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Abstract 

Background:  This work presents an experience done to evaluate the number of very small objects in the field of 
view of a stereo microscope, which are usually counted by direct observation, with or without the use of grids as vis-
ual aids. We intend to show that deep learning recent algorithms like YOLO v5 are adequate to use in the evaluation 
of the number of objects presented, which can easily reach the 1000 s. This kind of algorithm is open-source software, 
requiring a minimum of skills to install and run on a regular laptop. We further intend to show that the robustness of 
these kinds of approaches using convolutional neural networks allowed for the use of images of less quality, such as 
the images acquired with a cell phone.

Results:  The results of training the algorithm and counting microalgae in cell phone images were assessed through 
human curation in a set of test images and showed a high correlation, showing good precision and accuracy in 
detections.

Conclusions:  This is a low-cost alternative available worldwide to many more facilities than expensive cameras and 
high-maintenance rigid set-ups, along with software packages with a slow learning curve, therefore enlarging the 
scope of this technique to areas of knowledge where the conditions of laboratory and human work are a limiting 
factor.
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Background
When growing microalgae, being it at a laboratory or 
industrial scale, cell counting methods are essential for 
monitoring population growth. There are several alterna-
tive methods of estimating population size and growth, 
such as the optical density of the culture or in vivo fluo-
rescence of chlorophyll a, but in many instances know-
ing the number of cells is necessary so that physiological 
processes and products may be referred in a per-cell basis 
(Guillard and Sieracki 2005).

The most common and simple counting method for 
microalgae cultures is by light microscopy using specific 
counting devices (counting chambers) selected based on 
the size of the organism and the cell concentration (Guil-
lard 1973; Karlson et  al 2010; Reguera et  al 2016). This 
method has the advantage that the cells can be observed 
by the researcher, and the physiological status of the cul-
ture maybe assessed. However, it is also very time-con-
suming and tedious, particularly when a high number 
of cultures need to be examined, a common practice in 
laboratory experiments and industrial production units.

Already in the second half of the twentieth century, 
electronic devices aiming at automated counting sys-
tems started to be developed to help overcome these 
constraints (Parsons 1973). In the last decades, auto-
mated counting methods for cell cultures have been 
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increasingly implemented and developed and there are 
now in the market several bench-top solutions available 
(e.g. CellDrop, DeNovix Inc., USA; Countess, Thermo 
Fisher Scientific, USA; EVE, NanoEntek, South Korea) 
characterized by having high efficiency and precision, 
and requiring low application times and low expertise. 
These methods are now starting to be used in microalgae 
research laboratories (e.g. Salbitani et al 2022). The main 
drawback of these automated methods is their initial high 
cost (above 15 000€) rendering them inaccessible to many 
laboratories, particularly in underdeveloped countries.

Notwithstanding, other high technological approaches 
and equipment are nowadays easily accessible. Cell 
phones are increasingly accessible and feature high-qual-
ity cameras, with images useful in many computer vision 
tasks such as object detection and recognition. In the 
last decades, the detection of objects using deep learn-
ing techniques has been intensively exploited, mainly 
due to its broad application (Cao et  al. 2018; Viso.AI n. 
d.; Wang et al. 2018) and good results namely in almost 
all fields of biology (Webb 2018; Ching et  al 2018), 
microscopy imagery (Sorzano et  al 2009; Ito et  al 2018; 
Xing et  al 2018; Devan et  al 2019) and microorganisms 
in general (Zhang et al. 2021). What motivated our inter-
est in deep learning algorithms was the limited success 
of conventional image processing techniques applied to 
images where context is a decisive factor and the opera-
tor reasoning must be incorporated. In addition, inherent 
in deep learning is the possibility of data augmentation. 
Data augmentation is the introduction of small rand-
omized changes to train data, in the form of radiomet-
ric and geometric alterations in dimensions, rotation, 
translation, and shearing. This is particularly interesting 
because whatever the number of train images we use, we 
cannot guarantee that all the possible positions, sizes, 
and aspects of the cells are contemplated in the training 
set.

The main objective of this work was to develop a low-
cost cell counting method for microalgae cultures that 
were simultaneously easy, fast, and accurate. To achieve 
this objective, we used a stereo microscope and images 
acquired with a common cell phone, which were pre-
processed in Matlab environment, with basic image pro-
cessing operations available in any open-source image 
processing software (e.g. ImageJ), and a deep learning 
algorithm also open-source, running on a regular laptop.

Methods
Concerning microalgae strains and culture conditions 
in this study, two different strains of the marine dino-
flagellate species Protoceratium reticulatum (Claparède 
& Lachmann) Bütschli 1885 (IO116-01 and IO116-02) 
were used both in the training and validation stage of 

the counting experiments. The cultures were obtained 
from the algae culture collection of the University of Lis-
bon (ALISU) and were grown under controlled labora-
tory conditions (Fitoclima 600PL, Aralab, Portugal), in 
L1 medium (Andersen et al 2005), at a salinity of 33, at 
19 ± 1 °C under a 12:12 h light: dark cycle, 100–110 μmol 
photons m−2 s−1.

In what concerns sample preparation for cell counts, 
3  ml culture samples were fixed with approximately 
0.15  ml of Lugol’s solution (Karlson et  al 2010). Imme-
diately before filling the counting chamber samples 
were homogenized by gently rotating the flask 25 times. 
A sub-sample was then used to fill the chamber of a 
Palmer–Maloney counting slide (100 µl) (LeGresley and 
McDermott 2010). No dilution steps were used. The 
sample was allowed to settle for 5 min, and the chamber 
was placed under a stereo microscope at 10 × magnifica-
tion (Zeiss Stemi 305, Germany). The images were then 
acquired through the eyepiece with a cell phone (Sam-
sung M21, South Korea) equipped with a 48.0 MP cam-
era (Samsung S5KGM1—f/2.0, 26  mm (wide), 1/2.0″, 
0.8 µm). The image covered the whole area of the count-
ing chamber, the equivalent of a100 µl culture sample.

For the image train process, a total of 6 images of 
2250 × 4000 pixels at 24 bits were acquired from cultures 
in different phases of the growth curve to cover a variety 
of particle properties (e.g. range of cell sizes, cell debris, 
and thecal plates).

The pre-processing of the images was achieved in Mat-
lab R2021a environment and consisted of four steps: first, 
a modified homomorphic filter was applied with a sigma 
of 11 to compensate for irregular illumination of the 
background; second, all images were histogram matched 
to one reference image, chosen for its ideal radiomet-
ric range; the third step consisted in producing a binary 
mask for each image with a global threshold, followed 
by morphological operations to consolidate the area of 
interest and eliminate surrounding structures included in 
the field of view (FOV); finally, this mask was applied to 
the processed image (Fig. 1).

The algorithm used is one of the latest developments 
in one-stage algorithms based on convolutional neural 
networks (CNNs), the 5th version since the introduction 
of the concept You Only Look Once (YOLO) (Redmon 
et  al 2016). YOLO v5 was made publicly available in a 
GitHub repository in 2020 (GitHub Ultralytics n.d.). The 
algorithm has been retrained for the task using a transfer 
learning technique: since many basic features are com-
mon to all detection problems (edges, contrasts, forms, 
etc.), an already heavily trained network can be used to 
implement a new problem. The new discriminators will 
define the last layers of the CNN, tuning the detector 
according to the details of the specific problem. After 
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the download and successful installation of YOLOv5, 
the algorithm was trained on our data set as described 
below. The set of images acquired was segmented into 
tiles of 800 × 800 pixels to accelerate training procedure, 
as it was our objective to use the most complete model of 
YOLOv5, the model x that uses a CNN with 476 layers.

The train demands a set of images with all the objects 
of interest identified with bounding boxes, and the 
respective list; the data set annotated in this way, called 
ground truth, is then split into train and validation sub-
sets, between which the algorithm will converge to the 
best possible achievement in terms of precision (percent-
age of true positives correctly classified) and recall (per-
centage of true positives detected).

A metric usually considered in object detection appli-
cations is the mean average precision (mAP) that quan-
tifies the stability and consistency of the model, within 
a confidence threshold related to the intersection-over-
union (IoU) areas between the anchor boxes estimated 
from the train data and the bounding boxes predicted 
by the model in the annotated data. With a threshold of 
X, the box is assigned to an object of interest if the IoU 
quotient is above X and considered background in the 
opposite case. Non-maxima suppression ensures most 
multiple detections are avoided, by considering only the 
box with maximum probability in each set of overlapping 
boxes.

The annotation of a subset of images for train and 
validation purposes can be made with online tools, 
such as (Makesense.AI n.d.) used in the present work, 
with a user-friendly graphic interface. The images to be 

annotated (usually 30% of the images available, further 
split in 20% for train, 10% for validation) are uploaded 
to the site and the graphic tools available in the inter-
face are used to draw boxes around all the objects of 
interest in each image, using zoom, correction, delete 
and pan functionalities. At the end, a text file for each 
image is exported in a user-defined format, with all the 
annotations (image coordinates for the boxes) made in 
that image. The images and corresponding text files are 
then distributed between validation and train, because 
YOLOv5 requires a fixed directory tree, with names that 
it will recognize to know where to find image and label 
files during the train stage. Once trained, the algorithm 
was applied to a test data set of 43 images of P. reticu-
latum cultures as described above. Results were assessed 
by manually verifying the false negatives and false posi-
tives in each image, and the performance of the model 
was evaluated based on precision and recall.

Results
The 6 images acquired were cropped in 72 initial tiles of 
800 × 800 pixels, and the algorithm was trained with 21 
annotated images, using 14 images for train and 7 for val-
idation. We verify later that several images only contain 
the pieces surrounding the area of interest, so we tested 
on 43 remaining images containing 3659 microalgae 
cells. With a confidence threshold of 0.25 for inference, 
YOLOv5 detected 3681 objects, of which 100 were false 
positives, leaving out 78 false negatives, giving an overall 
precision of 97.4% and a recall of 97.9%. Other param-
eterizations for the confidence threshold (0.20, 0.30 and 

Fig. 1  a Original image acquired with a cell phone through the stereo microscope eyepiece; b the same image after being pre-processed and 
masked
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0.35) were tried with less success, as the improvement in 
accuracy led to a decrease in recall performance. An IoU 
threshold of 0.25 had the best results, avoiding most mul-
tiple detections. The mAP@0.5 was 0.862.

With this trade-off in parameterization, among the 
3681 particles identified 2.7% were wrongly detected 
(false positives) and 2.1% of the 3659 particles present 
were not detected (false negatives), which seems like rea-
sonable numbers compared to human curation.

If we look at the results considering each image as a 
unity, 72% reach a precision of 95%, 74% attain 95% of 
recall and 67% attain both recall and precision better 
than 95% simultaneously. The result of the inference for 
the image that exemplifies the pre-processing is shown in 
Fig. 2.

Inference over an 800 × 800 pixel image is computed 
in 1800 ms in the laptop described below, giving two or 
three outputs: a numerical output in the command win-
dow with the total count of detections and a file con-
taining a copy of the image with all occurrences flagged 
(Fig. 2), as well as an optional text file featuring the coor-
dinates of all the windows around the occurrences in 
image coordinates, allowing to extract every single parti-
cle for further processing if desired.

Discussion
The estimation of cell numbers when culturing microal-
gae is essential because the physiological processes under 
study or the target products to be produced usually 
need to be referred in a per-cell basis. Manual counting 

of microalgae cells for estimation of cell concentrations 
with acceptable accuracy levels consumes considerable 
human resources and is a tedious procedure sometimes 
with results affected by operator subjectivity and fatigue. 
This limits the number of samples that can be processed 
which may partly constraint the outputs of the work. 
Nevertheless, it is still used today in routine estimation 
of cell culture concentrations (e.g. Pereira et  al 2016; 
Sheward et al 2017; Rocha et al. 2022) probably because 
of the lack of affordable, accurate and precise automatic 
alternatives in the market.

In the present work we provide the tools for the imple-
mentation of an automated cell counting method with 
no costs or only residual costs to the user. Compared to 
other automated cell counting methods routinely used in 
many laboratories, the methodology described is acces-
sible in financial terms in facilities where a stereo micro-
scope is available, as it only requires a regular laptop and 
a cell phone, and software available online without any 
associated costs. The learning curve is fast for anyone 
used to software with parameterizable interfaces.

The same methodology can be easily extended to other 
particles, requiring however a separate training stage for 
each kind of organism to be counted. The high number 
of epochs or iterations in the training stage is time-con-
suming, but it is done just once. As a reference, in our 
case, 700 iterations of model x, with images of 800 × 800 
pixels took 21.2  h in a HP-Pavilion 17-cd1006np laptop 
with an Intel Core i7 processor, 16  GB SDRAM and a 
graphic unity NVIDIA GeForce RTX 2060 Max-Q 6 GB. 
In microalgae production units or when developing a 
particular laboratory experiment, the number of species 
that are cultured is relatively small, and this methodology 
could easily be implemented for all species of interest.

The annotation of the subset of images for train and 
validation purposes should be done by someone knowing 
well the characteristics of the organism to be counted. 
This will allow high accuracy output once the system is 
implemented. From the technical operator perspective, 
the system does not require an expensive training pro-
gram since the only needed expertise is image acquisition 
using a standard cell phone and the basic informatic skills 
of any computer user to run a new image.

In addition, the method here proposed allows the 
counting of a higher number of cells in a significantly 
shorter time. This increases the confidence limits of the 
concentration estimates while allowing for a larger num-
ber of samples to be counted each day.

Conclusions
The present work describes a processing chain that 
allows the implementation of a particle counting pro-
cedure with application in the field of microalgae 

Fig. 2  Points of interest (red squares) detected by YOLOv5 in the 
image shown in Fig. 1
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research and production. It allows monitoring popula-
tion growth in microalgae cultures using a deep learn-
ing method with accurate results, and much less cost 
in both human labour, laboratory technical equipment 
and high-end image acquisition equipment. As with 
other automated cell counting methods, it is faster 
than using the light microscope and allows for the enu-
meration of high particle numbers, increasing statisti-
cal robustness (Guillard & Sieracki 2005). The human 
uncertainty involved in the tedious labour of counting 
a large number of cultures is eliminated, as well as the 
errors due to interruptions or fatigue.

Future work will include an evaluation of the perfor-
mance of the same train in cultures of other microor-
ganisms of similar gross morphology, which could lead 
to a portfolio of ready-to-run train files appropriated 
for the set of organisms most usually processed in each 
facility.
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