

majority quorums with weight reassignment protocols for any

asynchronous system with a static set of servers and static fault

threshold while guaranteeing availability. We showed that such

a problem could not be solved in asynchronous failure-prone

distributed systems. Then, we presented a restricted version

of the problem called pairwise weight reassignment, in which

weights can only be reassigned pairwisely. We showed that

pairwise weight reassignment could not be implemented in

asynchronous failure-prone systems. We also discussed the

relation between the pairwise weight reassignment and the

asset transfer problem. We presented a restricted version of the

pairwise weight reassignment called restricted pairwise weight
reassignment that can be implemented in asynchronous failure-

prone systems. As a case study, we presented a dynamic-

weighted atomic storage based on the implementation of the

restricted pairwise weight reassignment.

ACKNOWLEDGMENTS

We thank the ICDCS’23 anonymous reviewers for their

constructive comments to improve the paper. This work

was supported by the Ministry of Higher Education and

Research of France, FCT through the ThreatAdapt project

(FCT-FNR/0002/2018) and the LASIGE Research Unit

(UIDB/00408/2020 and UIDP/00408/2020), and by the Eu-

ropean Commission through the VEDLIoT project (H2020

957197).

REFERENCES

[1] M. Vukolić, Quorum Systems: With Applications to Storage and Con-
sensus. Morgan & Claypool, 2012.

[2] M. Naor and A. Wool, “The load, capacity, and availability of quorum
systems,” SIAM Journal on Computing, vol. 27, no. 2, 1998.

[3] D. Agrawal and A. El Abbadi, “The tree quorum protocol: An efficient
approach for managing replicated data.” in 16th International Confer-
ence on Very Large Data Bases, 1990.

[4] “Etcd,” https://github.com/etcd-io/etcd, accessed: 2022-07-05.
[5] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free

coordination for internet-scale systems.” in USENIX annual technical
conference, 2010.

[6] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence, “FAB:
building distributed enterprise disk arrays from commodity components,”
ACM SIGOPS Operating Systems Review, vol. 39, no. 5, 2004.

[7] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proceedings of the 1st USENIX Conference
on File and Storage Technologies, 2002.

531

[8] M. Whittaker, A. Charapko, J. M. Hellerstein, H. Howard, and I. Stoica,
“Read-write quorum systems made practical,” in Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed
Data, 2021.

[9] D. Barbara and H. Garcia-Molina, “The reliability of voting mecha-
nisms,” IEEE Transactions on Computers, vol. 36, no. 10, 1987.

[10] C. Berger, H. P. Reiser, J. Sousa, and A. Neves Bessani, “AWARE:
Adaptive wide-area replication for fast and resilient Byzantine consen-
sus,” IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 3, 2022.

[11] H. Heydari, G. Silvestre, and L. Arantes, “Efficient consensus-free
weight reassignment for atomic storage,” in IEEE 20th International
Symposium on Network Computing and Applications, 2021.

[12] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovič, and D.-A. Seredin-
schi, “The consensus number of a cryptocurrency,” in Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, 2019.

[13] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer, “Dynamic atomic
storage without consensus,” Journal of the ACM, vol. 58, no. 2, 2011.

[14] E. Alchieri, A. Bessani, F. Greve, and J. Fraga, “Efficient and modular
consensus-free reconfiguration for fault-tolerant storage,” in 21st Inter-
national Conference on Principles of Distributed Systems, 2017.

[15] L. Jehl and H. Meling, “The case for reconfiguration without consen-
sus: Comparing algorithms for atomic storage,” in 21st International
Conference on Principles of Distributed Systems, 2017.

[16] L. Jehl, R. Vitenberg, and H. Meling, “SmartMerge: A new approach
to reconfiguration for atomic storage,” in International Symposium on
Distributed Computing, 2015.

[17] A. Spiegelman, I. Keidar, and D. Malkhi, “Dynamic reconfiguration:
Abstraction and optimal asynchronous solution,” in International Sym-
posium on Distributed Computing, 2017.

[18] J. M. Faleiro, S. Rajamani, K. Rajan, G. Ramalingam, and K. Vaswani,
“Generalized lattice agreement,” in Proceedings of the 2012 ACM
symposium on Principles of distributed computing, 2012.

[19] D. K. Gifford, “Weighted voting for replicated data,” Proceedings of the
seventh ACM symposium on Operating systems, 1979.

[20] J. Sousa and A. Bessani, “Separating the wheat from the chaff: An
empirical design for geo-replicated state machines,” in IEEE 34th
Symposium on Reliable Distributed Systems, 2015.

[21] H. Garcia-Molina and D. Barbara, “How to assign votes in a distributed
system,” Journal of the ACM, vol. 32, no. 4, 1985.

[22] S. Jajodia and D. Mutchler, “Dynamic voting algorithms for maintain-
ing the consistency of a replicated database,” ACM Transactions on
Database Systems, vol. 15, no. 2, 1990.

[23] M. J. Fischer, “The consensus problem in unreliable distributed systems
(a brief survey),” in International Conference on Fundamentals of
Computation Theory, 1983.

[24] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 13, no. 1, 1991.

[25] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Cornell University, USA, Tech. Rep.
TR94-1425, 5 1994.

[26] H. Heydari, G. Silvestre, and A. Bessani, “How hard is asynchronous
weight reassignment? (extended version),” https://arxiv.org/abs/2306.
03185, 2023.

[27] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” Journal of the ACM, vol. 42, no. 1, 1995.

[28] C. Berger, L. Rodrigues, H. P. Reiser, V. Cogo, and A. Bessani, “Chasing
the speed of light: Low-latency planetary-scale adaptive Byzantine
consensus,” https://arxiv.org/abs/2305.15000, 2023.

[29] D. Davcev, “A dynamic voting scheme in distributed systems,” IEEE
Transactions on Software Engineering, vol. 15, no. 1, 1989.

[30] L. Lamport, “On interprocess communication (part I),” Distributed
Computing, vol. 1, no. 2, 1986.

APPENDIX

Proof of Theorem 1. We show that servers can solve con-

sensus using Algorithm 1, i.e., three properties of consensus

– Agreement, Validity, and Termination – can be satisfied.

• (Agreement) Recall that each server s executes the

propose function in Algorithm 1. Then, s invokes

reassign according to its identifier. We first show that

only one of the reassign invocations can be completed

by creating a change with non-zero weight. For the sake of

contradiction, assume that there is a set A ⊆ S such that

|A| ≥ 2 and the invocation of each server s ∈ A completes

at time t > 0 by creating a change with non-zero weight.

Let F = {s1, . . . , sf}. Assume that k members of A are

in F , i.e., |A ∩ F | = k. We have:

WF,t = f × n− 1

2f︸ ︷︷ ︸
WF,0

+k × 0.5 (3)

WS\F,t = (n− f)× n+ 1

2(n− f)︸ ︷︷ ︸
WS\F,0

−(|A| − k)× 0.5

It is straightforward to obtain the following inequality

using Integrity and Inequality 2:

WF,t′ < WS\F,t′(∀F ⊂ S such that |F | = f, ∀t′ ≥ 0) (4)

From Equations 3 and Inequality 4, we have:

WF,t′ < WS\F,t′

⇒ n− 1

2
+ k × 0.5 <

n+ 1

2
− (|A| − k)× 0.5

⇒ |A| < 2,

which is a contradiction since we assumed that |A| ≥ 2.

Next, we show that all invocations cannot be completed

by creating changes with zero weights. For contradic-

tion, assume all invocations are completed by creating

changes with zero weights. There are two possibilities

for a correct server si: si ∈ F or si ∈ S \ F . If

si ∈ F , the invocation reassign(si, 0.5) could be com-

pleted by creating a change with weight 0.5, as Integrity

is still preserved. Likewise, if si ∈ S \ F , the invocation

reassign(si,−0.5) could be completed by creating a

change with weight −0.5. Since the invocation is com-

pleted by creating a change with zero weight, Validity-I

is violated.

Consequently, only one of the reassign invocations can

be completed by creating a change with non-zero weight.

Since the decided value corresponds to the invocation

completed by creating a change with non-zero weight, the

Agreement property is satisfied.

• (Validity) We say that a server s is correct if its reassign

invocation is completed in Algorithm 1. We must show

that if all correct servers propose the same value v, they

must decide v. Note that the decided value in Algorithm 1

is among the values proposed by servers whose reassign

invocations are completed. In other words, the decided

value is among the values proposed by the correct servers.

Therefore, the Validity property is satisfied.

• (Termination) Notice that every invocation of the

reassign operation will eventually terminate due to the

Liveness property of the weight reassignment problem.

Hence, the reassign invocation completed by creating

532

a change with non-zero weight will eventually terminate.

Also, the read changes invocations that enable servers to

learn which reassign invocation is completed by creating

a change with non-zero weight will eventually terminate.

Consequently, each correct server can decide eventually.

Proof of Theorem 2. Like Theorem 1, we need to show

that three properties of consensus – Agreement, Validity,

and Termination – can be satisfied using Algorithm 2. Let

F = {s1, . . . , sf}.

• (Agreement) Recall that each server si ∈ S executes

the propose function in Algorithm 2. Then, si invokes

transfer. Note that each server s ∈ F transfers some

of its weight to another member of F . Consequently,

the total weight of members of F does not change by

completing transfers executed by members of F . We now

show that only one of the transfers executed by members

of S \ F can be completed by creating a change with

non-zero weight.

Like the proof of Theorem 1, we first show that multiple

transfers executed by members of S \ F cannot be

completed by creating changes with non-zero weights.

For the sake of contradiction, assume that there is a set

A ⊆ S \ F such that |A| ≥ 2 and the transfer of each

server s ∈ A completes at time t > 0 by creating a

change with non-zero weight. We know that:

WF,t = f × n− 1

2f︸ ︷︷ ︸
WF,0

+|A| × 0.4 (5)

WS\F,t = (n− f)× n+ 1

2(n− f)︸ ︷︷ ︸
WS\F,0

−|A| × 0.4

From Inequality 4 and Equations 5, we have:

WF,t < WS\F,t

⇒ n− 1

2
+ |A| × 0.4 <

n+ 1

2
− |A| × 0.4

⇒ |A| < 5

4
,

which is a contradiction because |A| ≥ 2 according to

our assumption.

Next, we show that all transfers executed by members

of S \ F cannot be completed by creating changes with

zero weights. For contradiction, assume all such transfers

are completed by creating changes with zero weights.

Consider a correct server si ∈ S \ F . The invocation

transfer(si, s1, 0.4) could be completed by creating

two changes with weights 0.4 and −0.4, because by

creating such changes, P-Integrity is still preserved. Since

the invocation is completed by creating changes with zero

weights, P-Validity-I is violated.

Consequently, only one of the transfers executed by

members of S \ F can be completed by creating two

changes with non-zero weights. Since the decided value

corresponds to the transfer completed by creating two

changes with non-zero weights and executed by a member

of S \ F , the Agreement property is satisfied.

• (Validity) This property holds by the same argument pre-

sented for the Validity property in the proof of Theorem 1.

• (Termination) Every read changes or transfer invo-

cation will eventually terminate according to P-Liveness.

Hence, the transfer executed by a member of S \ F and

completed by creating a change with non-zero weight

will eventually terminate. Besides, the read changes

invocations that enable servers to learn the transfer of

which member of S \ F is completed by creating a

change with non-zero weight will eventually terminate.

Consequently, each correct server s can decide eventually.

Proof of Theorem 3. We present two preliminary lemmas

before proving Theorem 3.

Lemma 1. If Ws,t >
WS,0

2(n−f) for each server s at any time t,
then P-Integrity is always met.

Proof. Recall that in the pairwise weight reassignment, the

total weight of servers does not change during an execution,

i.e., WS,t = WS,0 at any time t > 0. Also, recall that P-Integrity

is equivalent to Inequality 2. Accordingly, we need to show

that Inequality 2 holds if Ws,t >
WS,0

2(n−f) for each server s at

any time t. We have:

WS\F,t =
∑

s∈S\F
Ws,t >

∑

s∈S\F

WS,0

2(n− f)

= |S \ F | × WS,0

2(n− f)
= (n− f)× WS,0

2(n− f)

=
WS,0

2
,

which means that Inequality 2 holds.

Lemma 2. For each server s, there is at most one server that

is allowed to invoke transfer(s, ∗, ∗) in order to preserve

Ws,t >
WS,0

2(n−f) at any time t in asynchronous systems.

Proof. This proof is similar to the proof of Theorem 1. For

contradiction, assume that Ws,t >
WS,0

2(n−f) can be preserved

at any time t in asynchronous systems even if multiple

servers invoke transfer(s, ∗, ∗). Particularly, assume that

two correct servers si, sk �= sj invoke transfer(sj , ∗,Δ1)
and transfer(sj , ∗,Δ2) at time t such that Wsj ,t−Δ1−Δ2 ≤
WS,0

2(n−f) but Wsj ,t − Δ1 >
WS,0

2(n−f) and Wsj ,t − Δ2 >
WS,0

2(n−f) .

This means that only one of the transfers can be completed ef-

fectively, as if both transfers are completed effectively at time

t′ > t, then Ws,t′ ≤ WS,0

2(n−f) . Therefore, si and sk can decide on

the value proposed by a server s ∈ {si, sk} that its transfer is

completed effectively, which is a contradiction since consensus

cannot be solved in asynchronous systems. Consequently, in

order to preserve Ws,t >
WS,0

2(n−f) in asynchronous systems, we

must assume that for each server sj , there is at most one server

that is allowed to invoke transfer(sj , ∗, ∗).
Without loss of generality, we assume that only sj can

invoke transfer(sj , ∗, ∗) in Lemma 2. Using Lemmas 1 and

2, the proof of Theorem 3 is immediate.

533

